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Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder in which oxidative stress is a key
hallmark. It occurs early in disease pathogenesis and can exacerbate its progression. Several
causes of oxidative stress have been determined over the years. First, mitochondria play an
important role in the generation and accumulation of free radicals. In addition to mitochondria,
inflammation can also induce oxidative damage, especially via microglia, and microglia are also
important for Aβ clearance. In AD, both mitochondrial function and inflammatory response are
affected, leading to increased ROS formation and oxidative damage to lipid, proteins and nucleic
acids. Some other sources have also been identified.

From these findings, various neuroprotective strategies against ROS-mediated damages have been
elaborated in AD research. This review recapitulates some of the major strategies used to prevent
oxidative stress and disease progression. Outcomes from in vitro and in vivo studies using models
of AD are encouraging. However, only a few clinical trials have provided positive results in terms
of slowing down cognitive decline.

Nonetheless, there is still hope for improved compounds that would better target pathways
implicated in ROS production. In fact, facilitating the endogenous antioxidant system by
modulating transcription has great promise for AD therapy.
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Introduction
Alzheimer’s disease (AD) is characterized clinically by progressive cognitive decline and
neuropathologically by the presence of amyloid plaques and neurofibrillary tangles. In this
neurodegenerative disease, ageing is the most critical risk factor. In addition, oxidative stress
is another key feature [1]. Numerous studies have reported the presence of elevated DNA
[2,3], RNA [4,5], lipid [6,7] and protein oxidation [8] in brains of subjects with AD and mild
cognitive impairment (MCI) [9], suggesting that oxidative stress is an early event in AD
pathogenesis [10]. Remarkably, these oxidative stress hallmarks were also observed in
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transgenic mouse models of AD, in which markers of lipid and protein oxidation are
increased, which may precede amyloid deposition [11]. As in human disease, oxidative
stress occurs at early stages, prior to the appearance of amyloid plaques [12,13] and
neurofibrillary tangles [11].

Generation and accumulation of reactive oxygen species (ROS) and reactive nitrogen
species (RNS) are detrimental to cells in vitro and in vivo [14], and promote cell death [15].
Therefore, it has been crucial to investigate potential causes of oxidative stress in AD
research [16]. There is a large body of evidence demonstrating involvement of mitochondria
[17,18], redox-active metals [19,20], inflammation via activated microglia [21,22], and other
ROS-mediated pathways (figure 1). These important findings have led to the development of
therapeutic strategies to counteract and prevent oxidative damage [23]. Here, we will review
some of the major neuroprotective strategies involving ROS in AD, focusing on strategies
targeting mitochondria and other potent antioxidant-related pathways.

Neuroprotective strategies targeting mitochondria
Mitochondria are major sources of ROS in the central nervous system (figure 2). They
contain redox carriers that can transfer single electrons to oxygen, thus generating the ROS
superoxide (O2

−). Enzymes of the tricarboxylic acid cycle (TCA), of the electron transport
chain (complex I, II and III) (figure 2A), and monoamine oxidases are among the
mitochondrial redox carriers generating superoxide (figure 2B). Mitochondria also contain
other enzymes able to detoxify ROS. Indeed, superoxide is depleted following a dismutation
reaction by superoxide dismutase (SOD) and transformed into hydrogen peroxide (H2O2)
(figure 2C). SOD enzymes work in conjunction with catalases and glutathione peroxidases
to remove H2O2 within mitochondria. In addition, in the cell, O2

− and H2O2 can react with
other molecules such as redox-active metals (Fenton’s reaction involving iron) and nitric
oxide, leading to the formation of hydroxyl radicals and peroxynitrites respectively (figure
2C). In normal conditions, these chemical events require an accurate balance between ROS
production and removal. With ageing and/or AD, this balance is markedly disrupted leading
to ROS accumulation and oxidative damage.

Increased numbers of mutations of mitochondrial DNA have been found in AD [24], as have
increased concentrations of 8-hydroxy-2-deoxyguanosine, a marker of oxidative damage to
DNA [25]. These deletions or point mutations, which may result from oxidative stress, can
cause mitochondrial dysfunction and trigger apoptotic cell death [26]. In addition to DNA
damage, several mitochondrial key enzymes involved in ROS detoxification are also
affected. In human AD brains, levels of the alpha-ketoglutarate dehydrogenase complex
(KGDHC) [27,28], pyruvate dehydrogenase complex (PDHC) [29], and cytochrome oxidase
(COX) [30,31] are markedly reduced. Studies on animal models of AD have also implicated
mitochondria in disease pathogenesis.

Our group demonstrated that partial genetic deletion of dihydrolipoyl succinyltransferase
(one of the KGDHC subunits) increased amyloid pathology, oxidative stress and enhanced
memory deficit in transgenic AD female mice [32]. Deficiency of manganese superoxide
dismutase (MnSOD) also increased amyloid deposition [33], tau phosphorylation [34] and
behavioral deficits [35]. Conversely, overexpression of MnSOD reduced amyloid
deposition, oxidative stress, and synaptic and memory deficits in two different transgenic
mouse models of AD [36,37]. It also improved cerebral blood flow and axonal transport in
transgenic AD mice [38]. These results indicate that detoxification enzymes localized within
mitochondria are essential to prevent free radical accumulation and oxidative stress in AD.
Neuroprotection in transgenic AD mice was also reported after genetic deletion of
cyclophilin D, a component of the mitochondrial permeability transition pore [39–41].
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Fission and fusion of mitochondria are also impaired in AD [42]. Importantly, it has been
shown that mitochondrial dysfunction is preferentially located in affected AD brain regions,
suggesting that Aβ and mitochondria are linked [43]. As potential mechanisms, recent work
showed that both β-amyloid and tau mutations result in mitochondrial dysfunctions, and that
there are synergistic effects on mitochondrial dysfunction mediated by the two proteins
together [44,45]. Also, oxidative stress can increase β-secretase expression and tau
phosphorylation, through c-Jun amino-terminal kinase/p38 mitogen-activated protein kinase
[46] and glycogen synthase kinase 3 [47] respectively. Therefore, several groups have
focused their efforts on developing neuroprotective strategies targeting mitochondria.

Some of the major mitochondrial targets used as therapeutics against ROS-mediated damage
were members of the quinone family. First, co-enzyme Q10 (CoQ10), also called
ubiquinone (figure 3A; table 1), has demonstrated antioxidant and neuroprotective properties
both in vitro and in vivo [48], therefore holding great promise in the treatment of
neurodegenerative disorders [49]. CoQ10 is localized within mitochondria. It is part of the
electron transport chain and acts as electron carrier from complex I and complex II during
oxidative phosphorylation and transfers electrons to complex III (figure 2A). Interestingly,
administration of CoQ10 in transgenic AD mice reduced amyloid plaque pathology [50, 51].
Unfortunately, CoQ10 has not yet been tested in AD patients. However, another quinone
(synthetic analog of CoQ10), idebenone (figure 3B; table 1), has been investigated in
clinical trials, for its ability to inhibit lipid peroxidation [52]. Although several smaller
studies reported beneficial effects on memory and attention after several months of
treatment [53–55], a larger study reported no effect in slowing disease progression [56]. A
possible limitation to CoQ10 efficacy is that maintaining the coenzyme Q in its reduced
antioxidant form (termed ubiquinol) requires an intact electron transport chain, which is
impaired in AD.

Another ubiquinone derivative, mitoquinone mesylate or mitoQ (figure 3C; table 1), has
been used to prevent oxidative damage in AD [57]. MitoQ consists of CoQ10 linked to a
triphenylphosphonium ion which has a positive charge. Therefore, it accumulates in
mitochondria which have a strongly negative membrane potential (about −120mV). More
precisely, mitoQ is adsorbed in the inner mitochondrial membrane facing the matrix. This
ROS-enriched region provides a real potency to MitoQ. In addition, MitoQ can function
independently of the electron transport chain. In non-neuronal cell cultures and isolated
mitochondria, it reduced oxidative stress and cell death [58]. In order to test for its tolerance
and potential side effects, wild-type mice were treated with mitoQ for 7 months. Data
showed that it was well tolerated and without any adverse effect; in particular, mitoQ was
not pro-oxidant [59]. Like CoQ10, mitoQ has not yet been tested in human clinical trials for
AD. A clinical trial of mitoQ conducted in patients with Parkinson’s disease (PD) did not
show any improvement [60].

Other mitochondrial antioxidants have been selected to determine their potential
neuroprotective effects. Latrepirdine or Dimebon (figure 3D; table 1), first used as a
nonselective antihistamine, showed promise in vitro for preventing ROS-mediated damage
in neurodegenerative diseases [61, 62]. Latrepirdine has several mechanisms of action. First,
it can act on a number of neurotransmitter receptors, such as serotoninergic, α-adrenergic
[63] and glutamatergic receptors (NMDA and AMPA) [64]. Latrepirdine also blocked Aβ-
induced toxicity and L-type calcium channel in cultured neurons [65]. In neuroblasma cells,
administration of dimebon enhanced mitochondrial function under normal conditions by
increasing succinate dehydrogenase activity, mitochondrial membrane potential, and ATP
levels, which may exert indirect effects on ROS generation through mitochondria. It also
protected against cell death under stress conditions [66]. Given acutely, dimebon increased
Aβ secretion in neuroblastoma N2a cells and levels of Aβ40 in the interstitial fluid of
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transgenic AD mice [67]. Several clinical trials have been conducted in AD patients. In a
phase 2 trial, Dimebon was well tolerated and improved cognition, activities of daily living,
behavior, and overall function in MCI and AD patients compared to placebo [68]. However,
more recently, the phase 3 CONNECTION trial in AD patients revealed no benefit in any
parameter [69, 70].

Acetyl-L-carnitine (ALCAR) (figure 3E; table 1) [71, 72] and R-alpha lipoic acid (LA)
(figure 3F; table 1) [73] are also candidates as mitochondrial antioxidants. During exercise
and in order to facilitate fatty acid utilization, L-carnitine and acetyl-CoA are converted into
ALCAR within mitochondria by carnitine-O-acetyltransferase. Once transported outside
mitochondria, the conversion is reversed. LA is an organosulfur compound derived from
octanoic acid. LA is primarily a cofactor in aerobic metabolism for PDHC. In cells, LA is
reduced to dihydrolipoic acid, its bioactive form providing its full antioxidant properties
[74]. In combination with LA, ALCAR decreased ROS-mediated damage, mitochondrial
dysfunction due to aging in rats, and improved cognitive and motor functions [75, 76].
Interestingly, in cell models of AD, administration of ALCAR increased alpha-secretase
activity and physiological amyloid precursor protein (APP) metabolism, which can enhance
the release of non-amyloidogenic fragments of APP [77]. Indeed, ALCAR increased levels
of sAPPα and CTF-83, and decreased levels of CTF-99 APP fragments [77]. In addition,
ALCAR and LA combined treatment reduced oxidative damage and improved cognitive
behavior in normal mice maintained on vitamin-free, iron-enriched, oxidative-challenge diet
[78]. The combination also improved mitochondrial structure and memory deficits in apoE4
mice [79]. As an additional possible mechanism of neuroprotection, both ALCAR [80] and
LA [81] can restore levels of mitochondrial antioxidant enzymes, and increase nuclear
translocation of the nuclear factor erythroid-related factor 2 (Nrf2) that can upregulate
transcription of antioxidant genes. In a clinical trial done for one year, AD patients receiving
ALCAR (without LA) had slower deterioration of cognition compared to placebo [82]. Thal
and colleagues in 1996 found that ALCAR was effective only in early onset of AD
compared to placebo [83]. In another study done by the same group, ALCAR did not show
any benefits in early onset AD patients [84]. However, more recently, a meta-analysis of
ALCAR treatment trials in AD patients slowed clinical scales and psychometric tests of
MCI and AD patients [85], giving hope for the use of this drug.

Vitamin E (α-tocopherol) has also been used as an antioxidant in AD therapy (figure 3G;
table 1). It is a lipid-soluble antioxidant that protects cell membranes from oxidation [86].
Indeed, by reacting with lipid radicals generated from lipid peroxidation, vitamin E inhibits
formation of free radical intermediates, thus prevent complete oxidation. Its administration
reduced lipid peroxidation in both young and aged transgenic AD mice, but reduced amyloid
deposition only when the drug was administered at early ages [87]. Vitamin E slowed down
the disease progression in AD patients as measured by an increase in the clinical dementia
rating scale or time to institutionalization [88]. In a subsequent trial however, administration
of vitamin E to patients with MCI did not prevent the patients from developing AD [89].
The ability of vitamin E to modify the course of AD is therefore controversial, but the
results in MCI were disappointing.

Pramipexole (figure 3H; table 1), a dopaminergic agonist, in vitro reduced Aβ-induced
caspase activation leading to cell death [90]. Independently of the dopamine, its effects also
include reduction of ROS generation from mitochondria, and it has been shown to localize
to mitochondria where it may exert its antioxidant effects [91]. By preventing
mitochondrial-related cell death, pramipexole can maintain the mitochondrial membrane
potential and therefore sustain mitochondrial function. In vivo, this drug was
neuroprotective in models of PD by improving motor performances, reducing induced
microglial activation and proteasomal inhibition, and by enhancing brain-derived
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neurotrophic factors and autophagy [92], giving hope for future trials in AD and other
neurodegenerative diseases [93]. This drug was also protective in animal models of ALS and
it was well tolerated in a phase 2 trial. A phase 3 trial in ALS patients was recently
announced as a collaboration between Knopp Pharmaceuticals and Biogen.

We have also tried the effects of the Szeto-Schiller peptides (SS-31) which selectively
localize to the inner mitochondrial membrane and produce antioxidant effects within
mitochondria. Indeed, in vitro these peptides were able to scavenge H2O2, inhibit oxidation
of linoleic acid and low-density lipoprotein (LDL), and diminish mitochondrial swelling
[94]. As a mechanism of action, SS31 can target the CD36 pathway where it alters ligand
levels, and ligand-receptor interactions. In ischemia-reperfusion, SS31 reduced CD36
expression, and ligand levels by inhibiting LDL peroxidation [95]. These small peptides are
neuroprotective against MPTP [96] and in a transgenic mouse model of ALS [97]. SS-31
also protected against amyloid toxicity in vitro and in vivo by increasing neurite outgrowth,
rescuing mitochondrial structure and function and decreasing cyclophilin D expression [98].

Antioxidant neuroprotective strategies targeting mitochondria have produced positive
outcomes in vitro and in vivo. Most of the interventions produce clear antioxidant and
protective effects. Unfortunately, although a few initial trials in MCI and AD patients
suggested slowing of disease progression, such results have generally not been confirmed.
Therefore, there is a crucial need for improved compounds with increased absorption and
solubility, and ability to cross the blood brain barrier and reach mitochondria.

Neuroprotective strategies targeting other ROS-mediated pathways
As mentioned in the introduction, other sources of oxidative stress and free radicals have
been identified and have served to elaborate new therapeutic strategies against ROS-
mediated damage in AD. In this section, we will review some of the promising antioxidant
agents and pathways implicated in ROS production.

In addition to mitochondria, Aβ itself can generate free radicals in the presence of metal ions
[99], and methionine 35 is critical for these reactions [100,101]. Free radicals are generated
early in the Aβ aggregation process, when oligomers and protofibrils are formed [102]. One
strategy to reduce Aβ-induced free radical generation and metal catalyzed Aβ aggregation
would be to chelate the copper and zinc which bind to Aβ, increasing its aggregation.
Clioquinol (figure 3I;table 1), a member of the hydroxyquinoline family used as antifungal
and antiprotozoal drug, has been considered a potent chelator of copper, zinc and iron. Trials
of clioquinol and second generation metal binding compound PBT2 showed improvement in
both transgenic AD mice [103], as well as AD patients [104,105], possibly by inhibiting
metal-induced free radical production and by disaggregating metal-induced Aβ assemblies.
Interestingly, PBT2 also increased activities of the matrix metalloproteases such as
neprilysin, insulin degrading enzyme and tissue plasminogen activator, which lead to
increased Aβ clearance [106].

Several natural compounds with potent antioxidant properties, such as spices, green tea,
resveratrol, and vitamins, have been evaluated as therapeutic agents for AD [107].
Curcumin, a polyphenol (figure 3J;table 1), can acts as a free radical scavenger and
antioxidant which inhibits lipid peroxidation and oxidative DNA damage [108]. It increases
the expression of glutathione S-transferase and inhibits cytochrome P450. Curcumin has
been used extensively over the years both in vitro and in vivo in transgenic mouse models of
AD [109]. In the triple transgenic AD mouse model overexpressing mutant P301L tau, APP
and presenilin 1 mutations, curcumin treated mice fed a high fat diet showed improved
behavior and reduced tau phosphorylation [109]. In other transgenic mouse models of AD,
low and high doses of curcumin reduced levels of oxidized proteins, insoluble and soluble
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Aβ, amyloid plaques and astrocytosis [110], and restored dystrophic neurites [111].
Curcumin was also able to reduce Aβ aggregation in vitro and in vivo [112]. Interestingly,
its effects on amyloid clearance may be due to its ability to bind Aβ and increase Aβ uptake
from macrophages [113]. More recently, it was reported that curcumin administration
decreased motor dysfunction, neuronal loss and lipid peroxidation present in the spinal cord
of old transgenic AD mice [114]. Curcumin was also tested clinically in AD patients during
a pilot trial of 6 months comparing 2 formulations, powder and capsule. No differences were
found in the curcumin treated group while assessing cognition, levels of isoprostanes and
Aβ. However, it should be noted that no cognitive decline was observed in the patients
receiving the placebo, which may have biased the results [115]. Furthemore, absorption of
curcumin is very poor and better formulations are being developed.

Inflammation plays a key role in AD [116,117] and in MCI [118]. First, inflammation is
involved in Aβ clearance in the brain, in which microglia participate actively by
internalizing and degrading soluble [119] and aggregated forms of Aβ [120]. In the triple
transgenic AD mice, deficiency in the microglial chemokine receptor Cx3cr1 prevented
neuronal loss [121]. In old transgenic AD mice, microglial function is impaired, as shown by
the decrease of Aβ-binding scavenger receptors (scavenger receptor A, CD36, and RAGE),
and Aβ-degrading enzymes (insulysin, neprilysin, and MMP9) [122]. In the same animals,
microglial levels of proinflammatory cytokines interleukin-1β and tumor necrosis factor
alpha were markedly increased [122]. Inflammation is also responsible for the expression of
cytokines, increasing cellular toxicity and exacerbating AD progression [123]. Therefore,
several groups have tested the effects of anti-inflammatory drugs [124,125]. In relation to
oxidative stress, microglia have been identified as an important source of ROS. Indeed,
activated microglial cells are able to generate free radicals, specifically superoxide via the
NADPH oxidase (NOX) enzyme [126], including in AD [127]. NOX is a transmembrane
protein that is activated by the presence of cytosolic elements at the plasma membrane, such
as rac, p67phox, or p47phox proteins (figure 4). The NOX assembly can then generate
superoxide by reducing O2 via electron transfer. Previous reports showed that the NOX
system may be altered in AD, as shown by increased levels of p47phox and p67phox in the
membrane fraction of AD brains, suggesting activation of NOX. In MCI brains, NOX
activity was markedly increased in comparison with control patients [128]. Consistent with
these data, Park and colleagues found that deficiency of NOX2 in transgenic AD mice
reduced oxidative stress and improved cerebrovascular function and memory deficits
without affecting Aβ levels or amyloid plaques [129]. In addition, in transgenic AD mice
treated with ibuprofen, there was a reduction of amyloid plaque burden, microglial
activation, and markers of oxidative stress [130]. Importantly, fibrillar Aβ increased ROS
generation in microglial cells and stimulated the translocation of Rac (another cytosolic
element of the NOX assembly) from the cytosol to the membrane, suggesting that Aβ can
affect NOX2-mediated pathways [131]. Conversely, in microglial cells, ibuprofen
pretreatment reduced ROS production induced by fibrillar Aβ administration. Indeed, non-
steroidal anti-inflammatory drugs such as Ibuprofen (figure 3K;table 1) have been used in
the treatment of AD for their ability to inhibit cyclooxygenase 2 (COX2). COX2 converts
arachidonic acid to prostaglandin H2, which in turn is converted to prostaglandins and then
to thromboxane A2. Ibuprofen was also able to disrupt NOX2-mediated signaling, as
evidenced by the inhibition of Rac translocation to the membrane [130]. During clinical
trials in AD patients, neither ibuprofen [132], tarenflurbil (figure 3L;table 1) [133], naproxen
(figure 3M;table 1) nor celecoxib (figure 3N;table 1) [134] slowed disease progression or
cognitive decline.

Several pharmacological NOX inhibitors are currently available [135]; however, none of
them have been tested either in vitro, in vivo or in clinical trials in AD research. In a mouse
model of amyotrophic lateral sclerosis, apocynin (figure 3O;table 1), a NOX inhibitor [136],

Dumont and Beal Page 6

Free Radic Biol Med. Author manuscript; available in PMC 2012 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



markedly increased survival, reduced ROS production and delayed symptoms induced by
the superoxide dismutase 1 mutation [137]. Apocynin, or acetovanillone, blocks NOX
assembly and therefore inhibits NOX-mediated superoxide formation. These findings
suggest that NOX inhibitors may have potent therapeutic effects in neurodegenerative
diseases.

Many groups have studied the implication of COX2 [124] and inducible nitric oxide
synthase (iNOS), both involved in inflammation, in the treatment of AD. First, COX2
expression is increased in the frontal cortex of AD patients compared to control patients
[138]. The same group also reported that overexpression of COX2 enhanced Aβ pathology
in transgenic AD mice [139] and Aβ generation in cells, possibly through activation of the
gamma secretase activity [140]. Therefore, inhibitors of COX2 have been considered, such
as non-steroidal anti-inflammatory drugs (see paragraph above). In vitro, presenilin 2
mutations induced cell death was reduced by COX2 inhibition [141]. iNOS is another target
used in the treatment of AD. Its expression was also increased in neuronal and glial cells of
human AD brains, especially in the cortex [142,143] and the hippocampus [144]. In
neuronal and glial cells, iNOS produces nitric oxide (NO) by catalysing a five-electron
oxidation of the guanidino nitrogen of L-arginine. In turn, nitric oxide can react with
superoxide to generate peroxynitrite. In transgenic AD mice, elevation of iNOS and nitric
oxide (NO) expression [145] was also associated with an increase of nitrosative stress at the
vicinity of amyloid deposits [146,147]. To prevent nitrosative damage, several groups have
been testing the effect of iNOS inhibition in vitro and in vivo [148]. Deficiency of iNOS by
genetic deletion reduced mortality and, at late stage, reduced amyloid plaque burden,
microgliosis, astrocytosis, nitrotyrosine levels, and peri-plaque tau phosphorylation in APP/
PS1 transgenic mice [149]. Other groups however have found that iNOS inhibition may
enhance AD pathology [150,151]. Nevertheless, it is clear that it plays an important role in
AD. The pharmacological inhibitor of iNOS, N6-(1-iminoethyl)-L-lysine (L-NIL) (figure
3P;table 1), acts as an analog of L-arginine. It produces a time-dependent inactivation of
citrulline- and NO-forming activity of iNOS in the presence of NADPH and oxygen
[152,153]. Moreover, the inactivation of iNOS is irreversible by displacement of the heme
prosthetic group [154,155]. Interestingly, L-NIL improved behavior and decreased cortical
amyloid deposition, as well as microglial activation in transgenic AD mice [156].

Another strategy used to prevent ROS-mediated damage is the upregulation of
transcriptional factors involved in the antioxidant response. The peroxisome proliferator-
activated receptor-γ coactivator 1 alpha (PGC-1α) is an important transcription cofactor
involved in energy metabolism [157,158]. Interestingly, PGC-1α activation is dependent on
various insults including the generation of reactive oxygen species. Its expression is reduced
in human post-mortem AD brain, and this correlates with the pre-mortem dementia scales
(CDR) and numbers of neurofibrillary tangles [159]. The nuclear receptor peroxisome
proliferator-activated receptor-γ (PPAR-γ) activates PGC-1α which then interacts with
multiple other transcription factors to modulate mitochondrial biogenesis. It has been shown
that PPAR-γ may influence gene transcription of BACE1 [160]. Administration of
bezafibrate (figure 3Q;table 1), a PPAR pan agonist, reduced behavioral deficit and
inflammation in two mouse models of PD, using MPTP and 6-hydroxydopamine [161]. It
also prevented the bioenergetic deficit and improved mitochondrial myopathy in mice
produced by a deficiency of the nuclear encoded COX10 subunit of cytochrome c oxidase
[162]. Pioglitazone (figure 3R;table 1) and rosiglitazone (figure 3S;table 1), two
thiazolidinediones (TZDs) that selectively activate PPAR-γ, have been used for the
treatment of AD. TZDs modulate the transcription of insulin-sensitive genes involved in
glucose and lipid metabolism, especially in muscle, adipose tissue, and liver. These
compounds can also bind to the outer mitochondrial membrane protein mitoNEET
[163,164]. In transgenic AD mice, administration of pioglitazone improved cerebrovascular
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functions and decreased oxidative stress [165], whereas administration of rosiglitazone
reduced memory deficit [166]. The latter was also tested in a pilot study on AD patients and
its administration had beneficial effects on tests of delayed recall [167]. This finding was not
confirmed in a larger trial using 3 different doses of rosiglitazone. It should be noted that
apolipoprotein E ε4 noncarrier patients did improve on the highest dose of rosiglitazone
[168]. Polyphenols have also been used for their antioxidant properties and their ability to
modulate Aβ and tau pathology in transgenic AD mice [169,170]. Adminitration of
polyphenol (grape seed extract) (figure 3T;table 1) also improved cognitive behavior and
reduced Aβ oligomerization [171,172].

The nuclear factor erythroid-related factor 2/antioxidant response element (Nrf2/ARE)
pathway has become another promising target in the field of neurodegenerative diseases,
including AD therapeutics [173]. Nrf2 is a transcription factor encoded by the NFE2L2 gene
in humans [174] and a regulator of the antioxidant response [175,176]. Its activity is
regulated in part by the actin-associated protein Keap1, which binds to Nrf2 and sequesters
it in the cytoplasm. Under oxidative stress conditions, the binding of Nrf2 with Keap1 is
disrupted and Nrf2 is released. This release then allows the translocation of Nrf2 from the
cytoplasm into the nucleus. While in the nucleus, Nrf2 can bind to promoters with AREs,
stimulating the expression of genes that coordinate a cytoprotective response, known as a
phase 2 response, such as genes encoding for mitochondrial antioxidant enzymes, and heat
shock proteins [177]. It also down-regulates inflammatory genes, such as iNOS and COX2.
In transgenic AD mice, decreased expression of Nrf2 and Nrf2/ARE regulated genes
correlated with increased amyloid deposition in the brain [178]. In this context, the use of
Nrf2/ARE activators may represent a promising avenue in the treatment of AD.

In vitro, in hippocampal cells, activation of the Nrf2/ARE pathway via both tert-
butylhydroquinone (tBHQ) and overexpression of Nrf2, through adenovirus-mediated gene
delivery, was protective by reducing Aβ42 mediated cell death. These beneficial effects were
also associated with increased expression of Nr2/ARE related genes [178]. In vivo,
overexpression of Nrf2 through adenovirus-mediated gene delivery (injections performed in
the hippocampus) improved memory deficits and decreased soluble Aβ levels as well as
astrogliosis. Overexpression of Nrf2 also elevated the expression of Nrf2/ARE genes, such
as heme oxygenase 1 [179]. Another class of Nrf2/ARE activators, the synthetic triterpenoid
derivatives of 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO) (figure 3U;table 1),
has shown benefits in mouse models of neurodegeneration, including AD. These compounds
can enhance Nrf2/ARE activation, particularly by disrupting Nrf2-Keap1 binding [180,181].
Administration of CDDO-methylamide to transgenic AD mice improved memory retention,
and reduced protein oxidation, microgliosis, amyloid burden and Aβ42 levels [182]. Similar
improvements in behavior and reduced oxidative damage were also found in mouse models
of Huntington’s disease [183] and of Parkinson’s disease [184], providing hope for future
clinical trials. There is extensive preclinical data showing efficacy of antioxidants in both in
vitro and in vivo models of AD. Agents stimulating the Nrf2/ARE pathway in human
patients have only recently been tested. However, dimethylfumarate (figure 3V;table 1) has
shown efficacy in a phase 2 clinical trial in multiple sclerosis [185].

Again, the use of neuroprotective strategies targeting antioxidant-related pathways has
brought positive outcomes in vitro and in vivo. However, their effects in human disease
have not been extensively studied. Clinical trials using AD and MCI patients may be of
great promise.
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Concluding remarks
Oxidative stress plays an important role in AD pathogenesis. Generation and accumulation
of ROS within cells are detrimental and can exacerbate the disease progression. Therefore,
several strategies have been studied to prevent and/or slow down ROS-mediated damages
(figure 5). It should be noted that, independently of the strategy, important factors must be
considered in the use of antioxidant drugs, such as their bioavailability (absorption,
transport, distribution and retention in the targeted area) and reaction kinetics. They must
neutralize free radical faster than the radicals can damage their targets. Timing of the
treatment is also extremely critical. For most of the drugs discussed above, beneficial effects
have been reported in cell culture and partially in animal models. However, success in
human clinical trials is much less frequent. One can argue that treatments are started very
early in pathogenesis in animals, whereas in humans pathogenesis may already be well
advanced by the time diagnosis is made.

In human clinical trials, some studies found slowing of disease progression, whereas others
did not find any differences between the same drug and placebo. In fact, understanding and
assessing antioxidant capacity in vivo is a challenging task and requires further
investigations [186]. The antioxidant system forms a complex network, and treating with
only a single or even a few may not be sufficient, or may even imbalance the network in a
deleterious way. For this reason, upregulation of a coordinated endogenous network may be
more successful. Even though discrepancies exist in data from clinical trials, several ROS-
mediated neuroprotective strategies continue to provide hope for neuroprotective treatment
of AD. For example, the transcriptional facilitation of the endogenous antioxidant system
holds great promise.
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Figure 1. Scheme of the generation and role of free radicals in AD
In cells, free radicals can be generated by 2 major sources: mitochondria and NAPDH
oxidase. Several key players, such as metals and/or Aβ can exacerbate their production.
Once accumulating inside the cells, free radicals can cause lipid, protein, DNA and RNA
damage that can exacerbate AD pathogenesis.
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Figure 2. Mitochondria and ROS
(A) Scheme of the mitochondrial electron transport chain. Electrons are transferred from
complex I (C-I) to complex IV (C-IV), including coenzyme Q10 (Q) and cytochrome c (Cyt
c). (B) Scheme of mitochondria-mediated ROS from the complex I (C-I), complex II (C-II),
and III (C-III) and from the tricarboxylic acid cycle (TCA). (C) Chemical reactions for the
generation of reactive oxygen species (ROS) such as superoxide (O2

−), hydrogen peroxide
(H2O2), reactive nitrogen species (RNS) such as peroxynitrite, and the chemistry of the
Fenton reaction, which generates OH− radicals.
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Figure 3. Chemical structures of antioxidants
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Figure 4. NADPH oxidase and production of ROS
The assembly of NADPH oxidase subunits (gp91phox/p22phox) with cytolosic subunits
p47phox, p40phox, p67phox and rac results in the active enzyme responsible for the generation
of superoxide.
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Figure 5. Antioxidant strategies in AD
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