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Abstract
AIM: To investigate glucose homeostasis and in partic-
ular gluconeogenesis in a large animal model of acute 
liver failure (ALF).

METHODS: Six pigs with paracetamol induced ALF 
under general anaesthesia were studied over 25 h. 
Plasma samples were withdrawn every five hours from 
a central vein. Three animals were used as controls 
and were maintained under anaesthesia only. Using 1H 
NMR spectroscopy we identified most gluconeogenic 
amino acids along with lactate and pyruvate in the ani-
mal plasma samples.

RESULTS: No significant changes were observed in 
the concentrations of the amino acids studied in the 
animals maintained under anaesthesia only. If we look 
at the ALF animals, we observed a statistically signifi-
cant rise of lactate (P < 0.003) and pyruvate (P < 0.018) 
at the end of the experiments. We also observed sta-
tistically significant rises in the concentrations of ala-
nine (P < 0.002), glycine (P < 0.005), threonine (P < 
0.048), tyrosine (P < 0.000), phenylalanine (P < 0.000) 
and  isoleucine (P < 0.01). Valine levels decreased sig-
nificantly (P < 0.05).

CONCLUSION: Our pig model of ALF is characterized 
by an altered gluconeogenetic capacity, an impaired 
tricarboxylic acid (TCA) cycle and a glycolytic state.
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INTRODUCTION
Acute liver failure (ALF) is a clinical syndrome defined 
by massive cell death in the absence of  chronic liver 
disease, resulting in hepatic encephalopathy[1]. Although 
brain oedema and brain herniation are common causes 
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of  death in ALF multi organ failure is also common[2,3]. 
Previous studies have shown that metabolic pathways 
are affected in ALF and systemic changes in metabolite 
levels could be the pathophysiological reason behind 
multi organ failure in ALF[4-6].

Orthotopic liver transplantation remains the most 
widely accepted treatment for ALF[1,2,7]. Chronic donor 
shortages however, motivate the search for alternative 
non-surgical therapies. In that quest animal models of  
ALF play an important role. Most studies have explored 
mouse models of  ALF which although useful do not 
adequately address the issue[4-6]. We have recently devel-
oped in our laboratory a porcine model of  paracetamol 
induced ALF[7]. It is characterized histologically by se-
vere  centrilobular necrosis with coagulative necrosis. 
The animals invariably develop acidosis, hypoglycaemia, 
coagulopathy and acute renal failure.

Acidosis could be explained by lactate production and 
energy depletion in the liver of  our animal model[5]. Coagu-
lopathy is due to loss of  production of  factors of  the co-
agulation cascade namely Factors Ⅴ and Ⅷ[8]. Acute renal 
failure is a characteristic of  paracetamol overdose. Often 
patients develop acute renal failure through toxic injury and 
require dialysis in that setting without serious liver injury[9].

The hypoglycaemia observed in our model is a hall-
mark of  disrupted hepatic glucose metabolism.  Studies 
on other animal models of  ALF and cirrhosis have shown 
that, despite a relative glucose homeostasis, there is a de-
crease in gluconeogenesis and tricarboxylic acid (TCA) 
cycle coupled with an increase in lactate production[6,10-12]. 

We hypothesized that there was a loss of  gluconeoge-
netic capacity in our large animal model with an increase in 
lactate production, an inhibited TCA cycle and a switch to 
glycolysis during injury to compensate for energy demands. 

MATERIALS AND METHODS
Animals
Large white pigs (median body mass 35 kg) were used 
for this study. Animal experiments were performed in 
accordance with the Home Office regulations under the 
Animal (Scientific Procedures) Act 1986 as per Project 
Licence 60/2389. All animals received humane care and 
study protocols complied with our institution’s guidelines.

Our experimental model was described in detail else-
where[7]. Briefly animals were anaesthetized with ketamine 
and midazolam as induction agents and maintained with 
isoflurane and nitrous oxide. Animals were hydrated with 
normal saline and glucose. All animals received similar 
amounts of  glucose. Haemodynamic variables and intra-
cranial pressure were continuously monitored.

Animals were pretreated with phenobarbital 20 mg 
orally for 5 d to induce cytochrome P450 activity. In six an-
imals intravenous paracetamol was administered while the 
three animals used as controls were monitored but did not 
receive any paracetamol. A loading dose of  paracetamol 
was administered by intravenous infusion (0.1875 g/kg) 
followed by an infusion for 12 h (1.8 mg/kg per min). Ex-

periments lasted 28 h and at that time point any surviving 
animals were euthanized.

Sample preparation for NMR spectroscopy
Samples were prepared by adding a D2O solution of   
(150 μL) to plasma (600 μL) thus providing an internal 
field frequency lock for the spectrometer. As a refer-
ence substance 20 μL of  sodium 3-(trimethylsilyl 2, 2, 3, 
3-2H4)-1 propionate (TSP) were added to the plasma. 
Chemical shifts were referenced internally to the singlet 
methyl resonance of  TSP at zero ppm.

The following potentially gluconeogenic amino acids 
were quantified by NMR: leucine, isoleucine, valine, tyro-
sine, phenylalanine, histidine, methionine, alanine, threo-
nine, glutamate and glutamine.  Lactate, pyruvate and the 
gluconeogenic amino acids were measured to provide 
information on glycolysis and gluconeogenesis. 

Proton NMR spectroscopy
1H-NMR spectra were measured from plasma samples 
taken from a large central vein at 5 hourly intervals until 
the experiments were terminated at t = 28 h. Data were 
acquired on a Varian INOVA 600 NMR Spectrometer 
operating at 600 MHz for protons. All spectra were ac-
quired at ambient probe temperature (298 ± 0.2 oK). For 
each sample 128 transients (FID’s) were acquired into 32 
K complex data points over a spectral width of  6 KHz. 
300 pulses were applied with an acquisition time of  2.5 
s to achieve better resolution followed by an additional 
pulse recycle time of  4 s to allow for complete T1 relax-
ation. Water signal suppression was achieved by applying 
a gated secondary irradiation field at the water resonance 
frequency. Spectral assignments were made by reference 
to literature values of  chemical shifts in various media and 
biological fluids and coupling constants[13]. The coefficient 
of  variation between samples was < 6% and reproduc-
ibility for the same sample was good with a difference of  
< 2% on the same sample. The CMPG (Carr-Purcell-Mei-
boom-Gunn) sequence was applied for data acquisition, as 
this sequence enabled observation of  a flat baseline in our 
spectra from plasma samples by minimising the signals 
acquired from macromolecules present in the plasma such 
as proteins and lipoproteins[14]. NMR spectra analysis was 
performed using the MNova platform for NRM analysis 
(Mestrelab, Santiago de Compostela, Spain).

Statistical analysis
To compare between groups in the initial sample the 
Student’s t-test for parameters with non-missing values 
and the Mann Witney U test for parameters with missing 
values were used.  Values were expressed as mean (range 
and standard error). A P value of  < 0.05 was taken as 
statistically significant (two-tail test of  significance). Nu-
meric results are expressed as μmol/L. All analysis was 
done using the SPSS statistical package (Version 9.0).

RESULTS
On all samples studied we were able to identify the fol-
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lowing metabolites:  lactate, pyruvate, leucine, isoleucine, 
valine, tyrosine, phenylalanine, histidine, arginine, gly-
cine, alanine, threonine, glutamate and glutamine. Reso-
nances from proline, methionine and ornithine were not 
suitably characterised and results from those amino acids 
are not available. Figure 1 shows a sample spectrum.

In control pigs there were no significant differences 
in the concentrations of  the substrates studied at any 
time point sampled. Animals who received paracetamol 
showed statistically significant differences in the concen-
trations of  lactate, pyruvate and the amino acids.

Lactate and pyruvate
Figure 2 shows the results for lactate and pyruvate. In-
creases in the concentration of  lactate became significant 
at t = 15 h and at t = 25 h; compared to t = 0 an average 
increase of  405% was seen  (P < 0.003). Increases in the 
concentration of  pyruvate became significant at t = 20 h 
and at t = 25 h; compared to t = 0 an average increase of  
150% was seen  (P < 0.018).

Amino acids
Figure 3 shows the results for threonine, alanine and gly-

cine. Increases in the concentration of  threonine became 
significant at t = 20 h and at t = 25 h; compared to t = 
0 an average increase of  82% was seen (P < 0.048). In-
creases in the concentration of  alanine became significant 
at t = 10 h and at t = 25 h; compared to t = 0 an average 
increase of  410% was seen (P < 0.002). Finally, increases 
in the concentration of  glycine became significant at t = 
5 h and at t = 25 h; compared to t = 0 an average increase 
of  390% was seen  (P < 0.005).

Figure 4 shows the results for the aromatic amino 
acids. Tyrosine levels significantly increased at t = 5 h and 
at t = 25 h; There was an average increase of  1330% (P < 
0.000). Phenylalanine levels also increased significantly at 
t = 5 h and at t = 25 h; There was an average increase of  
1420% (P < 0.000).

Figure 5 shows the results for the branch chain ami-
no acids. There were no statistically significant changes 
in the concentration of  leucine between the beginning 
and the end of  the experiments (0.17 ± 0.02 vs 0.175 ± 
0.02). Isoleucine levels increased significantly at t = 10 h 
and at t = 25 h; an average increase of  250% was seen (P 
< 0.01). Valine levels, on the contrary, significantly de-
creased at t = 20 h and at t = 25 h; an average decrease 
of  150% was seen (P < 0.05)
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Figure 1  A representative 1H-NMR spectrum of plasma taken at t = 15 h 
from one of the acute liver failure animals. Relevant peaks identified and 
used for analysis are as follows: Lactate CH3 @1.33 ppm doublet Pyruvate 
CH3 @ 2.38 ppm singlet; Alanine CH @1.48 ppm doublet Threonine CH3 @ 
1.34 ppm doublet; Glycine CH2 @ 3.57 ppm singlet Leucine CH3 @ 0.96 ppm 
triplet; Isoleucine CH3 @ 1.01 ppm doublet Valine CH3 @1.04 ppm doublet; 
Tyrosine H3/H5 @ 6.91 ppm PhenyalalnineH4 @ 7.38 ppm multiplet doublet.

Figure 2  There was a net increase of lactate and pyruvate concentrations 
during the experiments.

Figure 3  There was a net increase in the concentrations of alanine, threo-
nine and glycine during the experiments.
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Figure 4  There was a net increase in the concentrations of tyrosine and 
phenylalanine during the experiments.
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No statistically significant differences were observed 
in the concentrations of  glutamate, glutamine, arginine 
and histidine up to the end of  the experiments.

DISCUSSION
In this study in a large animal model of  paracetamol 
induced acute liver failure we have shown that glucose 
homeostasis is impaired with hypoglycaemia, increased 
concentrations of  lactate and pyruvate and increased 
concentrations of  most gluconeogenic amino acids.

It is common knowledge that patients with severe 
acute liver injury due to paracetamol overdose quickly 
develop hypoglycaemia. In contrast, most animal mod-
els of  ALF do not develop hypoglycaemia. In ALF the 
hepatic production of  glucose is inhibited but there is 
compensation by kidney gluconeogenesis[4,5,14,15].

In our model the concentration of  lactate, despite a 
temporary decline at the beginning of  the experiments, 
increased quickly and was significantly increased at t = 
15 h. Likewise, pyruvate concentration increased and 
that increase became significant at t = 20 h. This sug-
gests that early on glycolysis is switched on in the liver. 
As paracetamol also affects the kidney and an early kid-
ney toxic injury is usually seen in cases of  paracetamol 
induced ALF[16], attempted compensatory gluconeogen-
sis maybe occurring  in the kidney but it is not sufficient 
to maintain normal glucose levels in this model of  ALF.

We have also observed that major gluconeogenic 
amino acids were not taken up by the liver. Concentra-
tions of  alanine increased significantly throughout the 
study along with concentrations of  threonine and gly-
cine. Likewise the concentrations of  the aromatic amino 
acids tyrosine and phenylalanine increased very early 
on and rose dramatically at the end of  the experiments. 
This is in accordance with previous studies in mice that 
showed similar results[4-6,17]. This is a good indication that 
gluconeogenesis in the liver is impaired and the TCA 
cycle is not functioning properly.

If  we look at the branch chain amino acids the re-

sults are somehow different. No change was seen in the 
concentration of  leucine and a decrease was observed in 
the concentration of  valine. Significant increases at the 
end of  the experiments were only seen in the concentra-
tions of  isoleucine.

ALF is characterized by the development of  encepha-
lopathy. In that respect Fischer’s ratio (the ratio of  branch 
chain to aromatic amino acids) is believed to be a good in-
dex[18]. A decrease of  the ratio is a good marker of  severe 
hepatic encephalopathy. As we have shown previously in 
our model a significant decrease in the Fischer’s ratio was 
observed by t = 15 h of  the experiments[7]. In a previous 
study we have shown that although in patients with non-
paracetamol induced ALF all branch chain amino acids 
are increased, in patients with paracetamol induced ALF 
valine is an exception and decreases over time[19]. We be-
lieve our results to be in accordance with this observation. 
We should point out though that the attempts to correct 
hepatic encephalopathy with correction of  the Fischer’
s ratio by exogenous substation of  branch chain amino 
acids were not a success and the reason might lie in the 
fact that it is the aromatic and not the branch chain amino 
acids that are disturbed[20].

An interesting finding was that we observed no sig-
nificant changes in the concentrations of  glutamate, 
glutamine, histidine and arginine, key metabolic compo-
nents of  the urea cycle. We unfortunately were unable to 
quantify aspartate but there is strong evidence that the 
urea cycle in this model remains largely unaffected by 
paracetamol poisoning. This is in accordance with other 
studies that have shown that ALF induced hyperam-
monemia is caused by gut production of  ammonia, a by-
product of  the production of  alanine from glutamate[21]. 
Novel attempts to correct the metabolic abnormalities 
of  hepatic encephalopathy by providing ornithine as a 
substrate for urea synthesis might be a good path[22-25].

The major drawback of  this study is that we per-
formed a study that describes changes in amino acids that 
pertain to gluconeogenesis and that we assumed that the 
changes were provoked by the inhibition of  gluconeogen-
esis by the acute liver injury. We had no means to exclude 
the possibility that some other metabolic function could 
be responsible for the observed amino acid disturbances.

In conclusion, in this large animal model of  
paracetamol induced ALF we have observed an inhibition 
of  gluconeogensis in the liver with subsequent dysfunc-
tion of  the TCA cycle. This has led to ATP and energy 
depletion and the liver switching to glycolysis to compen-
sate. Further studies in animals and also in humans are 
needed to fully characterize the metabolic abnormalities 
of  liver failure and to provide a pathophysiological basis 
for the new emerging metabolically centred therapies for 
hepatic encephalopathy[26].
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