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Abstract
AIM: To assess whether glutamate plays a similar role 
to glutamine in preserving gut wall integrity.

METHODS: The effects of glutamine and glutamate on 
induced hyperpermeability in intestinal cell lines were 
studied. Paracellular hyperpermeability was induced 
in Caco2.BBE and HT-29CL.19A cell lines by adding 
phorbol-12,13-dibutyrate (PDB) apically, after which 
the effects of glutamine and glutamate on horseradish 
peroxidase (HRP) diffusion were studied. An inhibitor of 
glutamate transport (L-trans-pyrrolidine-2,4-dicarboxylic 
acid: trans-PDC) and an irreversible blocker (acivicin) 
of the extracellular glutamine to glutamate converting 
enzyme, γ-glutamyltransferase, were used.

RESULTS: Apical to basolateral HRP flux increased 
significantly compared to controls not exposed to PDB 
(n  = 30, P  < 0.001). Glutamine application reduced 
hyperpermeability by 19% and 39% in the respective 
cell lines. Glutamate application reduced hyperperme-
ability by 30% and 20%, respectively. Incubation of 
HT29CL.19A cells with acivicin and subsequent PDB and 
glutamine addition increased permeability levels. Incu-
bation of Caco2.BBE cells with trans-PDC followed by 
PDB and glutamate addition also resulted in high per-
meability levels.

CONCLUSION: Apical glutamate -similar to glutamine- 
can decrease induced paracellular hyperpermeability. 
Extracellular conversion of glutamine to glutamate and 
subsequent uptake of glutamate could be a pivotal step 
in the mechanism underlying the protective effect of 
glutamine.
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INTRODUCTION
Intestinal hyperpermeability, whether cause or effect, seems 
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to be related to the occurrence of  sepsis, bacteraemia, and 
multiple organ failure[1,2]. 

Managing this change in gut physiology might con-
tribute to substantial health improvement. The semi-
essential amino acid, glutamine, is thought to improve 
clinical outcome in these situations. It has been ascribed 
several properties that are supportive of  intestinal cell func-
tion and relevant to cell survival[3]. Additionally, plasma 
and muscle glutamine concentrations drop dramatically in 
critically ill patients[4-6]. In vivo experiments, however, have 
not yet provided definitive evidence to support the claim 
that glutamine supplementation has a beneficial effect 
on gut permeability[7]. In contrast, in vitro experiments do 
show a positive influence of  glutamine. Kouznetsova et al[8] 
induced hyperpermeability in the intestinal HT-29Cl.19A 
cell line and found that glutamine significantly reduced 
this increased permeability. Furthermore, Le Bacquer  
et al[9] demonstrated that glutamine helps to preserve 
adequate paracellular permeability levels in nutritionally 
deprived intestinal Caco-2 cells. The precise mechanisms 
underlying these findings remain to be clarified. Gluta-
mate might play a pivotal role in the effects of  glutamine 
therapy considering the metabolic fate of  glutamine: it is 
mostly converted to glutamate, either intra- or extracellu-
larly[10]. Welbourne et al[11] provide support for this theory 
by demonstrating that blocking the extracellular glutami-
ne to glutamate converting enzyme γ-glutamyltransferase 
(γ-GT) and blocking glutamate uptake, both increase 
paracellular permeability in the proximal tubulelike LLC-
PK1-F+ cells. 

The aim of  this study was to assess whether glutamate 
might play a similar role in the intestine (Figure 1). To do 
so, an experimental model that allows differentiation be-
tween the effects of  glutamine and glutamate on induced 
hyperpermeability in intestinal cell lines was used. 

MATERIALS AND METHODS
Study design
We created an experimental set-up using two intestinal 
cell lines: Caco2.BBE and HT-29CL.19A (both human 
colon adenocarcinoma derived cell lines). In culture, 
both cell lines exhibit polarity and apical brush-border 
membranes, similar to in vivo structure[12,13]. Cells were 
therefore placed in a bicameral system to simulate a phys-
iological situation in which they are exposed to distinct 
apical and basolateral compartments, and thereby allow-
ing permeability experiments.

Paracellular hyperpermeability was induced by adding 
phorbol-12,13-dibutyrate (PDB) to the apical compart-
ment after which the effects of  glutamine and glutamate 
on horseradish peroxidase (HRP) diffusion were studied. 
To differentiate between the effect of  glutamine and 
glutamate on permeability, an inhibitor of  glutamate 
transport (L-trans-pyrrolidine-2,4-dicarboxylic acid: trans-
PDC) and an irreversible blocker (acivicin) of  the extra-
cellular glutamine to glutamate converting enzyme, γ-GT, 
were used.

Cell culture
The HT29Cl.19A cell line, passage number 14-35 and the 
Caco2.BBE cell line, passage number 34-62, were grown 
in Dulbecco’s modified Eagle’s medium supplemented 
with 10% fetal calf  serum. The medium contained penicil-
lin 40 mg/L, ampicillin 8 mg/L and streptomycin 9 mg/L. 
The cells were seeded in 12 cm2 culture flasks which were 
placed in an incubator with a humidified atmosphere of  
5% CO2 and 95% O2. The cells were subcultured on trans-
parent filters (12 mm diameter; Falcon, Micronic, Lelystad, 
The Netherlands) for 14 (HT29Cl.19A) and 21 (Caco2.
BBE) days to form confluent monolayers. The medium 
contained glutamine (2 mmol/L) and was replaced every 
other day. During the last 2 d before the experiments, the 
cells were cultured in glutamine-free medium.

Flux experiments
The culture medium was discarded after cell cultivation 
and filters were rinsed with Ringer’s solution (contain-
ing 117.5 mmol/L NaCl, 5.7 mmol/L KCl, 25 mmol/L 
NaHCO3, 1.2 mmol/L NaH2PO4, 2.5 mmol/L CaCl2,  
1.2 mmol/L MgSO4 and 27.8 mmol/L mannitol, kept at 
pH 7.4). Filters were placed in a bicameral system with 
300 μL of  Ringer’s solution added to the apical chamber 
and 700 μL to the basolateral chamber. The bicameral 
setup with filters was then placed in an incubator with 
humidified gas (5% CO2, 95% O2) where a temperature 
of  37℃ was maintained. After an equilibration period 
of  30 min, HRP (type Ⅳ; Sigma Chemical Co., St Louis, 
MO, USA) dissolved in Ringer’s solution was added api-
cally to reach a final concentration of  10-5 mol/L. For 
the next 4 h, basolateral samples of  5 μL were taken, in 
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Figure 1  Model illustrating intestinal cell lineage with tight junctions and 
EAAT transporter. The extracellular enzymatic conversion of glutamine to 
glutamate by γ-glutamyltransferase (γ-GT) is shown on the apical side. The 
experimental design of the study using the γ-GT blocking enzyme, acivicin, and 
the blocker of the glutamate transporter, EAAT L-trans-pyrrolidine-2,4-dicarbox-
ylic, is included in the figure.



triplicate, each hour and replaced by oxygenated Ringer’s  
solution. The appearance of  HRP in these samples was 
measured enzymatically. To this end, samples were mixed 
with 180 μL citrate buffer (0.1 mol/L citrate + 0.1 mol/L  
citric acid at pH 5.5) containing 3.6 μL bovine serum albu-
min (BSA 20 μL/mL). Three samples of  25 μL were tak-
en from the resulting mixture and were added to 200 μL  
substrate. Substrate was prepared by adding 340 μL TMB 
stock (3.3-5.5 tetramethylbenzidine) (6 mg/mL in H2O) 
and 200 μL 0.3% H2O2 to 20 mL citrate buffer.

Samples were then incubated for 30 min at normal 
room temperature, after which the positive samples were 
blue in colour. The reaction was stopped by adding 50 μL 
HCl (2 mol/L). The samples were read at 450 nm by a 
spectrophotometer. Data were recorded using Microplate 
Manager 5 Software, Bio-Rad Laboratories Ltd., UK.

Experiments with PKC-mediated hyperpermeability 
were conducted by simultaneously adding 1 μmol/L of  
PDB and HRP to the apical chamber. The effects of  
L-glutamine (0.6 mmol/L) and L-glutamate (0.6 mmol/L) 
were (separately) studied by apical application with simul-
taneous PDB and HRP application. Acivicin experiments 
were conducted by incubating the cells with 10 μL of  the 
following solution: 1.7 mg acivicin, dissolved in 50 μL HCl 
(2.0 mol/L) and 50 μL DES (buffering the medium). Inhi-
bition of  glutamate transporters EAAT 1-5 was achieved 
by pre-incubating the cells with 1 mmol/L trans-PDC. 

Chemicals
Falcon filters were obtained from Micronic (Lelystad, The 
Netherlands), penicillin/streptomycin from Boehringer 
Mannheim (Almere, The Netherlands) and ampicillin 
from Sigma-Aldrich Chemie BV (Zwijndrecht, the Neth-
erlands). All other cell culture materials were obtained 
from Gibco (Breda, the Netherlands). Chemicals used for 
the Ringer’s solution were obtained from Merck (Merck 
Nederland BV, Amsterdam). PDB, L-glutamate, L-gluta-
mine and trans-PDC were obtained from Sigma-Aldrich 
Chemie BV (Zwijndrecht, The Netherlands). 

Statistical analysis
Statistical analyses of  differences between groups were 
performed by one way ANOVA and the Tukey-Kramer 
test. A P-value < 0.05 was considered significant. HRP 
flux results are presented graphically as percentages of  to-
tal flux. Total flux is defined by the HRP + PDB groups, 
which therefore represent the 100% mark. Graphpad 
Prism 3.03 for Windows® (GraphPad Software Inc., Cali-
fornia, USA) was used for analyses and graphical output. 

RESULTS
Hyperpermeability was successfully induced by PDB 
stimulation: apical to basolateral HRP flux increased 
significantly in the HT29Cl.19A and the Caco2.BBE cell 
line (with a maximum after 4 h) compared to controls 
not exposed to PDB (n = 30, P < 0.001). Cells in the 
PDB group defined the 100% mark, and all values were 

composed of  triplicate measurements per group per ex-
periment and were repeated 3-11 times. 

In HT29Cl.19A cells, glutamine application reduced 
hyperpermeability by 45% (n = 11, P < 0.001) (Figure 2A). 
In the Caco2.BBE cell line, glutamine application reduced 
hyperpermeability by 30% (n = 3, P < 0.05) (Figure 2B). 

Glutamate application reduced hyperpermeability by  
25% in the HT29Cl.19A cell line (n = 3, P < 0.01) (Figure 2C)  
and by 25% in the Caco2.BBE cell line (n = 4, P < 0.001) 
(Figure 2D).

Incubation of  HT29CL.19A cells with acivicin and 
subsequent PDB and glutamine addition resulted in high 
permeability levels which were not significantly different 
from the PDB group (n = 11, Figure 2A).

Incubation of  Caco2.BBE cells with trans-PDC and 
subsequent PDB and glutamate addition also resulted in 
high permeability levels, once again not significantly dif-
ferent from the PDB group (n = 4, Figure 2D).

Control experiments revealed that acivicin and trans-
PDC did not alter HRP permeability (results not shown).

DISCUSSION
We found that both glutamine and glutamate can reduce 
an induced form of  hyperpermeability in human colon 
derived cell lines. The effect of  glutamine could be nul-
lified by blocking the extracellular converting enzyme, 
γ-GT, whereas the effect of  glutamate could be nullified 
by blocking the glutamate transporters EAAT 1-5.

These results lead to two suggestions: firstly, the conver-
sion of  glutamine to glutamate is essential for its beneficial 
effect on permeability. Secondly, transport of  glutamate 
into the cell is essential for the beneficial effect of  gluta-
mate on permeability. 

Because the effect of  trans-PDC on the protective ac-
tion of  glutamine was not studied, and similarly, the effect 
of  acivicin on the protective action of  glutamine was not 
studied, further research will be necessary to confirm these 
suggestions. Not all of  the experiments were performed 
with both cell lines due to inherent differences between 
the two cell lineages. The HT29Cl.19A cell line proved 
unstable during later experiments compared to the Caco2.
BBE cell line. Additionally, the Caco2.BBE cell line has 
been shown to possess EAATs[14], making it the favour-
able cell line for trans-PDC related experiments. Moreo-
ver, these inconsistencies might account for the observed 
differences in the reduction of  induced hyperpermeability 
between the cell lines[15]. However, our study design was 
not focussed or powered on cell line comparison. 

Glutamine and glutamate seem to reduce this hyper-
permeability by acting on the paracellular permeability 
(tight junction) as opposed to transcellular permeability 
(endocytosis). PDB, induces a Protein Kinase C (PKC)-
mediated hyperpermeability. This signal transduction 
pathway is also activated by clinically relevant media-
tors, including lipopolysaccharides[16]. PKC is thought to 
regulate tight junction (TJ) permeability via tightening 
and loosening of  the cell’s perijunctional actomyosin ring 
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(PAMR)[17-19]. Furthermore, rinsing the PDB from the cells 
restored permeability levels to control values, indicating 
that the effect of  PDB is not due to cell destruction (results 
not shown). In such, PDB addition creates a paracellular 
hyperpermeability which can be monitored by HRP diffu-
sion from apical to basolateral compartments. 

HRP needs to remain enzymatically active to be meas-
ured. Approximately 97% of  the HRP that reaches the 
basolateral compartment via the transcellular pathway is 
degraded[20,21] and loses its enzyme activity. The detection 
of  enzymatically active HRP in this study therefore veri-
fied that we measured paracellular permeability.

Our results suggest that glutamine needs transamina-
tion to glutamate to exert its effect. In a broader scope, 
it would be interesting to quantify the transamination by 
glutaminase intracellularly. However, since blocking γ-GT 
extracellularly immediately showed a decrease in the ef-
fect of  glutamine, the extracellular conversion seems im-
portant independent of  intracellular mechanisms. 

The protective effect of  glutamine on gut mucosa 
is often thought to result from cell proliferation and at-

tenuation of  apoptosis[22]. Our study indicates that this 
is probably not the sole reason. HRP flux was inhibited 
within the four hour window of  this study. Enterocyte 
proliferation, however, takes more than 4 h, thus cell pro-
liferation can not (completely) explain the observed fa-
vourable effect. To exclude indirect effects of  glutamine 
and glutamate metabolism, the measurement of  metabo-
lites by HPLC could pinpoint such effects. 

Proliferation and maintaining the integrity of  entero-
cytes requires an adequate supply of  glutamine. Hence, plas-
ma levels are normally maintained around 0.6 mmol/L[23,24].  
This physiological concentration was therefore used in the 
present study. For easier comparison the glutamate concen-
tration was also set at 0.6 mmol/L, even though its physi-
ological concentration approaches 24-80 μmol/L[23,24]. 

The 0.6 mmol/L of  glutamine and glutamate were ap-
plied to the apical chamber. In vivo, however, luminal con-
centrations of  glutamine and glutamate commonly exceed 
0.6 mmol/L after protein-rich meals[25]. It is, therefore, 
interesting to see that this concentration can already elicit 
advantageous effects. Future studies comparing differ-
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Figure 2  Effects of glutamine and glutamate on phorbol-12,13-dibutyrate-induced permeability in the two intestinal cell lines. A: In the HT29Cl.19A cell line, 
glutamine addition resulted in a 45% decrease in permeability. Acivicin nullified this effect, n = 6; B: In the Caco2.BBE cell line, glutamine addition resulted in a 30% 
decrease in permeability, n = 3; C: In the HT29Cl.19A cell line, glutamate addition resulted in a 25% decrease in permeability, n = 3; D: In the Caco2.BBE cell line, 
glutamate addition resulted in a 25% decrease in permeability. Trans-PDC nullified this effect, n = 4. aP < 0.05, bP < 0.01, cP < 0.01.
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ent concentrations of  glutamine and glutamate should be 
performed to optimally quantify dosage effects. To allow a 
comparison with catabolic patients, it would also be inter-
esting to detect a minimum dose of  glutamine and glutama-
te which still elicits a protective effect on hyperpermeability.

In summary, we have shown that apical glutamate-
similar to glutamine can decrease an induced paracellular 
hyperpermeability in two human colon derived cell lines. 
Because of  the nature of  the permeability inducing agent, 
PDB, glutamine and glutamate probably exert their effect 
through interaction with tight junctions. Furthermore, the 
extracellular conversion of  glutamine to glutamate and the 
subsequent uptake of  glutamate could be a pivotal step in 
the mechanism underlying the protective effect of  gluta-
mine. Yet, to certify this mechanism, the focus should be 
on different concentrations of  apically applied glutamine 
and glutamate in different cell lines or in co-cultured cell 
lines, in parallel with research on intracellular conversion.
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