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Abstract
Purpose Parametric imaging of absolute myocardial blood
flow (MBF) using [15O]H2O enables determination of MBF
with high spatial resolution. The aim of this study was to
develop a method for generating reproducible, high-quality
and quantitative parametric MBF images with minimal user
intervention.
Methods Nineteen patients referred for evaluation of MBF
underwent rest and adenosine stress [15O]H2O positron
emission tomography (PET) scans. Ascending aorta and
right ventricular (RV) cavity volumes of interest (VOIs)
were used as input functions. Implementation of a basis
function method (BFM) of the single-tissue model with an
additional correction for RV spillover was used to generate
parametric images. The average segmental MBF derived
from parametric images was compared with MBF obtained
using nonlinear least-squares regression (NLR) of VOI
data. Four segmentation algorithms were evaluated for
automatic extraction of input functions. Segmental MBF
obtained using these input functions was compared with
MBF obtained using manually defined input functions.
Results The average parametric MBF showed a high agree-
ment with NLR-derived MBF [intraclass correlation coeffi-
cient (ICC) = 0.984]. For each segmentation algorithm there

was at least one implementation that yielded high agreement
(ICC > 0.9) with manually obtained input functions, although
MBF calculated using each algorithm was at least 10% higher.
Cluster analysis with six clusters yielded the highest agreement
(ICC = 0.977), together with good segmentation reproducibility
(coefficient of variation of MBF <5%).
Conclusion Parametric MBF images of diagnostic quality
can be generated automatically using cluster analysis and a
implementation of a BFM of the single-tissue model with
additional RV spillover correction.
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Introduction

Dynamic positron emission tomography (PET) can be
used to measure regional myocardial blood flow (MBF)
non-invasively using for example [13N]NH3,

82Rb or
[15O]H2O [1–3]. The introduction of hybrid PET/CT
scanners enables accurate diagnosis of coronary artery
disease (CAD) by combining PET perfusion studies with
CT coronary angiography (CTCA) [4–7]. Given the short
half-life of 15O and 82Rb (122 and 76 s, respectively),
repeat scans are feasible within a single scanning session,
enabling stress-rest CTCA protocols with a total duration
of less than 30 min. In contrast to 82Rb and [13N]NH3,
[15O]H2O is freely diffusible and metabolically inert.
Consequently, [15O]H2O is an ideal tracer for quantifying
MBF, as changes in myocardial tracer activity are solely
dependent on MBF and are not affected by variations in
extraction fraction and/or metabolic interactions [6].

Kinetics of [15O]H2O can best be described using a
single-tissue compartment model with parameters for MBF
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and, to correct for partial volume and spillover effects,
perfusable tissue fraction (PTF) [8, 9], and left ventricular
(LV) and right ventricular (RV) blood volume fractions
[10]. Using least-squares fitting techniques on segmental
[15O]H2O data, it has been shown that resulting MBF
values correlated well with MBF based on microspheres
using both 2-D [8, 11] and 3-D [12] PET data.

In order to solve the single-tissue compartment model,
time-activity curves (TACs) of arterial blood and RV, CA(t)
and CRV(t), respectively, have to be determined. It has been
shown [10–13] that CA(t) can be obtained accurately from
the dynamic data themselves, eliminating the need for online
blood sampling. This can be achieved by drawing volumes
of interest (VOIs) in ascending aorta (AA), LVor left atrium,
and RV in a blood pool image obtained using [15O]CO and
transferring these VOIs to the dynamic [15O]H2O data [13].
Although the LV is often used to define the arterial input
function for [15O]H2O, previous studies have shown that the
AA is preferable for [18F]fluorodeoxyglucose (FDG) [14]. In
addition, perfusion values based on an AA image-derived
input function (IDIF) were shown to correlate well with
those based on online arterial sampling [15]. Performing an
additional [15O]CO scan, however, is cumbersome and
drawing VOIs is user dependent and time consuming. In
addition, there is a chance of misalignment between blood
pool and water scans due to patient movement. VOIs can
also be drawn on the [15O]H2O data themselves using a
frame during the first pass of the bolus, where the blood pool
is best visible. Although this eliminates errors due to patient
movement between scans, it remains user dependent and
time consuming. Therefore, automatic methods for extracting
CA(t) and CRV(t) directly from a dynamic scan are preferred.

Factor analysis [16, 17] has been used to extract blood
and tissue TACs from dynamic PET images. Factor analysis
separates a small number of underlying and unobservable
factors that define the dynamic data. Its use in combination
with dynamic [15O]H2O scans of the heart has been shown
[18, 19], although it was found that frequent operator
intervention was required. The low signal to noise ratio of
[15O]H2O scans, however, may affect extraction of the
various factors, thereby possibly affecting quantitative
accuracy of MBF. Cluster analysis [20], k-means++
clustering [21, 22] and factor analysis of dynamic sequen-
ces [23] can be used as alternative segmentation algorithms.
There are a number of prerequisites for a segmentation
algorithm to be feasible for clinical use. Firstly, it should
yield blood TACs that result in MBF values, which agree
well with those obtained using manually defined blood
TACs. Furthermore, segmentation reproducibility should be
high, i.e. each segmentation of a single data set should yield
the same flow value. Finally, it should be able to segment
data reliably without or only with minimal operator
intervention.

When arterial and RV TACs are available, segmental MBF
can be calculated. Calculating MBF for heart segments has the
obvious drawback of losing all information about the
distribution of MBF within those segments. As an alternative,
kinetic analyses can be performed for each voxel individually,
thereby generating parametric MBF images. The gold standard
for kinetic analysis, nonlinear least-squares regression (NLR),
is slow and very sensitive to noise, making it unsuitable for
generating parametric images. The basis function method
(BFM) [24] is a much faster and less noise-sensitive method,
as it linearizes the model equation and solves it for each voxel
using standard linear regression applied to a limited number
of predefined possible values of MBF. Its use for [15O]H2O
scans has been reported [25], although the high noise level of
[15O]H2O images on dedicated 2-D PET scanners with BGO
detectors essentially ruled out calculation of MBF at the
voxel level, as resulting parametric MBF images were very
noisy [26]. Improved scanning statistics of current generation
3-D-only clinical PET/CT scanners [27] utilizing LSO or
LYSO detectors and faster electronics, however, might result
in parametric images of improved quality. Implementation of
a correction for RV spillover [10], which has not been
reported before in combination with parametric MBF images,
may further improve quantitative accuracy of MBF images,
especially in the septum.

The aim of this study was to develop a method for
generating quantitative parametric MBF images of diag-
nostic quality with minimal user intervention. To this end
the use of a BFM, incorporating RV spillover, was assessed
after which quantitative accuracy and reproducibility of
four different segmentation algorithms for definition of
blood pool TACs were compared using data acquired on a
clinical 3-D PET/CT scanner.

Materials and methods

Patients

Data were obtained from a cohort of patients, who were
evaluated for CAD and therefore referred for CT angiography
and MBF measurements. A total of 19 consecutive patients (9
men, age range 50–77 years, mean age 65 years; 10 women,
age range 31–78 years, mean age 60 years) were included.
None of the patients had a documented history of CAD.
Electrocardiography did not show signs of a previous
myocardial infarction, and echocardiography showed a normal
LV function without wall motion abnormalities in all patients.

Image acquisition

Scans were performed on a Gemini TF 64 PET/CT (Philips
Healthcare, Best, The Netherlands) [27]. A 5-ml bolus
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injection of 370 MBq [15O]H2O, followed by 35 ml saline
(total duration 23 s), was administered simultaneously with
the start of a list-mode emission scan of 6 min. The injected
dose was chosen to remain within the linear range of the
scanner, the upper limit of which is at a singles count rate
of about 35 Mcps [28]. Singles count rates in the present
study were approximately 32 Mcps during the first pass of
the bolus. A slow low-dose CT scan (LDCT, 55 mAs,
rotation time 1.5 s, pitch 0.825, collimation 16×0.625,
acquiring 20 cm in 37 s compared to 5 s for a regular
LDCT) was performed after each emission scan to correct
for attenuation. The emission scan was reconstructed into
22 frames (1×10, 8×5, 4×10, 2×15, 3×20, 2×30 and 2×60 s)
using the 3-D row action maximum likelihood algorithm
(RAMLA), applying all appropriate corrections. Images
consisted of 45 planes of 144×144 voxels with voxel
dimensions of 4×4×4 mm. Two [15O]H2O scans were
performed sequentially: one under adenosine-induced stress
conditions, the other under rest conditions. Adenosine
infusion was started 2 min prior to injection of [15O]H2O
and continued during the LDCT following the stress scan.
The time between both [15O]H2O injections was approxi-
mately 20 min to allow for decay of radioactivity.

Manually drawn blood VOIs

Using CAPP software (Siemens/CTI, Knoxville, TN, USA),
1-cm diameter regions of interest (ROIs) were placed over the
centre of the AA in at least ten transaxial image planes in the
frame showing the first pass of the injected bolus, as described
previously [29]. These ROIs were combined into one VOI
for the AA. A second set of ROIs was placed over the RV
cavity in at least five transaxial planes, with ROI boundaries
at least 1 cm from the RV wall to avoid spillover of
myocardial activity. Again, these ROIs were combined into
one RV VOI. Both VOIs were then transferred to the full
dynamic images to obtain CA(t) and CRV(t).

Parametric images

Parametric MBF images were generated using a basis
function implementation [24, 25] of the single-tissue
compartment model with corrections for spillover and
partial volume effects [9, 10]:

CT ðtÞ ¼ PTF �MBF � CAðtÞ � e�
MBF
VT

�t þ VA � CAðtÞ þ VRV � CRV ðtÞ
ð1Þ

VA represents arterial blood volume and LV spillover
fraction, VRV RV spillover fraction, and VT the partition
coefficient of water in myocardial tissue, which was fixed to
0.91 ml×g−1 [8]. The last two terms of the model are used to
correct for spillover effects, whilst PTF is used to correct for

partial volume effects. A set of 30 basis functions was
precomputed using logarithmically spaced values of MBFi
between 0.1 and 1.8 ml×g−1×min−1 for rest scans and
between 0.1 and 4.5 ml×g−1×min−1 for stress scans:

BiðtÞ ¼ MBFi � CAðtÞ � e�
MBFi
VT

�t ð2Þ

The linear combination of the three terms in Eq. 1, resulting
in the minimal sum of squared differences, yielded PTF, MBF,
VA and VRV. In voxels with PTF < 0.25 or VA+VRV > 0.75,
MBF was set to zero in order to avoid spurious noise-induced
high MBF values outside the heart or in blood vessels.

Segmentation algorithms

For segmentation of dynamic data, four different algorithms
were used. Cluster analysis [20] iteratively computes, for
each voxel, the probability that it belongs to one of the
clusters, each of which is described by a multinomial
distribution with a mean and variance TAC. Mean and
variance of each cluster are calculated using probability
weighted voxel TACs, after which new probabilities are
calculated. The final probability maps are used for further
analysis. Factor analysis of dynamic structures (FADS) [23]
uses simple matrix calculations and positivity constraints to
iteratively calculate factor images rather than probability
densities. Factor analysis [16, 17] also uses matrix calcu-
lations and positivity constraints. However, calculations are
performed on a new affine space defined using principal
component analysis rather than the raw dynamic data. K-
means++ [22] is a modified version of k-means clustering
[21], which groups voxel TACs iteratively in clusters using
the squared sum of differences (i.e. distances) between voxel
and TACs. Each voxel is assigned to one cluster in order to
minimize the distances within a cluster and maximize the
distances between clusters. K-means++ uses different start-
ing values, thereby increasing calculation speed and reliabil-
ity. In the present study, a corner voxel, located outside the
patient, was used as the first cluster centre.

Obtained factor or cluster images were normalized such
that the sum of all factors and clusters was 1 for each pixel,
after which they were thresholded, assigning voxels to only
one factor or cluster. For k-means++ clustering, thresh-
olding was not needed, as k-means++ already assigns
voxels to only one cluster. Thresholded images were
displayed in 3-D and, after visual inspection, arterial and
RV factors or clusters were assigned manually. Next, to
reduce partial volume and spillover effects, arterial and RV
factors or clusters were morphologically eroded once,
removing both the outer layer of voxels and possible
isolated voxels. The average TACs of the remaining voxels
were used as CA(t) and CRV(t). Each algorithm was tested
for four to seven factors or clusters. Prior to analysis, to
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prevent memory issues, dynamic data were cropped to
extract images of 28×28×18 cm located around the heart
using fixed cropping parameters.

Data analysis

Validation of parametric images Parametric PTF images
were rotated in order to obtain short-axis images of the
heart. Next, the same transformation was performed to the
original dynamic [15O]H2O data. Myocardial segment VOIs
according to the 17-segment model of the American Heart
Association were drawn manually on the PTF short-axis
image. This VOI template was transferred to the short-axis
dynamic data to extract segmental [15O]H2O TACs. These
TACs were used to derive MBF for each segment using
NLR together with manually obtained CA(t) and CRV(t).
Corresponding parametric MBF values were obtained by
transferring the same VOI template to the parametric MBF
images. Correlation and agreement between both sets of
segmental MBF values and of coronary flow reserve (CFR,
defined as stress MBF divided by rest MBF) was assessed
using Deming regression, intraclass correlation coefficients
(ICC) and Bland-Altman analysis [30].

Validation and reproducibility of segmentation methods Seg-
mental MBF was derived from corresponding TACs using
NLR and the various CA(t) and CRV(t) obtained from all
segmentation algorithms. Correlation and agreement of these

MBF and corresponding CFR values with those obtained
from manually defined CA(t) and CRV(t) were assessed using
Deming regression, ICC and Bland-Altman analysis.

Segmentation reproducibility was only assessed for the
number of factors that showed the highest correlation with
manually derived blood curves. CA(t) and CRV(t) were
determined 50 times for both rest and stress scans of three
randomly selected patients using each of the algorithms.
Using NLR, myocardial segment TACs were fitted for each
CA(t) and CRV(t), after which the coefficient of variation
(CoV) of MBF was calculated for each algorithm and used
as a measure for segmentation reproducibility.

Results

Parametric images

One patient showed MBF, as determined by NLR, outside
the predefined range used for BFM. For this patient with
very high stress MBF, the predefined range of MBF values
was adjusted to 0.1–7.2 ml×g−1×min−1. In Fig. 1 parametric
MBF images are shown of one patient with a normal flow
distribution and another with a stress-inducible perfusion
defect. Figure 2 shows regression and Bland-Altman plots
of segmental MBF derived from parametric MBF images
against those obtained from NLR analysis of corresponding

Fig. 1 Typical parametric short-
axis images of stress (a, b) and
rest (c, d) MBF of a patient with
no perfusion defects (a, c) and a
patient with a stress-inducible
perfusion defect in the inferior
wall (b, d). Images were filtered
with a 10-mm Gaussian filter
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VOIs. Agreement was high (ICC = 0.984 for MBF) and
Bland-Altman plots showed no significant difference
between both MBF values (mean difference 0.023, 95%
confidence interval −0.355 to 0.401). Deming regression
resulted in a slope of 0.977 and an intercept of 0.046. Both
slope and intercept were significantly different from 1 and 0
(p < 0.05), respectively, indicating a very small but
significant bias in parametric images relative to NLR.

Factor images

On average, all segmentation algorithms took about 20 s on
a standard desktop PC with a maximum of 1 min. Factor
images without threshold are shown in Fig. 3. Images

obtained using cluster analysis contained many voxels with
a value of 1, in contrast to FADS and factor analysis. A
threshold of 1 for cluster analysis, 0.5 for FADS and 0.4 for
factor analysis yielded 3-D images (Fig. 4, online resource
1), in which structures could clearly be identified. Note that
arterial images include left atrium, LV and aorta and that
venous images include vena cava superior, right atrium, RV
and pulmonary artery (online resource 1). The chosen
thresholds yielded arterial clusters of similar size for each
segmentation algorithm. The low threshold for FADS and
factor analysis resulted in noisy 3-D images. FADS and
factor analysis generated relatively small RV factors or
assigned more than one factor to the RV, making it difficult
to extract CRV(t). For factor analysis, occasionally myocar-

Fig. 2 Regression (a) and
Bland-Altman (b) plots of seg-
mental MBF derived using NLR
applied to corresponding TACs
(MBFNLR) versus average para-
metric MBF (MBFBFM). Con-
tinuous lines indicate linear fit in
a and mean difference in b;
dashed lines indicate mean dif-
ference ± 2 SD

Fig. 3 Factor images of arterial (a–c) and RV (d–f) factors obtained
using cluster analysis with six clusters (a, d), FADS with seven factors
(b, e) and factor analysis with five factors (c, f). The colour scale is the

same for all images. RV is clearly visible in the factor images obtained
using cluster analysis, but less so in images obtained using FADS and
factor analysis
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dium and RV were combined in one factor, leading to a
more difficult extraction of CRV(t).

Correlation with manually defined blood TACs

ICC, slope of Deming regression line, mean difference and
limits of agreement for MBF and CFR calculated using
each segmentation algorithm and those using manually
defined CA(t) and CRV(t) are listed in Table 1, showing high
ICC for most methods (ICC > 0.9). Figures 5 and 6 show
corresponding regression and Bland-Altman plots of MBF
calculated with each of the segmentation algorithms against
MBF based on manually defined CA(t) and CRV(t). In
general, all algorithms yielded high correlation with MBF
and CFR based on manually defined blood TACs for at
least one chosen implementation. For MBF, all regression
lines had slopes significantly higher than 1 indicating

positive bias. For CFR, slopes were closer to 1 indicating
a smaller bias.

Cluster analysis yielded the highest agreement with
ICC of 0.977 for MBF when using six clusters. In
addition, it provided high agreement for all implementa-
tions tested, indicating low sensitivity to the chosen
number of clusters. FADS showed high agreement with
MBF based on manually defined blood TACs when
using five to seven factors (ICC of 0.971 for MBF when
using seven factors). For factor analysis, it was not
possible to segment all patients correctly using a fixed
number of factors. In addition, quantitative results were
very sensitive to the number of factors used. Five factors
yielded the highest agreement (ICC of 0.940 for MBF).
In addition, this number of factors appeared to be the
most generally applicable for the patients included. For
stress scans, k-means++ persistently included myocardial

Fig. 4 Typical 2-D thresholded factor images showing arterial (blue)
and venous (red) factors, cropped around the heart. Factor images
were obtained using cluster analysis with six factors (a), FADS with

seven factors (b), factor analysis with five factors (c) and k-means++
using seven factors (d). Full 3-D images can be seen in the online
supplement

Table 1 ICC, slope of Deming regression, mean difference and limits of agreement of Bland-Altman plots between MBF and CFR obtained
using each algorithm and corresponding values for manually obtained TACs. Slopes marked with an asterisk differ significantly from 1 (p < 0.05)

Factors MBF CFR

ICC Slope Mean
difference

Limits of
agreement

ICC Slope Mean
difference

Limits of
agreement

Cluster analysis 4 0.859 1.635* 0.509 −0.923–1.942 0.900 1.334* 0.291 −0.841–1.423
5 0.927 1.286* 0.306 −0.571–1.184 0.951 0.938* 0.091 −0.568–0.750
6 0.977 1.150* 0.209 −0.256–0.675 0.985 0.971* -0.014 −0.386–0.358
7 0.974 1.155* 0.182 −0.315–0.678 0.975 0.928* 0.040 −0.425–0.504

FADS 4 0.870 1.250* 0.341 −0.854–1.536 0.618 1.462 0.220 −1.993–2.433
5 0.953 1.183* 0.219 −0.453–0.891 0.950 1.021 0.116 −0.573–0.806
6 0.946 1.219* 0.212 −0.521–0.946 0.945 1.030 0.137 −0.591–0.864
7 0.971 1.163* 0.185 −0.342–0.713 0.974 0.959* 0.043 −0.442–0.528

Factor analysis 4 0.683 1.882* 0.504 −1.769–2.776 0.641 2.436* 0.332 −1.959–2.603
5 0.940 1.278* 0.290 −0.508–1.087 0.953 1.187* 0.124 −0.558–0.805
6 0.927 1.339* 0.225 −0.677–1.127 0.918 1.048* 0.149 −0.809–1.108
7 0.397 3.457* 0.781 −3.393–4.956 0.356 1.613* 0.129 −3.004–3.263

K-means++ 4 0.638 1.928* 0.998 −1.530–3.527 0.607 1.769* 0.519 −2.002–3.040
5 0.833 1.703* 0.701 −0.906–2.309 0.801 1.542* 0.527 −1.208–2.262
6 0.876 1.613* 0.585 −0.752–1.921 0.920 1.269* 0.327 −0.662–1.316
7 0.886 1.563* 0.499 −0.755–1.754 0.929 1.226* 0.274 −0.634–1.182
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voxels in the arterial factor, resulting in large over-
estimations of both stress MBF and CFR. Nevertheless,
agreement with MBF based on manually defined blood
TACs was high (ICC of 0.886 for MBF, when using
seven clusters).

Segmentation reproducibility

Segmentation reproducibility was assessed for cluster
analysis with six clusters, FADS with seven factors,
factor analysis with five factors and k-means++ with
seven clusters. CoVs are shown in Table 2. As can be
seen, both k-means++ and factor analysis yielded identical
results for repetitive analyses, which is inherent to these
methods. Cluster analysis and FADS, which both require
random initial values, showed a small variation between
repetitive analyses (CoV in MBF <5 and <8% for cluster
analysis and FADS, respectively). In a limited number of
cases (<5% of the total), cluster analysis was found to fail
in separating aorta and LV from myocardial tissue. This
segmentation error was obvious in the 3-D cluster images,
and these cases were therefore removed after visual
inspection of the cluster images. Repeating the segmenta-
tion reproducibility test after excluding these cases
resulted in a reduction in CoV.

Discussion

In the present study four different algorithms for automat-
ically segmenting blood pool TACs were compared. In
addition, a BFM for generating absolute MBF parametric
images, incorporating both LV and RV spillover correc-
tions, was validated.

Agreement of average segmental MBF and CFR, derived
directly from parametric images, with segmental MBF and
CFR derived using NLR, was high. This indicates that it is
possible to generate quantitatively accurate parametric MBF
images using the BFM implementation proposed, together
with manually obtained CA(t) and CRV(t). The slope of the
Deming regression was 0.977 and was significantly different
from 1, indicating a small but significant underestimation of
MBF in parametric images. However, an underestimation as
small as 2.3% in the parametric images can be considered
irrelevant for clinical practice and therefore this was
considered not an issue for quantification of MBF.

Generated images (Fig. 1) were of diagnostic quality. For
one patient, the predefined range of possible MBF values
had to be increased due to a high stress MBF. However,
stress MBF > 4.5 ml×g−1×min−1 can be considered to be
outside the clinically relevant range of MBF, as stress MBF
below 1.5–2.5 ml×g−1×min−1 (the actual level being

Fig. 5 Regression plots of
segmental MBF calculated using
cluster analysis with six
clusters (a), FADS with seven
factors (b), factor analysis with
five factors (c) and k-means++
with seven clusters (d) with
MBF calculated using
manually obtained CA(t) and
CRV(t). Lines indicate a
linear fit with zero intercept
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dependent on age) is generally considered to be ischaemic
[7], and therefore this issue should have no influence on
clinical diagnosis.

Agreement between all segmentation algorithms and
manually obtained blood curves was high (ICC > 0.9 for at
least one number of clusters or factors), with the highest
agreement obtained for cluster analysis with six clusters
(Table 1). The segmentation reproducibility of each algo-
rithm was very good to excellent with CoVs of MBF <5%
for cluster analysis, <8% for FADS and, inherently, 0% for

both factor analysis and k-means++. Each algorithm over-
estimated MBF compared to MBF based on manually
defined blood pool TACs. A possible explanation is the fact
that manually obtained TACs were derived from a small
volume in the AA. In contrast, the segmentation algorithms
included the entire LV, AA and descending aorta (Fig. 4,
online resource 1). This larger volume introduces dispersion
and partial volume effects in CA(t), resulting in higher
apparent MBF compared to MBF based on a manually
defined AA TAC. To verify this, CA(t) was also obtained
from manually drawn ROIs over both AA and LV, which
showed a similar effect on MBF (data not shown). This
effect was much smaller for CFR (Table 1), indicating that
relative overestimations in stress and rest MBF were similar
and cancelled out when calculating CFR.

Each algorithm had its own shortcomings. Occasion-
ally (< 5% of cases), cluster analysis failed to separate
aorta from myocardium. When looking at the 3-D
images, however, it was easy to determine whether the
analysis succeeded or failed (online resource 2). Conse-
quently, due to the random starting values, a failed
analysis could easily be resolved by restarting the analysis
using the same number of clusters. Although this meant
that the method sporadically required user intervention,
this was not considered a major drawback of cluster

Table 2 Coefficients of variation (CoV) of all segmentation methods
obtained by calculating input functions and perfusion values 50 times
for 3 patients each. Factor analysis and k-means++ showed exactly the
same results when repeating calculations. Cluster analysis and FADS
showed a higher CoV for stress scans than for rest scans. When the
success of each cluster analysis was assessed visually and failures
were restarted, CoV of cluster analysis decreased

CoV (%) Rest Stress

Cluster analysis 3.39 4.76

Cluster analysis excluding failed analyses 2.29 3.24

FADS 4.98 7.74

Factor analysis 0 0

K-means++ 0 0

Fig. 6 Bland-Altman plots
of segmental MBF calculated
using cluster analysis with six
clusters (a), FADS with seven
factors (b), factor analysis with
five factors (c) and k-means++
with seven clusters (d) with
MBF calculated using manually
obtained CA(t) and CRV(t).
Continuous lines indicate
mean difference; dashed lines
mean ± 2 SD
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analysis due to the ease of determining the success or
failure of an analysis.

An important drawback of k-means++ is that it persis-
tently included myocardial voxels in the arterial factor
when segmenting stress scans, resulting in large over-
estimations of both stress MBF and CFR. This problem was
independent of the number of clusters used.

FADS and factor analysis were unable to segment the
RV correctly, resulting in incorrect spillover corrections.
Furthermore, in contrast to cluster analysis, a low threshold
had to be applied to the factor images obtained with both
FADS and factor analysis, resulting in noisy images and
inclusion of voxels that belonged for up to 60% to other
factors. The effects of this on absolute MBF values,
however, were small as seen in Table 1.

As described previously, it is essential to use the correct
number of factors when using factor analysis for segmen-
tation [18, 19]. Similar results were found in the present
study. In particular, it was not possible to find a single
number of factors that could be used for segmenting all
patients. As frequent user intervention, i.e. manually
changing the number of factors, is required to prevent
erroneous results, factor analysis was not considered
feasible for clinical use. El Fakhri et al. [31] presented a
method that modifies factors and factor images after
analysis by penalizing overlap in factor images. This
method has not been tested in the present study, as cluster
analysis did not suffer from overlap in factor images and
provided good results. Furthermore, post-processing was
not expected to improve feasibility of factor analysis, as
incorrect segmentations were not expected to be corrected
by penalizing overlap.

A limitation of the present study was that, in order to
prevent memory issues during analysis, data were cropped
around the heart using fixed parameters. The choice of
these parameters and additional pre-processing may affect
the optimal number of clusters. When different pre-
processing steps are incorporated, the optimal number of
clusters should be reassessed. Nevertheless, as cluster
analysis was insensitive to the number of clusters chosen,
this effect may be small.

Conclusion

This study demonstrates that it is possible to generate
good quality parametric images of absolute MBF using
[15O]H2O and a clinical PET/CT scanner. This can be
achieved with minimal user intervention by using an
automatic definition of blood pool TACs and on a BFM
including RV spillover correction for calculation of
parametric MBF images. Cluster analysis with six clusters
proved to be the best segmentation algorithm for auto-
matic definition of blood pool TACs, resulting in high

correlation and agreement of MBF values with those
based on manually defined blood pool VOIs. Consequent-
ly, absolute MBF images, generated from a [15O]H2O
scan, are now available for clinical use.
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