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Abstract
We describe a method for assessing the quality of mass spectra and improving reliability of
relative ratio estimations from 18O-water labeling experiments acquired from low resolution mass
spectrometers. The mass profiles of heavy and light peptide pairs are often affected by artifacts,
including co-eluting contaminant species, noise signal, instrumental fluctuations in measuring ion
position and abundance levels. Such artifacts distort the profiles, leading to erroneous ratio
estimations thus reducing the reliability of ratio estimations in high throughput quantification
experiments.

We used support vector machines (SVMs) to filter out mass spectra that deviated significantly
from expected theoretical isotope distributions. We built an SVM classifier with a decision
function which assigns a score to every mass profile based on such spectral features as mass
accuracy, signal-to-noise ratio, and differences between experimental and theoretical isotopic
distributions.

The classifier was trained using a dataset obtained from samples of mouse renal cortex. We then
tested it on protein samples (bovine serum albumin), mixed in five different ratios of labeled and
unlabeled species. We demonstrated that filtering the data using our SVM classifier results in as
much as a nine-fold reduction in the coefficient of variance of peptide ratios, thus significantly
improving the reliability of ratio estimations.

Keywords
support vector machines; stable-isotope labeling; signal-to-noise ratio; isotope distribution; mass
accuracy

Introduction
18O-water labeling is a versatile quantitative proteomics technique1 wherein two heavy
oxygen atoms are enzymatically incorporated into the C-termini of a peptide, changing its
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In Supplement 1 we present Figures S1–S6 that show distributions of spectral features in the training dataset and the ratio distributions
before and after filtering by the SVM and S/N models.
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mass by 4 Da2–5. Labeled (heavy) and unlabeled (light) peptides co-elute in a liquid-
chromatography tandem mass spectrometry (LC-MS/MS) system, and their mass profiles
are compared to estimate the relative abundance ratio. A number of bioinformatics methods
have been developed to estimate relative peptide ratios6–12, including some that analyze
medium resolution zoom scans6–8 obtained on ion trap instruments, and others that analyze
full scans9–12 obtained on high resolution mass spectrometers.

Combined mass spectra of heavy (H) and light (L) peptide pairs are complex profiles of
overlapping isotopic distributions. For medium resolution mass spectra, ratio estimation
procedures use a model of isotopic distributions to determine peaks in the signal. For high
resolution mass spectra, mass accuracy information normally allows unambiguous peak
assignment. However, for both medium and high resolution spectra, the accuracy of ratio
estimations from mass profiles is often affected by several artifacts. In spectra with low
signal-to-noise ratios (S/N), noise signal influences peptide signal and distorts peptide
abundance levels. Heavy and light peptide pairs (target species) often co-elute with
unrelated contaminant species which distort the target species profiles. It has been observed
that only a portion of peptides confidently identified in database searches have mass profiles
that are reliable enough for use in relative ratio estimations13.

A recent study14 simulated peptide elution in LC-MS and showed that up to 29% of all
peptides may co-elute. The study introduced a statistical model based on regularized
regression to de-convolve profiles of co-eluting species. However, no technique was
suggested for detecting presence of co-eluting species.

The quality of mass profiles obtained on FT-ICR mass spectrometers in SILAC15

experiments was examined in a recent work by Bakalarski and colleagues16. They
determined that mass accuracy, mass precision (mass difference between the light and heavy
forms of a peptide) and S/N were among several important features affecting ratio
estimations. A scoring method based on a Random Forest17 classifier was employed to
assess the credibility of quantification results. Application of mass precision criteria reduced
the standard deviation of ratios by nearly 50% for spectra with S/N less than 10. However,
while the spectral features used in this study included mass measurement values (mass
accuracy, mass precision), the use of other important features, such as isotope distribution
patterns, was not reported.

May and coworkers18 developed an open source program Qurate which allows visual
inspection and evaluation of quantification events in experiments using different isotopic
labeling techniques. Quality assessment is facilitated by several informational charts
provided for each quantification event. The program is not automated, and manual
inspection of ratios may become very tedious or even infeasible in datasets with many
hundreds of spectra.

Sturm and coworkers19 described an open source system OpenMS which provides
convenient and flexible platform for data analysis in mass spectrometry. The system
includes tools designed to search mass spectra for peptide peaks (called features) and group
related peaks in isotope-labeled and label-free experiments. These tools provide quality
scores for peptide features and feature pairs. The applicability of these and other20–22 tools
is limited to high resolution mass spectral data.

In this study, we present a classification method based on support vector machines23

(SVMs) to separate distorted mass profiles from good quality profiles and improve the
reliability of ratio estimations from medium resolution zoom scans in 18O-water labeling
experiments. Our classifier used such spectral features as mass accuracy, S/N and
differences between experimental and theoretical isotopic distributions. The training set was
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based on MS data acquired from mouse renal cortex. We tested the classifier on five
samples of bovine serum albumin (BSA) with different concentrations of labeled and
unlabeled peptides and showed that it is capable of identifying mass spectra that are
significantly affected by contaminant species, noise, and instrumental fluctuations. A
decision function of the classifier was used to produce a quantitative assessment of the
overall quality of mass profiles. Note that the problem addressed in this work, determination
of quality of a mass profile of heavy and light peptide pairs from single mass spectrum, is
different from quality and reproducibility determination by comparing different
chromatographic runs24,25.

Materials and Methods
A generalized workflow for relative peptide/protein quantification using 18O-water labeling
and mass spectrometry is shown in Figure 1. Two protein samples (for example, treatment
and control) are separately reduced, alkylated and digested by trypsin. The resulting peptides
are subjected to trypsin-mediated oxygen exchange in 16O-water (control sample) and 18O-
water (treatment or test sample)26. The heavy and light peptides are then mixed in a 1(H):
1(L) concentration and the mixture is analyzed via a combined liquid chromatography and
mass spectrometry system. Peptides are identified from their tandem mass spectra and
protein sequence databases by database search algorithms27–34. Algorithms for relative
peptide ratio estimations typically use the theoretical isotope distributions generated from
the peptide sequences (as identified in the database search) and experimental mass spectral
profiles of heavy and light peptide pairs.

Data
We used two datasets: the first was obtained from extracts of mouse renal cortex35, with
heavy and light peptides mixed in a 1(H):1(L) concentration; the second included peptides
of bovine serum albumin mixed in five different concentrations. Details related to sample
preparation and data acquisition are described in the Supplementary Materials section, along
with the procedures for database searching and ratio estimations. We used a 3% false
discovery rate (FDR)36,37 as the threshold for accepting peptide identifications from
combined forward and reversed protein sequence databases38,39. The data acquired from
samples of mouse cortical extract was used as a training set. It contained 29241 spectra, of
which 2003 passed the 3% FDR threshold and were used in training. For these 2003 spectra,
we used in-house software, MassXplorer40, to calculate peptide ratios.

Spectral Features
To build a classifier for MS data, each spectrum should be described by a vector of
numerical features. The features must describe characteristics of mass spectra (profiles of
heavy and light peptide pairs) that quantify their deviance from the expected theoretical
isotope distributions. In this work, we used nine features describing mass measurement
deviations, S/N, and differences between the experimental and theoretical isotopic
distributions. Distributions of six of the features, computed for the training dataset, are
shown in Figure 2 as parallel coordinates. Our goal was to train an SVM classifier to
distinguish spectra of different quality based on feature distributions illustrated in the figure.
All features used to train and test an SVM classifier were normalized to zero mean and unit
variance. Below we describe our features in detail.

Mass Accuracy
Correct detection of isotopic peaks in mass spectra of heavy and light peptide pairs is crucial
for accurate ratio estimations41. Methods for peak detection normally fit experimental mass
profiles with theoretically computed isotope distributions. If the peptide assignment to a
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spectrum is a false identification (which results in a wrong theoretical isotope distribution),
or ion abundance is low and mixed with noise, or a co-eluting contaminant has distorted
isotopic profiles of the target species, the peak position will most likely be wrongly
assigned. We used the difference between the theoretical mass (Mtheoretical, calculated from
the sequence assigned to the spectrum) and the spectral mass (Mspectral, calculated from the
position of the monoisotopic peak on the spectrum) expressed in parts per million (PPM) to
characterize mass deviation or mass accuracy. It was computed using the following
equation:

Figure 2 shows that the distribution of mass deviations (the first coordinate) is centered. This
distribution, which can also be seen in Figure S1 of the Supplementary Materials section,
suggests that spectra with mass deviations far from the center of the distribution are
erroneous peak assignments and that the ratios computed for these spectra will not be
reliable.

Signal-to-Noise Ratio
S/N is known to be an important factor affecting the accuracy of ratio estimations in high-
throughput experiments16. It has also been shown that the median of abundances can serve
as a good estimate of noise levels42. This approach originally used the half-width value of
the intensity density as an estimate of noise level, however, a recent work uses the median
itself16. We used the median of all abundances in a zoom scan to estimate the noise signal.
The S/N was then calculated as the ratio of the smallest heavy and light peptides'
monoisotopic peaks to the noise signal. In the Results and Discussion section we show the
distribution of ratios with S/N for test dataset.

Isotope Deviations
The differences between theoretical and experimental isotopic patterns is another useful
quality measure of spectra. Denoting the theoretical isotope series as Mi and the
experimental isotope series as Ii, we computed three deviations (i = 1, 2, 3) for profiles of
light and heavy peptides by using the following equation:

where M0 and I0 are abundance levels of the theoretical and experimental monoisotopic
peaks, respectively. Note that these features also allow us to quantify spectral distortions
caused by contaminant species.

Distributions of the first two isotope deviations for light and heavy peptides are shown as
parallel coordinates in Figure 2 (third to sixth coordinates). Figure S2 in the Supplementary
Materials shows the distribution of all isotope deviations. The larger the deviation of the
experimental isotope distribution from the expected theoretical isotope distribution, the more
likely it is that the profiles of the target species have been affected by contaminants or
instrumental fluctuations.

Preceding Peak Ratio
Following the review of large numbers of spectra in our previous work40, we noticed that a
good measure of interference of contaminating species with the isotopic peaks of target
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species can be calculated by dividing the intensity of the non-target peak preceding the
target monoisotopic peak by the intensity of the latter. An example of a spectrum for which
this feature will have an unusually high value is shown in Figure S3 in the Supplementary
Materials. In case when preceding peak cannot be identified, we set this feature equal to
zero. Preceding peak ratio is depicted as the second coordinate in Figure 2; its separate
distribution is shown in Supplementary Figure S4.

SVM Classifier
Support vector machine is an efficient data classification technique43 successfully used in
many fields44, including proteomics45. We trained SVM with a Gaussian kernel in the R
environment46, by using e1071 package implementing the LIBSVM library47. SVM
parameters C and γ were selected based on a 10-fold cross validation, in which the following
values were tested: 1, 10, 50, 100, 200, and 500 for C; 0.0005, 0.001, 0.002, 0.004, 0.008,
0.01, 0.05, 0.1, 0.2, and 0.5 for γ. The final parameters used in training were: C = 100, γ =
0.05. We also used unbalanced class weights (see below).

To train a classifier, we need to have a training set of spectra in which every spectrum has a
class label: positive (good quality) or negative (distorted). Generally, there is no optimal
approach to classifying the spectra into positive and negative classes. Manual validation is
subjective, while classification based on ratios is potentially inaccurate, as a correct ratio
may be produced for a distorted spectrum by chance. Following Bakalarski and
colleagues16, we labeled our training spectra based on the corresponding calculated peptide
ratios and mass accuracy. We considered this approach to be appropriate enough for the
purpose of the present work.

A spectrum was labeled as positive if the peptide ratio calculated from it fell in the interval
[Rmode – 0.23 Rmode, Rmode + 0.23 Rmode], where Rmode = 1.12 was the mode of all ratios
calculated for the mouse dataset. Otherwise, it was labeled as negative (distorted). A
spectrum was also labeled as negative if, regardless of its ratio, its mass deviation fell
outside the interval [MassDevmedian – 100 PPM, MassDevmedian + 100 PPM], where
MassDevmedian = 211 PPM was the median of mass deviations for the mouse dataset. The
threshold 0.23 was chosen to balance class sizes, relative error of ratios in the positive class,
and the accuracy of the classifier on the training set. The threshold of the mass deviation was
chosen from the distribution of the corresponding density function, Figure S1.

The mean (1.19), median (1.14) and mode (1.12) of peptide ratios calculated for mouse
dataset did not differ much from each other. However, we preferred to use the mode of
ratios in labeling of the training set as a less biased estimate of the true ratio.

Following the rules described above, 1,388 mouse spectra were assigned to the positive
class, and 615 - to the negative class. Because of the unbalanced sizes of the classes, we
provided the following class weights for the SVM training procedure: 2.2 for negative class
and 1 for positive class. These parameters were manually adjusted to obtain the desirable
sensitivity and specificity of the classifier.

SVM with a Gaussian kernel classifies a new data point (vector) x by using a decision
function of the form
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where xi are training vectors; L is the total number of training vectors; αi and b are
coefficients adjusted in the training process; yi denotes class membership for vector xi and is
equal to 1 for the positive class, and to −1 for the negative class; and γ is a parameter of the
Gaussian kernel. If g(x) > 0, then data point x is assigned to the positive class. Otherwise, it
is assigned to the negative class. Training vectors xi that have nonzero coefficients αi are
called support vectors, and these are the only vectors that contribute to the value of the
decision function, g(x).

The value of the decision function can be used as a score quantifying quality of a given
profile. Ideally, a positive score would correspond to a mass profile without contaminants
and with a high S/N, while a negative score would indicate the presence of artifacts affecting
the profile, distorting the theoretical isotope distribution, and likely leading to unreliable
ratio estimations.

Results and Discussion
The accuracy of the SVM classifier in a 10-fold cross validation on the mouse dataset varied
from 79.5% to 87.5%. The average accuracy was 82.7%. The final classifier, trained on all
mouse data, had training accuracy of 86.7%, with a 93.7% sensitivity and 70.9% specificity
(with respect to the positive class). Figure 3 shows SVM score density functions for the two
classes obtained from the training set. The densities are well separated and their modes are
clearly pronounced. A graph of peptide ratios for the mouse data before and after filtering by
the classifier is shown in Figure S5 of the Supplementary Materials section.

Figure 4 shows a scatter plot of the logarithm of peptide ratios versus S/N for the mouse
data. The color of each point is determined by its SVM classification score (decision value).
The proportion of spectra classified into the positive class is higher among spectra with
higher S/N, though some of the latter are correctly classified into the negative class based on
other spectral features. Most of the spectra having strongly deviant ratios are correctly
classified into the negative class. The variance of ratios for spectra classified into the
positive class is 6 times smaller than that of ratios of all spectra (0.06 versus 0.37).

Figure 5 shows data points corresponding to mass spectra of the mouse data and the
separating surface of the SVM classifier, projected onto the plane that is parallel to the
MassDev and S/N axes and intercepts other seven axes at the median values of the
corresponding features. The white region corresponds to the positive class, while the cyan
region – to the negative class. We can see that spectra with large absolute values of the mass
deviation are classified as negative, but the boundaries between the two classes are not rigid
and vary with S/N. Support vectors of the SVM, denoted by black crosses, are located in the
area of small mass shifts.

We tested our classifier on five BSA samples. After classifying spectra, we calculated the
means, modes, and coefficients of variance for peptide ratios derived from spectra in the
positive class, and found that filtering by the SVM classifier decreased the coefficient of
variation (CV) for four samples, and did not change it for sample 5(H):1(L), Table 1. The
decrease in the ratio’s CV was larger for samples with the peptide ratios equal to or less than
1. For two samples with ratios larger than 1, CV's had been relatively small in the original
data, and there was little or no improvement obtained by applying the SVM classifier. The
best result was obtained for the sample 1(H):3(L), where the CV decreased nine-fold. We
can also see from the table that the reduction in CV's was achieved by filtering out between
26% and 37% of the spectra in each dataset, and that the filtering either improved or did not
change the means of ratios. The final CV's were comparable for all samples, ranging from
0.1 to 0.4.
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To evaluate results obtained using SVM filtering, we also did filtering based on single S/N
feature (Table 1), where a certain number of spectra with the highest S/N was removed. For
each dataset, this number was set equal to the number of spectra filtered out by the SVM
classifier. It is seen from the table that for three samples this filtering resulted in CV's that
were higher than those obtained after SVM filtering, while for two samples CV's were the
same. This shows that SVM filtering based on a set of features describing spectral quality is
more efficient than filtering based solely on S/N, yet the latter certainly is a very informative
descriptor of spectral quality.

Figure 6 shows in more detail how the coefficient of ratio variation changes when SVM or
S/N are used to filter out spectra. It shows results for three BSA samples (1(H):5(L), 1(H):
3(L) and 1(H):1(L)) for which unfiltered CV's were large. For the SVM-based method,
improvement of the CV becomes fairly stable when about 30% of spectra is filtered out. For
all but very high levels of filtering, SVM-based method usually yields better CV than S/N-
based method. Figure S6 in the Supplementary Materials section shows similar graphs for
BSA samples with peptide ratios larger than 1.0. For these datasets the original CV's were
relatively small and their improvement by both filtering methods was not very prominent.

Bakalarski and coworkers16, concerned with similar analysis of high resolution mass data,
reported that filtering of spectra by using their mass precision algorithm, applied to a 1(H):
1(L) test sample, reduced the variance of ratios by 1.2 times for spectra with S/N > 10 and
by 3.1 times for spectra with S/N < 10. Our SVM classifier, applied to the 1(H):1(L) BSA
sample, reduced the variance of ratios 16-fold.

Our classifier was capable of identifying spectra with co-eluting peptides. Consider Figure
7, showing a mass profile from 3(H):1(L) BSA sample, with calculated peptide ratio of 1.6.
This spectrum is an example of overlapping profiles of two co-eluting species: the target
peptide YNGVFQECCQAEDK (monoisotopic mass 1746.7 Da) and another BSA peptide,
ECCHGDLLECADDR (monoisotopic mass 1748.66 Da). The identities of these peptides
were determined from the database search. The positions of the monoisotopic peaks were
assigned correctly. The co-elution led to a large difference between the theoretical and
experimental isotope distributions of the target peptide and erroneous ratio estimation. The
SVM classifier correctly identified this spectrum as distorted with a score of −4.2.

SVMs with nonlinear kernels allow the accurate and robust classification of complex data.
One of their drawbacks, however, is the limited explanatory power. That is, they do not
provide explicit information about the importance of the features in decision making.
Contributions from all of the features are aggregated in the form of a decision function
value. However, we believe that co-elution is perhaps the most serious problem hindering
accurate peptide quantification. The complexity and amount of co-elution depends on
specific techniques used to separate peptide mixtures before they enter a mass spectrometer,
so some experiments may result in more co-eluting profiles than others. The negative effect
of co-elution on ratio estimation depends on the abundance of the co-eluting species with
respect to the abundance of the target species. If the abundance of the co-eluting species is
much higher than that of the target species, then accurate ratio estimation will require
deconvolution of the overlapping signals, which is very difficult without knowing the amino
acid composition of the contaminant. On the other hand, low-abundant contaminants may
still allow reasonably accurate ratio estimations.

In machine learning, classifiers are trained to identify classes from distributions of features
observed in a training dataset. In general, these distributions may change from dataset to
dataset. Normalization of the features helps to reduce this effect. However, it may happen
that, in order to deal with a different experimental setup, our SVM classifier would need to
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be retrained to account for experiment-dependent distributions of the spectral features. On
the other hand, we believe that results presented in this paper show that such spectral
features can be used to develop automated procedures for the assessment of quality of MS
data.

Conclusion
In quantitative proteomics experiments, four types of variation have been associated with
ratio measurements13,48. Biological variance is caused by fluctuations between individual
biological subjects; instrumental variance is caused by measurement fluctuations in mass,
abundance, and co-elutions; processing variance is caused by processing steps in
quantitative proteomics, including digestion, labeling, and mixing; and finally, treatment
variance is caused by differences in protein expression levels due to the treatment. In this
work, we focused on reducing artificial fluctuations in ratio estimation resulting from
instrumental measurements and associated phenomenon of distorted isotopic profiles. We
have developed an SVM classifier to help automate ratio estimations in 18O-water labeling
experiments. The classifier uses 9 spectral features including mass accuracy, S/N and
difference between experimental and theoretical isotopic distributions. We trained and tested
the classifier on six samples with known peptide abundance ratios. We showed that it is
capable of identifying such artifacts as contaminant species, noise interference, and
fluctuations in instrumental measurements, which usually result in a wrong peak assignment
and/or distorted isotopic profiles. In 10-fold cross validation, the accuracy of the classifier
was 83% on the training data. When applied to testing data, performance of the classifier
was evaluated by measuring a decrease in ratio variance for mass spectra classified as being
of good quality. The coefficients of variance for the ratios calculated using the 5 testing sets
decreased up to 9-fold.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Abbreviations

BSA bovine serum albumin

Da Dalton

FDR false discovery rate

SVM support vector machine

H heavy

L light

LC-MS liquid chromatography – mass spectrometry

LTQ Thermo Fisher Scientific linear quadrupole ion trap

MS/MS tandem mass spectrometry

m/z mass-to-charge ratio

S/N signal-to-noise ratio

Th the Thomson, unit of m/z
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Figure 1.
A workflow of peptide/protein ratio estimation using 18O-water labeling. Two samples are
separately alkylated and digested with trypsin. One of the samples (normally treatment
sample) is subjected to trypsin mediated 16O/18O exchange in 18O-water. Then, the labeled
and unlabeled samples are mixed and analyzed in a LC-MS/MS system. Peptides and
proteins are identified using tandem mass spectra and protein sequence databases.
Quantification software MassXplore was used to estimate relative ratios of heavy and light
peptide pairs from their mass profiles.
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Figure 2.
Plot of the first 6 features (non-normalized) out of 9 used by our SVM classifier, for the
mouse data set, shown as parallel coordinates. Points tend to cluster along a path, showing
some structure in the data. The SVM classifier was trained to use this structure for
classifying spectra whose isotopic and spectral features significantly deviate from
theoretically expected values.
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Figure 3.
Score density functions of the SVM classifier for the positive (solid line) and negative
(broken line) classes.
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Figure 4.
Scatter plot of the logarithm of peptide ratios versus S/N for the mouse data. The color of
each point is determined by its SVM classification score. The proportion of good spectra
(positive scores, green colors) is higher among spectra with higher S/N, though some of the
latter are correctly classified as bad (negative scores, blue and red colors) based on other
spectral features.
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Figure 5.
Separating surface generated by the SVM classifier, projected onto the plane that is parallel
to the MassDev and S/N axes and intercepts other seven axes at the median values of the
corresponding features. The classifier assigned points from the white region to the positive
class, and those from the cyan region – to the negative class. The crosses designated support
vectors, i.e., the data points that were used to define the decision boundary. The cyan region
contains spectra classified as negative, i.e., those that significantly deviate from the
theoretical distributions.
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Figure 6.
Coefficient of ratio variation as a function of the percentage of spectra filtered by S/N (blue
triangles) and SVM-based (green circles) methods for three BSA samples: 1(H):5(L), 1(H):
3(L) and 1(H):1(L). The improvement of the CV's obtained by using SVM becomes fairly
stable when about 30% of spectra is filtered out.

Nefedov et al. Page 17

J Proteome Res. Author manuscript; available in PMC 2012 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
Co-elution of target peptide pairs and a contaminant that leads to an error in ratio
estimations. The target pair is the heavy and light forms of BSA peptide
YNGVFQECCQAEDK, identified from the database search of the corresponding MS/MS
spectrum. The peptide’s charge is +2, and its monoisotopic peak is located at 874.18 Th. The
contaminating peptide’s charge is +2, and its monoisotopic peak is at 875.18 Th. This is
another BSA peptide, ECCHGDLLECADDR, which was identified from the database
search of the MS/MS spectrum acquired only a few seconds later. This spectrum was
assigned an SVM score of −4.2 and was correctly classified into the negative class.
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Table 1

The number of spectra, means, modes, and coefficients of variance for peptide ratios derived from five BSA
samples (before filtering, after filtering by SVM, and after filtering by S/N).

Peptide ratio
(heavy to light)

Number
of spectra Mean Mode Coefficient of

variation

before filtering / after filtering by SVM / after filtering by S/Na

1:5 424 / 302 0.6 / 0.3 / 0.5 0.2 / 0.2 / 0.3 2.2 / 0.4 / 0.9

1:3 475 / 352 0.6 / 0.4 / 0.5 0.3 / 0.3 / 0.4 1.8 / 0.2 / 0.7

1:1 545 / 344 1.0 / 1.0 / 1.0 0.9 / 0.9 / 0.9 0.4 / 0.1 / 0.2

3:1 509 / 343 2.3 / 2.3 / 2.3 2.6 / 2.5 / 2.5 0.3 / 0.2 / 0.2

5:1 432 / 278 3.3 / 3.3 / 3.4 3.8 / 3.5 / 3.6 0.3 / 0.3 / 0.3

a
The number of spectra filtered by S/N was set equal to the number of spectra filtered by the SVM classifier.
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