Analysis of Fourier-domain task-based detectability index in tomosynthesis
and cone-beam CT in relation to human observer performance
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Purpose: Design and optimization of medical imaging systems benefit from accurate theoretical
modeling that identifies the physical factors governing image quality, particularly in the early stages
of system development. This work extends Fourier metrics of imaging performance and detectabil-
ity index (d’) to tomosynthesis and cone-beam CT (CBCT) and investigates the extent to which d’
is a valid descriptor of task-based imaging performance as assessed by human observers.
Methods: The detectability index for tasks presented in 2D slices (d};..) was derived from 3D
cascaded systems analysis of tomosynthesis and CBCT. Anatomical background noise measured in
a physical phantom presenting power-law spectral density was incorporated in the “generalized”
noise-equivalent quanta. Theoretical calculations of d;,., were performed as a function of total
angular extent (6,,) of source-detector orbit ranging 10°-360° under two acquisition schemes: (i)
Constant angular separation between projections (constant-A6), giving variable number of projec-
tions (NV;) and dose Vs 6, and (ii) constant number of projections (constant-N,;), giving constant
dose (but variable angular sampling) with 6. Five simple observer models were investigated:
Prewhitening (PW), prewhitening with eye filter and internal noise (PWEi), nonprewhitening
(NPW), nonprewhitening with eye filter (NPWE), and nonprewhitening with eye filter and internal
noise (NPWEIi). Human observer performance was measured in 9AFC tests for five simple imaging
tasks presented within uniform and power-law clutter backgrounds. Measurements (from 9AFC
tests) and theoretical calculations (from cascaded systems analysis of d.j;..) were compared in terms
of area under the ROC curve (A,)

Results: Reasonable correspondence between theoretical calculations and human observer perfor-
mance was achieved for all imaging tasks over the broad range of experimental conditions and
acquisition schemes. The PW and PWEi observer models tended to overestimate detectability,
while the various NPW models predicted observer performance fairly well, with NPWEi giving the
best overall agreement. Detectability was shown to increase with 6, due to the reduction of
out-of-plane clutter, reaching a plateau after a particular 6, that depended on the imaging task.
Depending on the acquisition scheme, however (i.e., constant-N,,; or A6), detectability was seen in
some cases to decline at higher 6,,, due to tradeoffs among quantum noise, background clutter, and
view sampling.

Conclusions: Generalized detectability index derived from a 3D cascaded systems model shows
reasonable correspondence with human observer performance over a fairly broad range of imaging
tasks and conditions, although discrepancies were observed in cases relating to orbits intermediate
to 180° and 360°. The basic correspondence of theoretical and measured performance supports the
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application of such a theoretical framework for system design and optimization of tomosynthesis
and CBCT. © 2011 American Association of Physicists in Medicine. [DOI: 10.1118/1.3560428]
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I. INTRODUCTION

Tomosynthesis and cone-beam CT (CBCT) using flat-panel
detectors (FPDs) offer the potential for improved lesion con-
spicuity and localization in a wide range of diagnostic and
image-guided procedures, including breast imaging,lf4 chest
imaging,s‘6 and surgical interventions.”® The development of
new tomosynthesis and CBCT systems for such applications
stands to benefit significantly from an understanding of the
factors that govern image quality and a theoretical frame-
work for the assessment and optimization of imaging
performance.9

Image quality assessment commonly involves human
observer-based measurements [e.g., receiver operating char-
acteristic (ROC) or alternative forced-choice (AFC) tests] or
observer-independent modeling or measurement [e.g., modu-
lation transfer function (MTF), noise-power spectrum (NPS),
detective quantum efficiency (DQE), and noise-equivalent
quanta (NEQ)]. The former, although time-consuming and
requiring careful attention to experimental design to mini-
mize bias, has been applied to evaluate 3D imaging
systems.10 However, due to the broad parameter space asso-
ciated with system design, acquisition techniques, and recon-
struction methods, human observer studies may be impracti-
cal as a rigorous approach for designing and optimizing
medical imaging systems. Alternative approaches with math-
ematical observer models have been an active area of
research.''™" The latter have been commonly used in char-
acterization of radiographic imaging systems,mﬁ19 with re-
cent research extending the approach to include dual-energy
radiography,20 tomosynthesis,zl_24 cone-beam CT,”*" and
the incorporation of anatomical background noise.”® Despite
the widespread use of both these broad approaches, there is
comparatively little rigorous understanding of the connection
between the two for real imaging systems, e.g., how im-
provement in DQE might (or might not) relate to improve-
ment in ROC, underscored primarily by the fact that these
prevalent Fourier metrics do not, in themselves, account for
how observers interpret the image data or, more specifically,
how detector performance relates to a given imaging task.

A connection between prevalent, practical metrics such as
NEQ and human or model observer performance metrics
such as ROC offers significant value in system development,
e.g., in identifying low-dose performance limits and guiding
design improvements (e.g., x-ray converter efficiency, elec-
tronics noise, etc.). As generally acknowledged, imaging per-
formance is best defined with respect to an intended task and
quantitative frameworks based on statistical decision theory
have been proposed to incorporate task in the assessment of
image quality.g’zg*33 For example, the detectability index pro-
posed by Green and Swets™ has been adapted in the context
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of medical im21ging35’3 % in terms of the NEQ and a spatial-

frequency-dependent template (task function) corresponding
to an ideal observer. Such ideal observer models have proven
useful to system optimization in some contexts.*"” Other
observer models that aim to better describe human observer
performance under various imaging conditions (e.g., statisti-
cal backgrounds) have been an active area of research. 2384

The work described below extends a theoretical cascaded
systems model>?** for the 3D NEQ of FPD based tomo-
synthesis and CBCT to include: (i) Spatial-frequency-
dependent task descriptors to yield the detectability index for
a variety of idealized imaging tasks and observer models; (ii)
background power-law noise, shown to be a major factor in
affecting detectability over the continuum of angular extent
from low-angle tomosynthesis to CBCT; and (iii) compari-
son of theoretical calculations of detectability with the per-
formance measured for human observers in real image data.
The first is a straightforward interpretation of task-based de-
tectability index (d’) outlined in ICRU Report 54 (Ref. 9) in
the context of 3D imaging. The second yields so-called “gen-
eralized” Fourier metrics [viz., generalized NEQ (GNEQ)
and generalized d'], where the term “general” refers specifi-
cally to the incorporation of background noise in the NEQ,
as described by Barrett et al.®® (distinct from what might be
termed “system” NEQ factors such as focal spot size, x-ray
scatter, etc., which may also be included46). The third di-
rectly compares theoretical calculations of model observer
performance (based on GNEQ and task function) to the per-
formance measured using human observers, thereby investi-
gating the extent to which task-based detectability index pro-
vides a meaningful figure of merit for observer performance
and, ultimately, system optimization.

Note that the intent of this work is not to advance the
extent to which observer models in themselves are descrip-
tive of human observer performance; rather, the work utilizes
a variety of well known observer models and investigates the
extent to which a theoretical framework for 3D NPS and
NEQ gives correspondence with human observers. The sig-
nificance of the work lies in the potential to predict imaging
performance in a manner that corresponds to that of human
observers, e.g., as a function of angular extent, number of
projections, and total dose in tomosynthesis and CBCT, from
first principles of signal and noise propagation in a 3D cas-
caded systems model of the imaging system.

Il. METHODS
Il.A. Generalized detectability index
Il.LA.1. Cascaded systems analysis

Cascaded systems analysis has been widely used in mod-
eling detector performance in 2D radiographyM’IS’19 and
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more recently extended to describe 3D imaging performance
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FIG. 1. Cascaded systems analysis consisting of the 2D projection formation (stages 1-7) and 3D reconstruction cascade (stages 8—13).
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in tomosynthesis and CBCT.**™ Details of the 3D cascaded
systems analysis model have been described in previous
works,”**" with a summary of the model illustrated in Fig. 1.
Briefly, stages 1-7 model the propagation of signal and noise
in the formation of the 2D projection image and stages 8—13
model the 3D reconstruction. Specifically, stage 8 describes
the log transform of projections, stage 9 the application of
the ramp filter, stage 10 the smooth apodization filter, stage
11 the interpolation of projection data for voxel-driven re-
construction, stage 12 the backprojection according to the
central slice theorem, and stage 13 the sampling of data in
the 3D reconstruction domain. The accuracy and utility of
this approach has been demonstrated with measurements of
NPS and NEQ in CBCT and tomosynthesis,z*z’%’27 providing
a general framework for modeling imaging performance for
a wide range of system parameters, acquisition techniques,
and reconstruction settings. More recently, the model was
extended to include background power-law noise (“anatomi-
cal noise”) in the generalized NEQ.47

The detectability index provides a task-based performance
metric that combines the NEQ with a task function describ-
ing the spatial frequencies of interest’

we) ]

where T is the MTF and S, and Sg are the quantum NPS and
electronic NPS, respectively. The MTF and NPS are derived
directly from cascaded systems analysis as described in pre-
vious works.'*'3%® The term Wraek 18 a task function given
by the difference of the Fourier transforms of the spatial
representations (spatial domain object functions) of the two
hypotheses, e.g., for a detection task, a signal-present hy-
pothesis represented by a volume-of-interest (VOI) contain-
ing the signal and a signal-absent hypothesis represented by
a background only VOI. Linearity of the Fourier transform
suggests this is equivalent to the Fourier transform of the
difference of the object functions.’ Spatial-frequency-
dependence (f,,f,,/) is implicit in 7, Wr,y, Sp, and Sg cor-
responding to a 3D detectability index denoted as djp,.

To include the effect of anatomical background on task
performance, the detectability index can be generalized to
include anatomical noise as an additional noise source as
follows:

Task)

Sor s (1)

o o dhdfdf.,
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where Sp is the anatomical background power spectrum, of-
ten modeled according to a power-law characteristic*

K
Sp(f) = P (3)

where « denotes the magnitude of background variations and
B the degree of correlation. The term a is a scale factor
(taken as 1) with units inverse to frequency (e.g., a=1 mm
for f in units of mm™'), effectively making the denominator
dimensionless despite different values of 3. Generalized in
this way, detectability index provides a theoretical frame-
work for understanding the tradeoffs among quantum noise,
electronic noise, and anatomical background as a function of
acquisition parameters (e.g., angular range, number of pro-
jections, and dose) and reconstruction methods (e.g., recon-
struction filter, sampling, etc.).

Il.LA.2. Model observers

The detectability index in Eq. (2) corresponds to a pre-
whitening (PW) matched filter observer that is able to deco-
rrelate image noise. The model can be extended to the non-
prewhitening (NPW) matched filter observer™® that does not
estimate the background, but instead applies a detection tem-
plate in the form of the signal

dr 2 _ [fff(T 3 WTask)zdfxdfvdfz]z
3

= . 4
P fff(TzSB+SQ+SE) ' (T WTask)zdfxdfydfz ( )

These two models can be extended to include an eye filter
E(f) and internal noise N; to account for response character-
istics of the human visual system.49’50 The PW model ex-
tended in this way is denoted PWEi (PW model with eye
filter and internal noise) and written as

E (T WTask)

2( . 2
r2_ S
D_fJsz(TzSB+SQ+SE)+N,»

Similarly, the NPW model with the eye filter is denoted
NPWE and written as

df.df,df.. (5)
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[ffsz(T . WTask)zdfvdfxdfz]z
fffE4(T2SB + SQ + SE) ! (T : WTask)zdfydfxdfz

and can be extended further to include internal noise, de-
noted NPWEi, and written as

r2
d3D

r2_
d3D_

(6)

) LIS SEXT - Waygdf dfdf.
- JIHENTS + So+Sp) - (T WTask)2 + Ni}dfxdfydfz .
(7)

The equations above for the 3D detectability index are drawn
from a previous work®® and could, in principle, be related to
task performance in 3D images. However, there are currently
no established 3D eye filter models, there are no models
shown to correspond to a human observer scrolling slices or
viewing a slice montage, and there is little established ex-
perimental methodology for reliable human observer perfor-
mance assessment in fully 3D images. The exact form of eye
filters and internal noise appropriate to fully 3D data (e.g.,
slice scrolling, multislice montage presentation, or volumet-
ric viewing) are subjects of ongoing and future works in
modeling of image perception and are therefore not invoked
in this work. For these reasons, we derived a 2D “slice”
detectability index (denoted as d_;;..) from the fully volumet-
ric detectabilty index (denoted as djp) to correspond to a
slice image extracted from the 3D image. As shown in Sec.
IT A 3, the slice detectability is not derived simply from 2D
analysis; rather, one must derive the fully 3D detectability
index and then integrate (in the Fourier domain) over the
direction corresponding to slice extraction. Just as the 3D
image NPS is not correctly analyzed from 2D analysis of a
slice from the 3D image (rather, 3D Fourier analysis is re-
quired to account for noise correlation in all three
dimensions),SI analysis of slice detectability from a 2D NPS
and NEQ is fraught with error and fully 3D analysis (fol-
lowed by integration along a given direction in the Fourier
domain) corresponds appropriately to performing a task
within a slice extracted from the 3D image.

1l.A.3. Slice detectability vs “3D” detectability

The detectability index in Egs. (2)—(7) is written in a form
in which the observer is assumed to fully perceive the volu-
metric image information. Although 3D detectability can be
derived from the cascaded systems analysis model as in Eq.
(1), the human observer tests described below involved read-
ing of coronal slices extracted from the 3D image for pur-
poses of simplicity. To enable comparison with human ob-
server performance, detectability index was derived in a
form pertaining to a single 2D slice extracted from the vol-
ume. Slice extraction corresponds to integration across the
direction orthogonal to the slice (taken as fy).51 For the pur-
pose of this work, axial images correspond to the x-y plane,
with y corresponding to the depth direction. Coronal slices
(i.e., images in the x-z plane) were used in the observer
study, corresponding to the usual tomosynthesis view. There-
fore, 2D slice metrics can be obtained by integrating 3D
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metrics in Sec. Il A 2 over the f) direction. It is important to
acknowledge that the slice detectability, chosen here simply
for comparison to human observer tests, is not a complete
metric for optimization of a 3D imaging system. While the
fully 3D detectability index may be a suitable optimization
metric, the rationale for analyzing slice detectability below
was simply for purposes of measuring correspondence to hu-
man observer performance and not as a basis for system
optimization. The slice detectability corresponding to the 3D
observer models above are therefore

PW

12 _ (fT ) WTaskdfy)2
dslice_f f f(TZSB+SQ+SE)dfydfxdfz. (8)
PWEi

2 E*(JT- Wragdf,)*
d%lice = 2 2

; E*[(T°Sp+ So+ Sp)df, + N;
NPW

dfdf. ©)

r2 — [II(IT ) WTaskdfy)zdfxdfz]2
slice fff(TzSB + SQ + SE)dfy : (fT WTaskdfv)zdfxdfz .

(10)
NPWE
42 = USE(JT - Wragdfy)df df.] |
T [JIEH (TS + So + Sp)df,] - (JT - Wrpadf,) df df,
(11)
NPWEi
d 2=

slice™

[fsz(fT : VVTaskdfy)dexdfz]2
JHIE (TS + So + Sp)df,] - (JT - Wraadf,)* + Ni}dfdf.
(12)

The eye filter employed in this study was a simple
approximation of Barten’s”” contrast sensitivity curve of the
human eye consistent with that used in the study by
Bulrgess39

E(f) = f exp(=cf), (13)

where f is the spatial radial frequency. The eye filter was
implemented such that its maximum response occurred at 4
cycles/deg. For a typical viewing distance of 50 cm, ¢ equals
2.2. The internal noise was implemented as uncorrelated
white noise dependent on the magnitude of variation in back-
ground power spectra’

D 2
N;=0.001{ — | NPS,(0,0), 14
' (100) e4(00) (14)

where D is the viewing distance estimated as 50 cm for this
study and NPS,, is the white NPS equivalent in total power
to the image noise (sum of Sg, Sy, and Sg). The scale factor
0.001 was fixed following variation as a free parameter as in
Burgess39 to give coarse overall agreement to measurements.
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The slice detectability index in Eqgs. (8)—(12) formed the
basis for theoretical calculations performed in comparison to
human observer performance for a variety of imaging tasks
described below. Although slice detectability describes imag-
ing performance on a 2D slice, the derivation of such is only
achieved via the fully volumetric analysis of the 3D NPS,
NEQ, and djp. The 2D slice detectability index is derived
simply to evaluate correspondence to measurements in the
observer study and is not intended as an objective function
for system optimization.

1.B. Imaging tasks and physical imaging phantoms

The sections below describe physical experimentation
conducted to allow direct comparison of theoretical d;,, (de-
rived above) with the performance measured in human ob-
servers. A variety of imaging tasks were implemented in real
phantoms in a manner that imparted a range of conspicuity
(from imperceptible to obvious) over a broad range of ex-
perimental conditions (number of projections, dose, and

source-detector orbital extent).

1l.B.1. Detection in uniform background

Detection in a uniform background was investigated as
the simplest case in which the NEQ was governed by quan-
tum and electronic noise only (no background clutter). A
physical phantom was used that consisted of acrylic spheres
of various sizes embedded in a uniform polyurethane cylin-
der. As described below, the task corresponded to the detec-
tion of a (110 HU) sphere against a uniform (90 HU) back-
ground. For tomosynthesis and CBCT, a sphere of 6.4 mm
diameter was selected as the signal to present strongly vary-
ing conspicuity across a range of source-detector orbital ex-
tent (6.

1.B.2. Detection/discrimination in background
clutter

A previous work?’ described a phantom designed from
principles of fractal self-similarity that contained different
diameter spheres randomly mixed to give power-law spectral
density. Power law parameters « and 8 can be adjusted ac-
cording to the contrast of the spheres and the proportion of
various diameters, respectively. In this work, an equal vol-
ume of acrylic spheres of five diameters (15.9, 12.7, 9.5, 6.4,
and 3.2 mm) were placed in an acrylic box of dimensions
(20 X 20X 12.5) cm?®. As previously reported, x and 8 were
measured to be k=3.72X 1077 (u’mm?®) and B=2.76 and
were taken as empirical parameters in the generalized detect-
ability index. The variation in background power spectrum
(Sp) with 6, is accounted through the product of the fully
3D Sp(fy.fy.f,) with the tomosynthesis “double-wedge” cor-
responding to the angular range of sampled frequencies in
the Fourier domain.

1I.B.3. Imaging tasks

Imaging tasks were conceived that could be physically
implemented in either the uniform or clutter phantoms and
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modeled according to a simple binary hypothesis-testing
model. Six identical objects were inserted in the phantom,
giving six statistically independent trials for each imaging
task. “Signal-present” images were taken from the central
coronal slice through each object and ROIs were selected
such that signals were at the center (see Fig. 2). On the other
hand, “noise-only/signal-absent” images were taken from the
same or neighboring slices without the signal. Five imaging
tasks emphasizing different regions of the frequency domain
(i.e., various spatial-frequency contents) were investigated in
this study. Task functions are plotted in Fig. 2 and described
in the following section.

II.B.3.a. Sphere detection on uniform background. Signal
detection in an otherwise uniform phantom such as the one
described in Sec. II B 1 corresponds to the case in which H,
is simply the signal represented by the object function, de-
noted O(x,y,z) (i.e., a sphere in the 3D image and a disk in
a 2D slice), and H, is a constant. The task function W, is
given by the product of the difference in attenuation coeffi-
cient between the signal and background (Aw) and the Fou-
rier transform of the signal (FT{O}). For the phantom de-
scribed in Sec. II B 2, the task function was computed with
Ap taken as the measured signal difference between the
acrylic sphere (110 HU) and polyurethane background (90
HU) in a full 360° CBCT reconstruction and FT{O} com-
puted numerically as the Fourier transform of a 6.4 mm di-
ameter sphere in the 3D image

WTask = A,LL ' FT{O}
= (IU“Acrylic - Iu“Polyurethane) ' FT{064 mm_Sphere}' (15)

Signal values used in calculation of Au were measured as an
average of multiple ROIs at various positions on the central
coronal slice of the reconstruction.

II.B.3.b. Large sphere detection on cluttered background.
Imaging tasks in cluttered background were modeled as sig-
nals (i.e., physical objects) embedded in the clutter phantom
of Sec. II B 2. For tasks presented on cluttered background,
the signal-present images contain the signal at the center of
the ROI, whereas “signal-absent” images present a back-
ground sphere of equivalent size (e.g., 12.7 mm for the large
sphere) at the same location. The signal-present hypothesis
was formulated as

FT{H,} = 1,FT{0,} + FT{B}, (16)

where u; and O, are the attenuation coefficient and object
function of the signal, respectively, and B corresponds to
background clutter (random collection of acrylic spheres),
the power spectrum of which obeys the power-law relation-
ship [Eq. (2)]. The signal-absent hypothesis is

FT{H,} = w,FT{O,} + FT{B} = ;,FT{O,} + FT{B},  (17)

where u, is the attenuation coefficient of the background
(acrylic) and O, (equal to O, in this case) is the object func-
tion corresponding to an (acrylic) sphere of the same size in
place of the signal within the background clutter. Note that
the Fourier transform describes magnitude only (disregard-
ing phase), so FT{B} in theory may pertain to various inde-
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FIG. 2. Fourier-domain task functions (left column) and coronal image ROIs (x-z) (images at the right) for varying angular extent under the constant-A 6 and

constant-N,,,,; cases: (a) Sphere detection on uniform background; (b) large sphere detection in clutter; (c) small sphere detection in clutter; (d) cube vs sphere

discrimination in clutter; and (e) encapsulated sphere vs solid sphere discrimination in clutter.

pendent realizations of the ba'ckground, pltO\.llded' they have Wra = FT{H Y = FT{H,} = (1 — o) - FT{O,}

the same (e.g., power-law) noise characteristic. Different re-

alizations of the background therefore cancel out in theory, =Ap-FT{O,}. (18)
such that discrimination of the signal (i.e., O, in clutter) from

a clutter-only image corresponds to For the large sphere on a cluttered background task, the sig-
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nal was a 12.7 mm diameter polypropylene sphere (—84
HU), which presented a lower contrast signal in comparison
to an equivalent size acrylic sphere (110 HU) in the back-
ground clutter. The contrast Ay was taken as the (absolute
value) difference in attenuation between polypropylene and
acrylic as measured from a full 360° CBCT acquisition. The
task function is thus given by

WTask = (/uAcrylic - luPolypropylene) : I:T{012.7 mmﬁSphere}‘ (19)

As illustrated in Fig. 2, this task presented primarily low and
midfrequency components.

II.B.3.c. Small sphere on cluttered background. Similar to
the previous task, detection of a small Teflon sphere (710
HU) in a cluttered background of acrylic spheres (110 HU)
follows Eq. (18), where Au is the measured contrast of Te-
flon and acrylic and O is the object function for a small (3.2
mm diameter) sphere

WTask = (Iu’Teﬂon - /‘LAcrylic) : FT{OSZ mm_Sphere}' (20)

As illustrated in Fig. 2, this task presented higher-frequency
components.

II.B.3.d. Cube vs sphere discrimination on cluttered
background. Shape discrimination was similarly modeled as
the Fourier transform of the difference of two hypotheses

FI{H,} = ;FT{0,} + FT{B}, (21)

FT{H,} = u,FT{0,} + FT{B}, (22)

where the attenuation coefficient (u,) is the same for the
signal and background, but object functions of the signals to
be discriminated (O, and O,) vary. The task function is
therefore

Wy = FI{H } = FI{H,} = u; - (FT{O,} - FT{0,}). (23)

A “cube vs sphere” discrimination task was formulated such
that O, representing an acrylic cube (of side length 6.4 mm)
is discriminated from O, representing an acrylic sphere (of
diameter 6.4 mm), i.e.,

WTask = Iu’Acrylic ! [FT{06.4 mmeube} - FT{O6.4 mmephere}]-
(24)

As illustrated in Fig. 2, this task consists of middle and high-
frequency components.
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II.B.3.e. Encapsulated vs solid sphere on cluttered
background. A second shape discrimination task involved a
6.4 mm diameter acrylic sphere (110 HU) encapsulated by a
3.2 mm shell of paraffin wax (giving 12.8 mm total diameter,
—50 HU) as the signal, which is discriminated from a solid
acrylic sphere (110 HU) in the noise-only image. The two
hypotheses can be similarly written as Egs. (21) and (22),
with O, representing the paraffin-encapsulated sphere and O,
representing the 12.7 mm diameter acrylic sphere. The task
function can be derived as

WTask = (:u’Acrylic - IL'LWaX) : [FT{032 mm_Shell}]’ (25)

where the difference in object functions yields the 3D encap-
sulating shell (an annulus on a 2D slice). As shown in Fig. 2,
this task emphasizes higher frequencies compared to tasks in
Secs. IB3a, IB3b, and II B3 d. The high-frequency
content is related to the fine detail associated with the encap-
sulating layer.

1l.B.4. Imaging bench and acquisition parameters

Images were acquired on an experimental imaging bench
for tomosynthesis and CBCT. As described in previous
works,?**" the system includes an x-ray tube (Rad 94 in a
sapphire housing; Varian Medical Systems, Salt Lake City,
UT), an FPD (RID-1640A, 0.4 mm pixel pitch, 1024X1024
pixels; Perkin Elmer Optoelectronics, Santa Clara, CA) with
~250 mg/cm2 CsI:TI scintillator, and a motion control sys-
tem (6K series translation stages, Parker Daedal, Harrison,
PA, and Dynaserv rotation motor, Parker Hannifin, Rohnert
Park, CA) that sets the system geometry to that approximat-
ing CBCT-guided radiotherapy (93.5 cm source-to-axis dis-
tance and 144 cm source-to-detector distance) with the phan-
tom rotated at isocenter. Acquisition techniques were held
fixed at 120 kVp (1.53 mm Al+0.1 mm Cu added filtra-
tion) and 0.63 mA s per projection, imparting a constant in-
air exposure per projection of 0.49 mR at the detector.

Projections were acquired for 12 orbital extents ()
spanning a continuum of low-angle tomosynthesis to full
CBCT: 10°, 20°, 40°, 60°, 90°, 120°, 160°, 200° (180°
+fan), 240°, 280°, 320°, and 360°. For each orbital extent,
two general acquisition schemes were adopted. The first was
a “constant-A#” case in which a constant angular separation
of 0.45° was fixed between projections, giving a variable
number of projections (and total dose) for each setting of 6.
In this scheme, therefore, as 6, increases (and background
clutter is reduced), quantum and electronics noise vary, while
view-sampling effects are constant. The second scheme was
a “constant-Np,;” case in which the number of projections
was fixed at 89 for all 6. This scheme represents the prac-
tical case where total dose is a fixed constraint and 6, needs
to be chosen in a manner that optimally manages the
tradeoffs among background clutter, quantum noise, and
view-sampling effects. Together, these schemes allow inves-
tigation of the fairly complex tradeoffs among competing
noise sources and a broad set of experimental conditions
against which to test the theoretical model.

s
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Image reconstruction was performed using the FDK algo-
rithm for 3D filtered backprojection (FBP), with a Hann
apodization filter and no additional interslice filter for tomo-
synthesis. Projections were binned 2 X2 pixels and images
were reconstructed at isotropic voxel size (0.52X0.52
%X 0.52) mm?®, chosen to adequately resolve the smallest
sphere in the phantom. Modified Parker weights54 were ap-
plied to redundant views of angle greater than 180°—fan,
with the exception of a full 360° acquisition where a uniform
weighting of 0.5 was multiplied to all projections.

Il.C. Experimental validation: Human observer
performance

Il.C.1. Human observer study

As a simple measure of observer-based imaging perfor-
mance, multiple-alternative forced-choice tests were per-
formed in which an array of ROIs was shown to observers,
with one ROI containing the signal and M —1 ROIs contain-
ing background only. A 9AFC test (M =9, displayed as a 3
X3 array of ROIs) was chosen to give optimal statistical
power for the selected tasks according to the table formu-
lated by Elliot,” which relates sensitivity of measurements
of detectability and proportion correct (P, to the number
of choices. Each signal ROI was a 70X 70 pixel subimage
cropped from a coronal slice of a 3D reconstruction with the
signal at the center of the ROI. The noise ROIs were cropped
from the same or neighboring slices and care was taken to
avoid out-of-plane shadow of the signal or other artifacts.
Different noise realizations were used for each imaging task,
but the same regions of interest were used for various 6, in
both the constant-A 8 and constant-Npmj schemes. In addition,
both the signal and noise ROIs were randomly flipped up/
down and left/right to minimize observer familiarity with the
images. The grayscale window was fixed to a range of 90%
of the minimum to 110% of the maximum pixel value and
the level was set to the mean. Observers were not allowed to
adjust the window/level or zoom of the images, and a con-
stant viewing distance of ~50 cm was encouraged but not
strictly enforced.

Observer studies were conducted in a darkened reading
room using a monochrome diagnostic quality display (Image
Systems, Richardson Electronics Ltd., Plymouth, MN). Prior
to each test, observers were trained using images acquired at
the same experimental conditions as the test data, typically
24 images for a given task, requiring ~10 min to gain fa-
miliarity with the task. The test data for each task included
images acquired at 12 levels of 6, (detailed above) for both
the constant-A 8 and constant-Npmj schemes, with five statis-
tically independent samples acquired for each case, giving
(12 angles) X (2 schemes) X (5 images) = 120 readings.
The order of the five tasks was randomized for each ob-
server, as was the order of images presented for each task. At
~5 s per choice, a complete study required (5 tasks) X
(~10 min)(training) + (5 tasks) X (12 angles) X (2
schemes) X (5 images) X (~5 s)(test) = 100 min for each
observer.
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For the fairly simple (nonclinical) imaging tasks involved
in these phantom studies, medical physicists/engineers were
considered suitable observers. Eight observers were in-
volved, yielding (8 observers X 5 independent images =) 40
responses for each data point on the graphs below. Assuming
independence among observers, all responses were pooled
and the fraction of correct responses was computed to yield
the mean proportion correct (P

Measurements of P, follow a binomial distribution with
mean equal to P, and standard deviation P_y,(1—P,).
Statistical error in P, can be estimated from the standard
deviation or confidence interval. As mentioned below, P,
measurements were also interpreted in terms of d ;. and area
under the ROC curve (A.). Based on the binomial distribu-
tion of Py, the distribution of A, was derived using the
relations between A, and P, (below). The corresponding
measurement error in A, was expressed as the 95% confi-
dence intervals calculated from the distribution of A..

Il.C.2. Comparison of theoretical and experimental
results

For direct comparison of theoretically derived detectabil-
ity index [d}p or dl;. in Egs. (4)—(12)] and experimentally
measured P, we used the basic relationships among d’,
P and A, that follow from the simplifying assumptions of
normal, equal variance distributions in the underlying deci-
sion variables, consistency in observer response over the
course of the tests, etc.” The detectability index and A, are
related by

1 1 (42 , 1 d
A=—+—F eXdx=—\1+erfl — |/, (26)
v Jo 2 2
12 . 2 1
d'”=4inverf-| 2 AZ_E , (27)

which in turn are related to P, as

0 a2
Pao(d' M) = —— exp(— k-4) >[¢<x>]M-'dx,

N2mJ — 2
(28)

where M is the number of alternatives in the AFC test (9
herein) and ¢ is the cumulative Gaussian distribution. Note
the usual relationship: P.,,=A, for M=2. A lookup table
relating P, d’, and A, was constructed using these rela-
tions. Theoretical and experimental results could therefore be
directly compared in terms of any of these three performance
metrics. In selecting a metric by which to display the results
below, d’ (which is unbounded from 0 to ) and P, (which
is less general in its interpretation due to a particular choice
of M) were felt to be somewhat less meaningful at a glance.
While any of the three metrics would suffice for purposes of
comparison, results below are reported in terms of A,. Com-
pared to P, A, provides more general representation of
results that can be compared to other studies (e.g., ROC per-
formance); compared to d’, the A, metric is bounded and
easily interpreted within the limits of pure guessing (A,
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F1G. 3. Comparison of theoretical and measured performance for five imaging tasks in the constant-A € acquisition scheme. Curves correspond to theoretical
calculations for the five observer models (PW, PWEi, NPW, NPWE, and NPWEi) of Egs. (8)—(12). Reasonable correspondence between theoretical and
experimental results is observed, with NPWEi showing the best agreement overall.

—0.5) and “completely obvious” (A.—1.0), which the
physical phantoms and experimental conditions were con-
structed to span. Comparison in terms of d’ or Py, (not
shown) exhibited the same level of agreement and does not
affect the conclusions of the work.

lll. RESULTS

lll.LA. Comparison of theoretical detectability and
human observer performance

Figures 3 and 4 plot A, vs total angular extent (6,,) for all
five imaging tasks under the constant-A¢ and constant-N,,,;
cases, respectively. In each graph, theoretical calculations
from the cascaded systems model are plotted as solid or
dashed curves and human observer measurements are repre-
sented by individual data points with error bars correspond-
ing to 95% confidence intervals.

The constant-A# acquisition scheme (Fig. 3, A§=0.45°
for all cases) shows a monotonic increase in A, with angular
extent as contrast is improved for task on uniform back-
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ground (task 1) and as out-of-plane clutter is gradually re-
moved for tasks on cluttered background (tasks 2-5). Fur-
thermore, in the constant-A 6 case, total dose increases with
0,1» further supporting a monotonic increase in performance.
For each task, a maximum A, of 1 is reached at a certain
value of 6, beyond which all model and human observers
identify the signal as conspicuous. Of the five tasks consid-
ered, task 1 (sphere detection on a uniform background) and
task 4 (cube vs sphere discrimination) were the easiest, with
conspicuity predicted and realized in the region 6, < ~30°.
Conversely, task 2 (large sphere detection in clutter), task 3
(small sphere detection in clutter), and task 5 (encapsulated
sphere discrimination in clutter) were more challenging, as
shown by both theoretical calculations and observer results
peaking in the range 6,,,~ 100°—150°. Task 2 achieved bet-
ter performance than task 3, seen by a steeper increase in A,
with 6. The interpretation is that low-frequency tasks asso-
ciated with detection of signals of larger spatial extent reside
in a similar frequency range as the power-law background
and thus experience faster increase in detectability with the
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broj Acquisition scheme. Labeling is the same as in Fig.

3. Fair correspondence is observed between theoretical and experimental results, including a complex nonmonotonic trend in performance at large angles

above 6~ 180° associated with finite sampling effects (view aliased noise).

rejection of out-of-plane clutter (i.e., increase in 6,,). High-
frequency tasks, on the other hand, associated with finer de-
tails exhibit frequency content in a higher range than the
background and thus do not benefit as significantly from the
rejection of out-of-plane clutter. The prewhitening models
(PW and PWEIi) tended to overestimate observer perfor-
mance in all cases, while the nonprewhitening models (NPW,
NPWE, and NPWEi) exhibited reasonable agreement with
measurement for all tasks over the entire continuum of 6.
Not surprisingly, the NPWEi model gave closer correspon-
dence to the measured human performance than NPWE,
since it includes additional terms related to inefficiency im-
parted by internal noise. We examined the observer effi-
ciency implied by the ratio of measured and theoretical d;..
(squared) and found a complicated dependence on task (as
might be expected from Abbey et al.56) and angular extent
(6, Efficiency varied in the range ~0.1-0.5 but did not
exhibit any clear trends in retrospective analysis as a func-
tion of task or 6.
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Figure 4 summarizes theoretical and experimental results
for the constant-N,,; acquisition scheme (N,,;=89 projec-
tions for all cases). In this case, the total dose is fixed for
settings of 6, giving a fixed level of quantum noise amid
varying levels of background clutter and view-aliasing noise.
Similar to the constant-A @ case, the PW and PWEi observer
models overestimated observer performance, whereas the
various NPW models yielded reasonable agreement with ex-
perimental results. An exception was observed for the small
sphere detection task, where human observer performance
agreed with NPWEi model for 6,,,<<180°, but was closer to
the PW observers beyond 6,,,~ 180°. This result is evident
also in Fig. 2(c), where due to the high contrast of the sphere,
the signal was sufficiently different from the background for
0,0 > 180° for conspicuous discrimination and noise (includ-
ing view-sampling effects) does not appear to “masquerade”
as signal. An interesting nonmonotonic trend in A, vs 6, was
predicted and observed: A, initially increases with 6, in a
manner similar to the constant-A @ case (due to reduced out-
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FIG. 5. Illustration of Fourier-domain projection distribution on the axial (f,-f,) plane according to the central slice theorem. A total of 89 projections are
distributed across a range of 6,,,. Under the assumption of parallel-beam geometry, redundant projection views are sampled in the 6,,=200°, 240°, 280°, and
320° cases (i.e., competing effects of increased view aliasing and reduced stochastic noise), while a 360° acquisition results in interleaved projection views and
finer sampling (i.e., reduced view aliasing and an increase in detectability). The sampling distribution depends on the number of projections and angular
extent. For example, evenly distributing 89 projections over 320° gives redundant, overlapping projections under the parallel-beam approximation (“brighter”
spokes); however, at 360°, projections do not overlap and result in finer angular sampling.

of-plane clutter); however, as the total angle increases fur-
ther, performance is seen to degrade somewhat, particularly
for imaging tasks involving higher spatial-frequency compo-
nents (tasks 3 and 5), followed by an increase toward 6,
=360°. The nature of the effect is detailed more completely
below, owing to the distribution of a limited number of pro-
jections over wide angular ranges. While the nonmonotonic
trend was predicted and observed to occur in the range
180° < 6,,,<360°, agreement between theory and measure-
ment is far from perfect: The effect appears to be overesti-
mated for task 3 (small sphere detection) and underestimated
for task 5 (encapsulated sphere discrimination). In task 1
(sphere detection on uniform background), theoretical calcu-
lations for the NPWEIi observer model are consistent with the
general trend of the observer measurement, but do not show
exact correspondence in A, values. The other tasks (involv-
ing lower spatial-frequency tasks) were in better agreement.

11l.B. Number of projections and orbital extent: Effect
on quantum noise and view aliasing

The initial decrease in detectability starting at 6,,,=~ 150°
under the constant-N,, scheme can be attributed to view-
aliasing artifacts arising for large angular separation between
projections, visible to the eye as granular mottle in the coro-
nal images of Fig. 2 (evident also as familiar radial streaks in
the correspondent axial images, not shown). As 6, is further
increased to 360°, detectability is seen to recover as a result

of two possible scenarios of projection distribution illustrated
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in Fig. 5: (1) A range of projections overlap, forming a re-
gion of redundant sampling (to which Parker weights are
appropriately applied) or (2) projections do not overlap, but
instead result in a region of finer sampling. The first scenario
almost always applies for the constant-A# case because the
finely spaced projections approximate a continuum in which
projections at angles above 180° fan constitute redundant
samples. In the constant-N; case, however, the first sce-
nario may only occur under certain combinations of N,; and
0 in Which case the summing and averaging of redundant
rays passing through a particular voxel reduces stochastic
noise components (quantum and electronics noise) associ-
ated with the projections, but does not affect the magnitude
of “deterministic” noise (background clutter) or the signal
(task function). The number of redundant projections in-
creases as the angular extent increases. Thus, greater reduc-
tion in stochastic noise competes with deteriorating view-
aliasing artifacts as angular extent increases, resulting in the
nonmonotonic reduction in detectability observed in Fig. 4.
An alternative scenario may also arise due to the large A6 in
the constant-N,,; scheme, where projections acquired above
180° fan interleave between previously acquired projections,
resulting in a region of finer sampling. In such cases, reduc-
tion of view-aliasing artifacts also causes detectability to re-
cover.

The distribution of projections in the Fourier domain
(axial f,-f, plane) according to the central slice theorem is
plotted in Fig. 5 for six values of 6. Note that the figure
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task corresponding to detection of a 3.6 mm Gaussian on (a) uniform and (b) cluttered backgrounds; [(c and d)] a higher-frequency task corresponding to
discrimination of two Gaussians of size (c¢) 3.1 and 3.7 mm and (d) 1.3 and 1.8 mm, each on a cluttered background.

illustrates the angular sampling distribution associated with a
given number of projection over a given angular range and
does not depict the actual noise-power spectrum. Redundant,
overlapping projections appear as brighter spokes. The inter-
mediate angular ranges (6,,=200°, 240°, 280°, and 320°)
exhibit the behavior associated with scenario 1, in which
projections overlap across a range of angles above 180° [il-
lustrated in Fig. 5 by increased intensity (brightness) in over-
lapping rays]. For this specific number of projections (N
=89), the 360° case actually corresponds to finer sampling
and gives a reduction in view-aliasing artifacts due to inter-
leaving of projections. In relation to the valley observed in
Fig. 4, detectability begins to decrease above 6~ 180° due
to increased view-aliasing artifacts, followed by an increase
beyond 6,,,~280° due to the reduction of stochastic noise
with a greater number of redundant projections (correspond-
ing to scenario 1). At 360°, detectability further increases due
to finer sampling (corresponding to scenario 2).

lll.C. Implications for task-based system design in
tomosynthesis and CBCT

Given the reasonable correspondence observed between
theoretical and experimental results in Figs. 3 and 4, we
computed detectability for a variety of conditions as could
apply to the design and understanding of tomosynthesis and
CBCT systems. A spectrum of tasks were considered to elu-
cidate the distinction of low-frequency and high-frequency
tasks: (a) Low-frequency Gaussian detection task (Gaussian
width, ¢=3.6 mm) on a uniform background; (b) low-
frequency Gaussian detection (0=3.6 mm) in a cluttered
background; (c¢) midfrequency discrimination of two Gauss-
ian signals (07;=3.1 mm vs 0,=3.7 mm); and (d) high-
frequency discrimination of two Gaussians signals (o
=1.3 mm vs 0,=1.8 mm). In each case, dj;., was computed
as a function of N, and 6, (with the dose per projection
view fixed at a level corresponding to 0.066 mR in-air expo-
sure to the detector) to examine tradeoffs among background
clutter and view aliasing. The NPWEi model was chosen,
since it demonstrated the best overall agreement with human
observer response (Figs. 3 and 4). For simplicity in these
calculations, a parallel-beam geometry was assumed, imply-

Medical Physics, Vol. 38, No. 4, April 2011

ing that projections 180° apart were considered redundant
and were multiplied by a Parker weight of 0.5.

Results are shown in Fig. 6. For any of the tasks, one may
consider a “horizontal” slice of the d_., surface as the case
in which the total dose is fixed and the angular range of the
tomosynthesis/CBCT system is varied. In practical terms,
this might correspond to a rotational C-arm system, in which
one seeks to determine what value of 6, provides a desired
level of detectability. Conversely, a “vertical” slice of the
d ;.. surface corresponds to a fixed angular range, with the
number of views and total dose varied. This might corre-
spond to a tomosynthesis system with fixed 6, (e.g., a clini-
cal breast or chest tomosynthesis system) and one seeks to
determine what number of views (total dose) gives a desired
level of detectability. The alternative case (not shown) in
which dfji.. (Nprj»  6o) Was computed at fixed total dose
shows a complementary set of tradeoffs among quantum
noise, background clutter, and view aliasing.

As shown in Fig. 6, for all four tasks, when the number of
projections is low (constant-Np,; with Ny <~200), the
trends observed in the experiments of Figs. 3 and 4 are once
again observed: d}; .. increases with angle, reaches a maxi-
mum, then decreases due to competing effects of view alias-
ing and distribution of projections described above. As the
number of projections increases (and view-aliasing artifacts
are reduced), a distinct difference is observed among the
tasks in uniform and cluttered backgrounds. After reaching a
maximum, dj;.. decreases with 6, for the uniform back-
ground task while remaining constant for the cluttered back-
ground tasks. In the absence of clutter, increasing the angular
arc only increases quantum noise, therefore causing detect-
ability to decrease; however, in a cluttered background, this
effect is less pronounced due to the preponderance of back-
ground noise outweighing quantum noise. Note also the
overall reduction in the magnitude of dj; .. in Fig. 6(b) com-
pared to Fig. 6(a) despite equivalent task and signal power,
attributable to background noise. Another difference between
the uniform and cluttered background tasks can be seen from
profiles at a fixed angle: For a given number of projections,
the uniform background task exhibits continued improve-

ment in detectability with N as quantum noise is driven
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down by increasing dose, whereas the cluttered background
tasks reach a background-noise-limited region, beyond
which increasing N, or dose brings no further improvement
in detectability.

Figures 6(b)-6(d) illustrate tasks with the same signal
power but different frequency characteristics. The detectabil-
ity index for the low-frequency task (b) is much lower than
that for midfrequency and high-frequency tasks in (c) and
(d), respectively, due to the frequency components of the
task function coinciding with those of background noise.
This corresponds to the observation of Myers et al.”’ regard-
ing noise masquerading as signal. For low-angle tomosyn-
thesis (i.e., low 6,,), increasing the acquisition angle and
thereby removing out-of-plane clutter demonstrates more
pronounced improvement for low-frequency tasks than for
higher-frequency tasks.

On the other hand, detectability index for higher-
frequency tasks is more sensitive to the choice of 6, and
Nopyoj> since they reside in the same frequency region as view-
aliasing noise and are therefore more prone to the complex
tradeoffs among noise components described above. View-
aliasing artifacts within the low N, and high 6, region
degrades performance for midfrequency (c) and high-
frequency (d) tasks, but barely affects the low-frequency (a)
task. For the midfrequency task in (c), a sharp transition in
the magnitude of d_;,., can be observed along a diagonal with
an approximately constant choice of Af. Similarly for the
high-frequency task in (d), there is a narrow selection of 6,
and N, with an approximately constant choice of A#,
which marks optimal performance. The trend observed is
highly dependent on the frequency range of the imaging
tasks, choice of observer model, and relative magnitude of
signal and noise. Overall, it is clear that low-frequency tasks
benefit more from increasing acquisition angle and are
mainly limited by background noise, while tasks involving
midfrequency and high-frequency components require care-
ful selection of acquisition parameters to minimize the influ-
ence of view-aliasing artifacts and quantum and electronics
noise. The framework provided by 3D cascaded systems
analysis combined with idealized task functions and observer
models provides a quantitative foundation from which spe-
cific trends in performance can be more rigorously investi-
gated with respect to specific imaging systems and applica-
tions.

IV. DISCUSSION AND CONCLUSIONS

This work derived the generalized detectability index as a
task-based performance metric for tomosynthesis and CBCT,
beginning with a 3D cascaded systems model for the imag-
ing systems and validating it in comparison to human ob-
server response for several simple imaging tasks over a wide
range of imaging conditions. A reasonable level of agreement
was observed between theoretical predictions and experi-
mental results. Interesting, nontrivial trends were revealed,
which suggest important design considerations for system
optimization. Tradeoffs among anatomical noise, quantum
noise, electronics noise, and view-sampling effects result in
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. . ,
complex behavior (e.g., nonmonotonic dependence of dg;.

on 6, that suggest optimal choices of acquisition param-
eters specific to the imaging tasks.

Such behavior was reasonably predicted and explained by
the cascaded systems model, with the level of agreement
depending on the imaging task, perhaps not surprisingly,
considering the simplicity of Fourier hypothesis-testing task
functions [Egs. (15)—(25)] in comparison to the complexities
of human visual perception. The case for which the model
deviated most from measurement was the encapsulated
sphere discrimination task under the constant-N,,; case for
0, above 180°, where theoretical prediction did not accu-
rately predict the large drop observed in human observer
performance. This suggests room for improvement when
modeling high-frequency tasks which are more prone to de-
terioration by stochastic noise and view-sampling effects.
Overall, results demonstrate that generalized detectability in-
dex yielded reasonable correspondence with human observer
performance for a variety of simple imaging tasks over a
broad range of experimental conditions in both the
constant-A¢ and constant-N,,,; schemes, helping to bridge
the gap between Fourier-based metrics (e.g., NEQ) of system
performance and observer-based characterization of image
quality (e.g., ROC).

Of the simple observer models considered, the nonpre-
whitening models, especially the NPWEi model, yielded the
best overall agreement with human observer response. The
fair agreement for the NPW model may seem surprising,
considering that such models have been shown previously to
correspond poorly with human observer performance due to
a large zero-frequency (DC) response.58 In the generalized
detectability index calculation above, inclusion of the power-
law noise in the denominator introduces a large zero-
frequency noise component which diminishes DC response,
similar to the effect achieved by an eye filter in the NPWE or
NPWEi models. Therefore, the DC effect that confounded
NPW model agreement in a previous work™ was not a sig-
nificant factor in the experiments considered above, with the
exception of the uniform background task. Burgess et al.’”
further modified the NPW model to include an eye filter and
internal noise, which improved agreement with observer re-
sponse significantly, consistent with the findings above. Pre-
whitening observer models’ consistently overestimated re-
sponse likely due to the fact that the discrete spheres in the
cluttered background were indistinguishable from the signal
and human observers were not able to completely decorrelate
noise. That said, it bears reiteration that the purpose of this
work was not to advance or improve any particular observer
model; rather, this work aimed to determine the extent to
which trends in human observer response may be predicted
by first principles of cascaded systems analysis (GNEQ)
combined with task functions through any of these simple
observer models. More sophisticated observer models
yielded through ongoing work in perception science will pre-
sumably yield further improvement, including channelized
Hotelling observer models®** and forms of eye filter and
internal noise models.*>®*

This study involved simple, idealized detection and dis-
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crimination tasks as a starting point to assess imaging per-
formance. Modeling of more complex and higher order tasks
forms an important area of future work to better relate such
work to clinical applications. Examples include “search”
tasks analogous to an observer detecting and localizing sus-
picious lesions on a radiograph or “estimation” tasks in
which an observer needs to approximate the size of a lesion.
Also of interest are task functions representing multiple hy-
potheses, e.g., discrimination of signal-absent from signal-
benign and signal-malignant hypotheses. Similarly, the
model can be incorporated in analysis of multiple tasks, e.g.,
detection of a (low-frequency) lesion followed by detection
of (high-frequency) calcifications.® In the context of volu-
metric imaging, it remains to be shown to what extent the
fully 3D detectability index [Egs. (2)—(7)] corresponds to
cases in which the observer “scrolls” slices, is presented with
a montage of multiple slices simultaneously or perceives a
volumetric rendering all at once. Another limitation of this
work is that only one reconstruction algorithm (FBP) with
one reconstruction filter (a smooth cosine Hann filter) was
investigated. Cascaded systems analysis is well suited to de-
scription of FBP reconstruction and extension to other meth-
ods (e.g., iterative reconstruction) would require a substan-
tially modified approach. Accommodating various
reconstruction filters within the model is straightforward, has
been examined in a previous work,45 but was not investi-
gated directly here, since it had less influence on task perfor-
mance than angular range and number of projections.

In summary, the generalized detectability index was com-
pared to human observer performance for a variety of simple
tasks over a broad range of experimental conditions. Reason-
able agreement was obtained for all tasks across the tomo-
synthesis angular range 6,,,<180°. Discrepancy was ob-
served for high-frequency tasks (e.g., small sphere detection
and encapsulated sphere vs solid sphere discrimination) un-
der the constant-N,,; scheme under conditions dominated by
view-sampling artifacts (i.e., small Ny, with 6> 180°).
Such discrepancies identify areas for improvement of the
model and future investigation for task performance under
conditions dominated by image artifact (rather than purely
stochastic noise). Still, generalized detectability index de-
rived from the 3D cascaded systems model demonstrates
considerable promise in relating simple Fourier metrics to
human observer performance and suggests utility as an ob-
jective function in the design and optimization of 3D imag-
ing systems in CBCT and tomosynthesis.
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