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Abstract Adoptive transfer of autologous tumor-reactive
T cells holds promise as a cancer immunotherapy. In this
approach, T cells are harvested from a tumor-bearing host,
expanded in vitro and infused back to the same host. Condi-
tioning of the recipient host with a lymphodepletion regi-
men of chemotherapy or radiotherapy before adoptive T
cell transfer has been shown to substantially improve sur-
vival and anti-tumor responses of the transferred cells.
These eVects are further enhanced when the adoptive T cell
transfer is followed by vaccination with tumor antigens in
combination with a potent immune adjuvant. Although sig-
niWcant progress has been made toward an understanding of
the reasons underlying the beneWcial eVects of lymphode-
pletion to T cell adoptive therapy, the precise mechanisms
remain poorly understood. Recent studies, including ours,
would indicate a more central role for antigen presenting
cells, in particular dendritic cells. Unraveling the exact role
of these important cells in mediation of the beneWcial
eVects of lymphodepletion could provide novel pathways
toward the rational design of more eVective anti-cancer
immunotherapy. This article focuses on how the frequency,
phenotype, and functions of dendritic cells are altered dur-
ing the lymphopenic and recovery phases post-induction of

lymphodepletion, and how they aVect the anti-tumor
responses of adoptively transferred T cells.
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Introduction

The success of anti-tumor immunity depends on generation of
eVector T cells that can diVerentiate into functional long-lived
memory cells [62, 86, 102]. The current inability to fully elu-
cidate the critical factors involved in the generation of eVec-
tive T cell responses has hindered the successful development
of eVective cancer vaccine therapy. DeWning approaches that
can accentuate anti-tumor T cell responses would help devel-
oping potential immunotherapeutic protocols in the clinical
setting. Due to the limited numbers and prevalent dysfunction
of the tumor-reactive T cells found in a tumor-bearing host,
studies have been focusing on how to correct the functions of
these cells while eVectively increasing their numbers. Adop-
tive T cell transfer is a potential approach in which several
intrinsic factors aVecting T cells harvested from tumor bear-
ing host can be improved in vitro [34]. Extrinsic factors
induced by preconditioning of the recipient host with cytore-
ductive regimens, such as chemotherapy (e.g. cyclophospha-
mide; CTX) or sublethal total body irradiation (TBI) can also
signiWcantly improve the anti-tumor eYcacy of adoptive T
cell therapy in particular when the latter is followed by active
vaccination [5, 42, 51, 115, 118, 139]. In the following
sections, we will discuss how the application of these cytore-
ductive regimens mediate the beneWcial eVects of the adoptive
T cell therapy by focusing on the potential roles of dendritic
cells (DCs) in the vaccination setting.
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Adoptive T cell transfer system in cancer setting

Adoptive transfer of autologous tumor-reactive T cells in
the clinical stetting consists of harvesting T cells from the
patient’s own peripheral blood, draining lymph nodes, or
tumor bed (tumor inWltrating lymphocytes, TIL) followed
by their expansion in vitro using polyclonal stimulation
with anti-CD3 and anti-CD28 mAbs in the presence of IL-2
as a growth factor. The cells are then infused back to the
same patient blood with administration of IL-2 to improve
cell engraftment and survival [62]. Most of the earlier clini-
cal studies of adoptive T cell therapy are based on the use
of T cells expanded in vitro for several cycles before their
adoptive transfer [26, 73, 77, 109, 111]. Although the use
of these cells for adoptive transfer can mediate melanoma
regression with an objective response rate of about 34%,
the response rates in these studies were not better than treat-
ment with cytokines or cancer vaccines [110]. Interestingly,
recent studies clearly demonstrated that adoptively trans-
ferred T cells that had expanded in vitro for several cycles
of expansion are considered terminally diVerentiated
(exhausted), expressing the phenotype of eVector memory
T cells (TEM; CD62LlowCCR7lowCD127RlowCD44high).
Although these TEM cells can express rapid eVector func-
tions in vitro, they show poor survival, traYcking, and per-
sistence in vivo [62, 86, 102]. The limited in vivo anti-
tumor responses of terminally diVerentiated TEM cells were
attributed to their acquisition of the phenotype of senescent
cells and the loss of lymph node homing receptors, in par-
ticular CD62L and CCR7. These exhausted phenotypes
limit their responses to vaccination with tumor antigens and
accordingly their anti-tumor eYcacy [62]. By contrast, anti-
gen stimulation of T cells in vitro for a short period can
generate early eVector cells with central memory phenotype
(TCM; CD62LlowCCR7lowCD127RlowCD44high) with better
survival, persistence, and anti-tumor eYcacy than their TEM

counterparts upon their adoptive transfer into a lymphode-
pleted host [26, 73, 77, 109, 111]. The advantage of genera-
tion of TCM cells over TEM cells in vitro has been attributed
to the higher expression levels of CD62L homing molecule
in the early eVector cells with TCM phenotype than in the
late eVector cells with TEM phenotype [61, 62]. This hom-
ing receptor facilitates T cells to traYc to lymph nodes and
their crosstalk with antigen presenting cells [57, 108],
resulting in the diVerentiation of T cells into eVector cyto-
lytic cells capable of combating cancer. Importantly, the
type of cytokine added to T cells during their antigen stimu-
lation in vitro can shape their TCM versus TEM phenotypes.
For instance, IL-12 [24] and IL-15 favor T cells, which sus-
tain the expression of CD62L and diVerentiate into a TCM

phenotype, while IL-2 favors diVerentiation of cells into a
TEM phenotype [61]. It would seem that these cytokines,
besides their ability to modulate the magnitude of CD62L

expression, can induce distinct intrinsic mechanisms in T
cells that aVect the antigen-speciWc responses in vivo.
These intrinsic mechanisms of T cells have been reviewed
before [34, 62, 63, 83, 95, 112, 120, 135] and are beyond
the scope of this article.

Improving adoptive T cell therapy 
with lymphodepletion

Accumulating evidence now supports that induction of
immune lymphodepletion in the recipient host by treatment
with sublethal TBI or anti-cancer chemotherapeutic drugs,
such as CTX and doxorubicin before adoptive transfer of in
vitro-activated T cells can markedly improve the survival,
persistence, and anti-tumor eYcacy of the transferred T
cells [33, 34]. These studies reported a long-term engraft-
ment of the infused T cells, which comprised a larger frac-
tion of the patient repertoire. Although recent studies have
explored some of the cellular and molecular mechanisms
underlying the beneWcial eVects of lymphodepletion regi-
men to the homeostatic- and antigen-driven responses of
the adoptively transferred T cells, the precise mechanisms
behind these eVects are poorly understood [105]. What has
been deWned includes the following.

• Enhanced engraftment and survival of the transferred T
cells by creation of a space “niche” [63].

• A rapid induction of homeostatic cytokines [17, 115,
119, 134].

• Elimination of regulatory CD4+CD25+ T (Treg), NKT
cells, and myeloid-derived suppressor cells [6, 9, 46, 53,
95].

• Depletion of endogenous cells that compete with the
transferred T cells for cytokines “cytokine sink” [17, 33,
63].

Recent studies would suggest, however, that these mecha-
nisms might not be the principal means by which lymph-
odepletion regimens augment adoptive immunotherapy, in
particular in the presence of active vaccination [74, 80, 101,
118, 134]. Moreover, these mechanisms have been investi-
gated during the lymphopenic phase, and few studies
addressed the role of the cellular components that might be
altered at the recovery phase, in which the host recovers
from the induced lymphopenia; days 5–18. It could be pos-
tulated that some mechanisms related to the recognition of
tumor antigen by the host cells, in particular dendritic cells
(DCs), might play a critical role. Indeed, recent preclinical
studies including ours have pointed to the active roles of
DCs in mediation of the beneWcial eVects of lymphodeple-
tion to adoptive T cell therapy [96, 115]. In the following
sections, we will discuss how the numbers and activation
phenotype of DCs are altered during the lymphopenic and
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recovery phases after induction of lymphodepletion and
how this alteration aVects responses of adoptively trans-
ferred T cells.

Alteration in the frequency and phenotype of DCs after 
lymphodepletion

Rapid activation of DCs during the lymphopenic phase

DCs are the most potent professional antigen presenting
cells and as such have been a promising target for the
development of new cancer treatments [106]. The presence
of physiological numbers of DCs is considered a crucial
factor for both homeostatic and antigen-driven expansion
of the peripheral pool size of memory TCM and TEM subsets
[36, 55, 100]. Given this central role of DCs in shaping the
quantity and quality of immune responses, we have been
focusing our recent studies on understanding their roles in
T cell responses in the context of lymphodepletion. Using
the OT-1 and pmel-1 TCR transgenic mouse models, in
which CD8+ T cells are engineered to recognize MHC
class-I OVA (SIINFEKL) [23] and melanoma (gp10025–33)
[92] peptides, respectively, we have been addressing the
role of DCs at the lymphopenic and recovery phases after
CTX treatment. These models are based on the adoptive
transfer of a few (1 million) trackable CD8+ T cells from a
TCR transgenic mouse into a recipient mouse followed by
vaccination. These models allow for visualization of the
responses (expansion, contraction; activation, traYcking,
function) of the antigen-speciWc CD8+ T cells (the donor
cells) within a large population of CD8+ T cells (host cells).
This also allows for a side-by-side testing of the responses
of the host innate immune cells, including DCs. Using these
TCR CD8+ T cells with B16 melanoma, we have estab-
lished that adoptive transfer of OT-1 CD8+ T cells at the
lymphopenic phase after CTX treatment results in marked
increases in post-vaccination T cell responses, including
enhanced expansion, function, and delayed contraction of
adoptively transferred CD8+ T cells; these eVects were fur-
ther augmented when peptide vaccination was combined
with the TLR3 agonist poly(I:C) [118].

Consistent with other studies that showed space-indepen-
dent enhanced immune responses of adoptively transferred
CD4+ T cells after CTX treatment [80], the enhanced eVects
of CTX preconditioning to CD8+ T cells were not felt to be
mediated by creation of a “space niche” since infusion of up
to 200 million wild type naïve cells immediately after CTX
treatment did not block its beneWcial eVects [118]. Interest-
ingly, however, the beneWcial eVect of CTX was associated
with a rapid activation of DCs in the liver and spleen during
the early phase of lymphopenia (days 1–4) and were depen-
dent on both the presence of CD11b-expressing cells and

intact IFN-�/� signaling pathways. Given that, DCs express
CD11b and are capable of producing IFN-�/�, these results
suggested a possible role for DCs during the lymphopenic
phase in mediation of the adjuvant eVects of CTX precondi-
tioning regimen. Indeed, earlier studies have reported that
mouse interdigitating DCs isolated 2 days after CTX treat-
ment showed an enhanced accessory function compared
with the control DCs [70], and that follicular DCs harvested
from lymph nodes during the lymphopenic phase post-CTX
treatment retained exogenous antigen for long time and
were capable of inducing a better antibody responses [98].
Similar to CTX, TBI also induces a rapid activation of DCs
coincided with augmented T cell responses [18, 28, 69,
141]. Human studies also showed a rapid activation of DCs
after myeloablative allogenic hematopoietic stem cell trans-
plantation [47, 69]. These studies would indicate to the
rapid activation of DCs as a potential mechanism contribut-
ing to the enhanced anti-tumor responses to vaccination
with diVerent antigen formulations during the lymphopenic
phase [16, 37, 67, 104, 115, 118, 125, 131].

How activation of DCs is induced early after 
lymphodepletion

DCs have been reported to be required for the lymphope-
nia-driven homeostatic (i.e. in absence of antigen priming)
proliferation of naïve and memory CD8+ T cells [36, 138].
Furthermore, the antigen-speciWc responses of adoptively
transferred T cells into a lymphodepleted host was found to
be likely due to an enhanced MHC Class I-restricted anti-
gen presentation by elements of the transplanted bone mar-
row [134]. Taken together, these studies would suggest that
DCs post-induction of lymphodepletion would play an
important role in the enhanced anti-tumor immune
responses. In the following sections, we will discuss studies
that would suggest this role of DCs at the lymphopenic and
recovery phases post-lymphodepletion. Although it is not
clear how lymphodepletion regimens induces the rapid DC
activation and how DCs are possibly contributing to lymph-
odepletion-induced enhanced eVects on T cell responses,
several mechanisms are possible:

• A massive apoptosis of the host cells as well as tumor
cells occurs rapidly after induction of lymphodepletion
[11, 118]. In this setting, cells undergoing apoptosis are
rapidly and speciWcally recognized by phagocytic cells,
in particular DCs. After recognition, apoptotic bodies are
silently removed by phagocytosis which can result in
activation of DCs [49, 59, 126].

• The induction of tumor cell apoptosis and the release of
endogenous TLR agonists such as heat-shock proteins
and uric acid can act through TLRs and thus induce DC
maturation [31, 113]. Uric acid, at least in its crystal
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form can activate DCs and augment tumor rejection
[48, 122, 123]. Dying tumor cells induced by local irradi-
ation of tumor can also release the high-mobility-group box
1 alarmin protein, which can bind to TLR4 expressed by
DCs and increase the eYciency of tumor antigen pro-
cessing and presentation [7].

• The rapid induction of inXammatory cytokines such as
IFN-� [38, 45, 54, 88] can act as danger signals [79, 81,
113, 119]. These signals would result in activation of
DCs, their maturation, and migration to lymph nodes, a
critical step required for optimal antigen-speciWc T cell
responses [10]. We and others have reported induction of
several inXammatory cytokines, in particular type I IFNs,
post-CTX treatment [17, 107, 117, 128, 136, 141], and
that the absence of type I IFNs in vivo abrogated the ben-
eWcial eVects of CTX to the anti-tumor responses of
adoptively transferred immune cells [101, 118].

• The release of LPS (a TLR4 ligand) due to the TBI- or
chemotherapy-induced damage in the integrity of muco-
sal barriers in the intestinal tract and the translocation of
microbial products [1, 85]. This microbial translocation
would lead to induction of inXammatory cytokines [17,
117, 119] and a rapid activation of DCs and the associ-
ated enhanced eVector immune responses [69, 141]. In
line with this notion, exogenous LPS can substitute for
the endogenous TBI-induced LPS for augmentation of
the anti-tumor responses of CD8+ T cells to active vacci-
nation when they were adoptively transferred to immune
cell (NK and CD4+ T) cell-ablated recipient mice [96].
Similarly, we have found that addition of the TLR3 ago-
nist poly(I:C) to OVA vaccination during the lymphopenic
phase after CTX preconditioning markedly augmented
CD8+ T cell expansion, coinciding with signiWcant acti-
vation of DCs in the spleen and liver [118].

• Lymphodepletion removes the endogenous lymphocytes
that compete with the donor T cells for the access to the
host DCs, allowing the transferred T cell to crosstalk
with a relatively larger pool of antigen-bearing DCs [58].

• Killing of signiWcant numbers of tumor cells and the
release of tumor antigens from the dead cells, which can
be cross-presented to T cells by DCs [43]. The enhanced
eVects on immune-mediated tumor regression of radio-
therapy and CTX therapy have been found to be due to
the disruption of the stroma-tumor network within the
tumor bed cells [52, 140], coinciding with induction of
the expression of adhesion molecules, such as P-selectin,
enhancing inWltration of immune eVectors into the tumor
stroma [39, 40, 113]. The disruption of the stroma-
tumor network would result in the release of tumor
antigen that can be picked up and presented by the
stromal cells themselves of the localized DCs for cyto-
lytic eVector T cells. The possibility of the cross presen-
tation of the antigens released from the dead tumor cells

would explain the enhanced anti-tumor eVects of adop-
tively transferred T cells into a CTX-preconditioned host
in the absence of active vaccination [9, 15, 17, 129] or
even in absence of adoptive T cell transfer [8, 12–14, 16,
37, 131]. It would also explain the anti-tumor eYcacy of
vaccination with naïve (i.e. with no antigen loading) DCs
[20], where the antigens released from the dead tumor
cells can be further cross presented by the exogenous
DCs.

Therefore, it appears that the rapid induction of an inXam-
matory and apoptotic milieu by lymphodepletion can pro-
vide an environment, which is conducive toward the
induction of activated DCs. The inXammatory milieu
induced by lymphodepletion, however, is transient and
diminishes during the recovery phase. Therefore, the sug-
gested role of DCs would be transient and can be eVective
only when vaccination is performed during lymphopenia.
In general, the optimization of increases in the numbers,
activation, survival, and the anti-tumor responses of the
adoptively transferred T cells into a lymphodepleted host
have been found to require antigen boosting [74, 89], which
is often performed during the recovery from lymphopenia.
Since this time frame would be after the normalization of
the activation state of the DCs logic would indicate the
presence of additional mechanism(s) that would be in eVect
during the rebound phase. As discussed in the following
section, there is increasing evidence that DCs develop an
augmented presence during the rebound phase and could, at
least in part, be one factor contributing to the augmented T
cell responses to antigen boosting at the recovery from
lymphodepletion.

Expansion of DCs during the recovery phase

While we were investigating the role of DCs in mediation
of the beneWcial eVects of CTX-induced lymphopenia to
adoptive T cell therapy, we observed substantial increases
in both the relative and absolute numbers of DCs with mye-
loid (CD11chighCD11bhighLy6GlowB220low) and immature
(CD40lowCD80lowCD86low) phenotype during the recovery
phase after CTX-induced lymphodepletion [115]. Despite
their immature phenotype, these CTX-expanded DCs were
functional based on the phagocytosis and in vivo and in
vitro antigen presenting function assays. Recent studies in
human showed also increases in the numbers of DCs during
the recovery phase in the peripheral blood of cancer
patients receiving a combinatorial treatment of CTX and
the growth factors G-CSF or GM-CSF [35, 103, 130].
Although it was not clear in these studies whether the
increase in the frequency of DCs is solely due to the eVects
induced by CTX or the growth factors, our results demon-
strate that CTX per se is capable of inducing DC expansion
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in the peripheral blood in a murine model. This notion is
consistent with the capability of CTX to induce mobiliza-
tion of hematopoietic stem cells (CD34+) from bone mar-
row to circulation [71, 82, 87, 133]; these CD34+ showed
higher diVerentiation rate into DCs when cultured in vitro
with growth factors [35]. Our in vitro studies also demon-
strated higher tendency of BM from CTX-treated mice to
generate DCs in vitro [116]. Furthermore, the anti-tumor T
cell response and protective immunity in mice that received
TBI and immune reconstitution was found to be associated
with signiWcant increases in the number of lymph node
DCs, which were further enhanced after vaccination [75].
Additionally, one recent study showed that the beneWcial
eVects of CTX to the anti-tumor eVects of T cells associate
with DC turnover in spleen, liver, and tumor site. These
newly recruited DCs were suggested to be originated from
proliferating early DC progenitors and secreted more IL-12
and less IL-10 compared to those from untreated tumor-
bearing animals. They were also fully capable of priming T
cell responses and ineVective in inducing expansion of Treg

cells [104]. In the same vein, we also found that post-CTX
expansion of DCs was associated with proliferation of DCs
in bone marrow during the lymphopenic phase and in the
blood and spleen during the recovery phase [114]. Interest-
ingly, CTX induced a dynamic surge in the expression of
growth factors and chemokines in bone marrow, where
CCR2 and Flt3 signaling pathways were critical for DC
expansion [114]. Taken together, it could be suggested that
the beneWcial eVects of lymphodepletion, such as those
induced by CTX, to enhance the antitumor potency of T
cells extend beyond the well-documented cytotoxicity and
lymphodepletion and include the augmented presence of
DCs during the recovery phase. This observation of DC
rebounding at certain time points after induction of lymph-
odepletion indicate that in addition to the rapid activation of

DCs following the induction of lymphopenia, increases in
the numbers of these cells also occur at the recovery phase.
This would form a foundation for a new rationale design for
immunotherapeutic strategies post-lymphodepletion.

Besides its induction of myeloid DC expansion, CTX
can also expand other myeloid cells. Several previous
studies, including ours, have reported increases in the
numbers of cells expressing the phenotype (Gr-1+CD11b+)
of the myeloid-derived suppressor cells (MDSC) in the
peripheral blood and spleen [3, 4, 97, 118]. Our most
recent studies showed that this MDSC expansion start to
gradually decrease prior the peak of DC expansion
(Fig. 1). Consistent with the previous studies, we have
observed recently that cancer patients treated with chemo-
therapy containing CTX harbor high number of MDSC,
which are capable of suppressing T cell responses in
vitro [25]. Previous clinical studies also showed that
CTX-induced MDSC expansion could limit T cell
responses [3, 4, 97]. We found in our preclinical studies,
however, that MDSC expansion by CTX does not abro-
gate its beneWcial eVects to adoptively transferred T cell
responses to peptide vaccination [115, 118]. Because
vaccination, in particular, in the presence of a potent adju-
vant such TLR agonists, can induce post-vaccination
inXammatory mediators, it can be suggested that the pres-
ence of an inXammatory microenvironment may induce
activation of MDSC and drive their diVerentiation into ben-
eWcial T cell activators or at least in part block their sup-
pressor function. A previous study also described a role of
MDSC in mediating the antitumor eVects of CTX by a
nitric oxide-dependent mechanism [97]. This notion is
consistent with recent data in the literature showing that
treatment of Gr-1+CD11b+ cells, isolated from immuno-
compromised animals or patients, with stimuli such as
GM-CSF/IL-4, and all-trans-retinoic acid, can block the

Fig. 1 Suggested phases post-CTX therapy and proposed approaches
for their manipulation in vivo to beneWt adoptive T cell therapy (ACT).
CTX treatment induces a rapid lymphopenia for about 5 days followed
by a gradual cellular recovery with a full recovery after 18–20 days
of treatment. The cellular recovery is characterized by an expan-
sion of cells with immature myeloid-derived suppressor cell (MDSC)

phenotype (Gr-1+CD11b+) followed by an expansion of DCs with
CD11c+CD11b+ phenotype in the peripheral blood, spleen, and liver.
The expansion of DCs occurs when the expanded MDSC start to con-
tract. Vaccination with a tumor antigen (Ag) and a potent adjuvant,
such as a TLR ligand (TLRL) can activate the expanded DCs and MD-
SC, resulting in beneWcial host microenvironment to T cell responses
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suppressive activity of these cells and drive their diVerenti-
ation to mature DCs [2, 32, 93, 94]. Moreover, Gr-
1+CD11b+ cells from tumor-bearing mice have been found
to acquire the phenotype characteristic to DCs (CD11chigh)
upon their adoptive transfer into naïve, but not tumor-bear-
ing, recipient mice [64, 76]. Therefore, it might be feasible
that application of strategies that can induce simultaneous
activation of both DCs and MDSC expanded post-chemo-
therapy favor the creation of an overall stimulatory rather
than inhibitory host microenvironment. Alternatively, the
immunosuppressive activities of the expanded MDSC by
CTX and the tumor can be blocked by targeting their regu-
latory pathways, including increased production of reactive
oxygen species, the metabolism of the amino acid L-argi-
nine by arginase I and nitric oxide synthetase 2, and the
high levels of indoleamine-2,3-dioxygenase (IDO). Drugs
such as the IDO inhibitor 1-methyl-d-tryptophan (d-1mT)
and the multi-targeted receptor tyrosine kinase inhibitors
sunitinib have been found to block the suppressor function
of MDSC [22, 30, 64, 65, 84, 137].

How expansion of DCs at recovery phase beneWts adoptive 
T cell therapy

If DCs at the lymphopenic phase are important because of
their activation state, how could an augmented presence of
DCs during the recovery phase beneWt T cell responses if
they express immature phenotype? It could be postulated
that inXammatory cytokines produced by eVector cells after
antigen priming at the lymphopenic phase induce the acti-
vation of DCs during their expansion and thus augment the
immune response to antigen boosting. The beneWcial eVect
of the inXammatory cytokine milieu on DC activation,
however, is expected to be weak since its peak (days 5–7)
of induction precedes the peak (days 10–14) of DC expan-
sion. Therefore, either a second vaccination or provision of
exogenous inXammatory adjuvant such as a TLR agonist at
the recovery phase of CTX would be required to activate
rebounding DCs (Fig. 2). This notion is consistent with our
studies showing the minimal increases in the post-vacci-
nation responses of OT-1 CD8+ cells when the antigen

Fig. 2 Proposed paradigm for DC activation post-lymphodepletion
and its impact on antigen-speciWc responses of adoptive T cell therapy.
Treatment with a lymphodepleting dose of CTX or TBI induces a rapid
lymphopenia likely associated with microbial translocation due to the
damage of the intestinal tract. Lymphopenia can result in elimination
or an inbalance of regulatory elements, including Treg cells and mye-
loid-derived suppressor cells. Microbial translocation can also result in
the release of microbial products such as LPS, which leads to activa-
tion of antigen presenting cells, in particular DCs. The intensity of
these events, however, decreases gradually during the recovery phase
from lymphopenia, in which DCs are expanded in circulation due to
mobilization of DC precursors (solid line). Adoptively transferred anti-
gen-speciWc T cells (dotted line) during the lymphopenic phase can

beneWt from the space “niche” and the more available survival cyto-
kines and thus show homeostatic proliferation. The proliferation of
these cells is further increased if the host is also primed with a speciWc
antigen, particularly in the presence of endogenous activated DCs. The
inXammatory microenvironment created during the peak of the anti-
gen-speciWc responses of donor T cells to antigen priming might result
in activation of the expanded DCs during the recovery phase, and thus
could slightly augment the T cell responses when the antigen boosting
occurs at this time point. Addition of an inXammatory adjuvant (e.g.
TLR agonist) at the time of DC surge, however, would accentuate the
inXammatory microenvironment that can induce the full activation and
maturation of the expanded DCs and their migration to LNs, resulting
in robust antigen-speciWc responses of donor cells (dotted line)
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priming was performed at the time of DCs expansion in
absence of exogenous adjuvant poly(I:C) administration in
contrast to the marked increase in the post-vaccination
CD8+ T cell responses when poly(I:C) was co-administered
with peptide vaccination at the time of DC expansion [118].
The advantage of the provision of poly(I:C) could be attrib-
uted to its rapid induction of the inXammatory cytokines
TNF-�, MCP-1, IFN-�, and IL-6 [114, 115, 118]. Indeed,
induction of these cytokines was associated with the
appearance of activated CCR7highCD40highCD80high DCs in
lymph nodes, coinciding with a signiWcant decrease in the
numbers of DCs in the peripheral blood. Given that CCR7
is essential for migration of activated DCs to lymph nodes
[19], its up-regulation would suggest that the appearance of
DCs in lymph nodes of CTX-treated mice after poly(I:C)
treatment is, at least in part, due to their recruitment from
the peripheral blood upon their maturation.

Using the pmel-1 mouse model, in which CD8+ T cells
can recognize gp10025–33 peptide only in the presence of a
potent adjuvant [92], we found that priming and boosting
with gp100 peptide plus poly(I:C) treatment at the lymp-
hopenic and recovery phases induced dramatic increases in
CD8+ T cell responses and regression of B16 tumor growth
than those obtained after vaccination at either phase or at
both phases but in absence of poly(I:C) treatment [115].
Importantly, depletion of DCs before boosting resulted in a
signiWcant abrogation of CD8+ T cell responses, indicating
to the importance of post-CTX expanded DCs. Similar
requirement of DCs to antigen recall responses has been
reported in the viral setting [19]. Taken together, it appears
that expansion of a large pool of DCs per se can slightly
beneWt the CD8+ T cell responses, but can dramatically
augment the responses if an inXammatory signal capable of
maturing DCs is concomitantly induced. This would
explain why prime-boost vaccination with peptide post-
chemotherapy or irradiation is only eVective when exoge-
nous adjuvant is co-administered during vaccination [16,
41, 60, 67, 74, 90, 91, 99, 113, 115]. It would also explain
the enhanced T cell responses after induction of expansion of
endogenous DCs with mobilizing factors, in particular Flt3L,
followed by vaccination in combination of the TLR7 agonist
imiquimod [121] and TLR9 agonist CpG ODN [29, 56].

DC rebounding post-lymphodepletion may beneWt ex vivo 
DC vaccines

The expansion of endogenous DCs during recovery from
lymphodepletion could also beneWt ex vivo DC-based vac-
cination. Recent studies have shown that single vaccination
with antigen-loaded DCs immediately after TBI- or CTX-
induced lymphopenia is not suYcient to induce signiWcant
tumor-speciWc T cell responses, unless a second DC vacci-
nation is performed after 7–10 days [21, 74, 89]. Because

DCs are already expanded during the second DC vaccination,
it could be postulated that endogenous DCs provide a help to
the exogenous DCs. Exogenously administrated DCs migrate
to draining lymph nodes, leading to a strong anti-tumor
response. Migration of DCs to draining lymph nodes, how-
ever, is limited when the draining lymph nodes are saturated
with the migrated cells [27, 50, 68, 89]. Conditioning lymph
nodes, for example with pre-injection of naïve unpulsed DCs
or inXammatory cytokines, such as TNF-�, can signiWcantly
enhance the migration and retention of exogenous DCs,
resulting in a robust anti-tumor immunity [78]. Therefore,
several scenarios could be postulated to explain how expan-
sion of endogenous DCs post-lymphodepletion augments
vaccination with exogenous DC vaccine.

• Induction of lymphopenia per se creates an immune
niche in the lymph nodes, enhancing their capacity to
recruit higher numbers of endogenous DCs upon creation
of the inXammatory microenvironment and their activa-
tion. This would explain the enhanced survival and
migration of exogenous DCs administered after chemo-
therapy [20].

• Migration of endogenous DCs into lymph nodes would
condition the latter to further increase their saturation
(ceiling) capability for the exogenous DCs, resulting in
arrival of higher numbers of antigen-bearing DCs. Since
the magnitude of the antigen-speciWc T cell responses
correlates with the numbers of DCs in the lymphoid tissues,
in particular lymph nodes [27], arrival of more numbers of
antigen-bearing DCs along with the arrival of adoptively
transferred T cells would limit the antigen competition for
the antigen recognition and results in higher frequency of
the antigen-speciWc T cells. This would explain our recent
observation of the appearance of high numbers of activated
DCs mainly in lymph nodes after injection of poly(I:C) at
the peak of DC expansion even in the absence of vaccina-
tion [27, 115]. It would also explain the enhanced ex vivo
DC-based vaccination in combination with CTX treatment
without adjuvant [44, 72] or with poly(I:C) [37].

• It is also possible that some of the antigen loaded in the
exogenous DCs might be transferred into the endogenous
DCs when both arrive to lymph nodes, resulting in anti-
gen presentation by both of these DCs and better antigen
display to T cells. This would explain the enhanced anti-
tumor responses after the administration of DCs with no
antigen [20, 124, 127].

Advantages of the sequential activation of DC at 
lymphopenic and recovery phases

Recent studies have reported the capability of CD8+ T
cells to induce regression of established B16 tumor. The
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anti-tumor eVects in these studies, however, required aggres-
sive treatment protocols consisting of: (1) TBI-induced
lymphodepletion or myelodepletion followed by hemato-
poietic stem cell transplant; (2) adoptive transfer of in vitro
cytokine-conditioned antigen-stimulated T cells; (3) vacci-
nation with 2 £ 107 plaque forming units of a recombinant
fowlpox virus encoding gp10025–33 or with repeated ex vivo
vaccination with peptide-pulsed DCs; and (4) exogenous
administration of high doses of IL-2 [61, 132, 134]. The
eYcacy of these anti-tumor treatment protocols could be
explained by the hierarchy of activation of DCs during the
lymphopenic phase and their expansion during the restora-
tion phase (Fig. 2). This hierarchy of DC responses would
suggest a harmonized multiple mechanisms involved in the
beneWcial eVect of lymphodepletion to adoptive T cell ther-
apy and warrants the reconsideration of the timing between
adoptive T cell transfer into a lymphodepleted host and
subsequent vaccinations. As shown in Fig. 2, antigen prim-
ing along with a TLR agonist could be delivered at the
lymphopenic phase, when T cells could beneWt from the
activated DCs, and then at the recovery phase again with a
TLR agonist when T cells can beneWt from the DC surge.
This prime-boost vaccination regimen at these certain time
points post-induction of lymphodepletion would obviate
the need for more complicated and potentially toxic treat-
ment regimens such as in vivo IL-2 therapy. In line with
this notion, a complete regression of a large B16 melanoma
was achieved when adoptive T cell transfer and vaccination
with adenoviral vector expressing gp100 antigen post-CTX
preconditioning was boosted by persistent stimulation of
innate immunity through adjuvant peritumoral injections of
the TLR9 agonist CpG and the TLR3 agonist poly(I:C)
[66]. Interestingly, the administration of CpG and poly(I:C)
in this study was performed about 12 days after CTX treat-
ment, the time point when DC rebounding is maximal [104,
114, 115], indicating that the requirement of CPG/poly(I:C)
injection to the success of this protocol is due to the activa-
tion of the rebounding DCs. Given the robust anti-tumor
eVect of our prime-boost vaccination with gp100 peptide in
combination with poly(I:C), we suggest that not only IL-2
can be replaced by TLR agonist but also vaccination with
adenoviral expressing the target antigen can be replaced
with antigenic peptide mixed with a TLR agonist. This
strategy would lead to a signiWcant improvement in the
application of chemo-immunotherapy, opening a new ave-
nue for a simple but eVective anti-cancer therapy.

Conclusion and prospective

There is growing evidence that DCs are altered in numbers
and phenotypes at precise time points after the induction of
lymphodepletion, resulting in a biphasic eVect on DCs: a

rapid induction of DC activation during the lymphopenic
phase, and increasing their frequency without aVecting their
activation during the recovery phase. Exogenous adminis-
tration of inXammatory adjuvants such as TLR agonists can
induce stimulation and maturation of this expanded DCs
and their migration to LNs. These Wne-tuned responses of
DCs are of a paramount signiWcance since a precise prime-
boost vaccination along with a TLR-mediated targeting of
DCs at both the lymphopenic and recovery phases post-
lymphodepletion could profoundly improve the anti-tumor
responses of adoptive T cell therapy. These roles of DCs
would provide a useful foundation for the design of immu-
notherapy regimens combining tumor vaccines, primed T
cells, and lymphodepletion. Future studies are required to
focus on maximizing the role of DCs during both the
lymphopenic and recovery phases post-lymphodepletion. For
instance, DC rebounding can be augmented by agents such
as Flt3L, and DC survival and traYcking to lymph nodes
can be enhanced by chemokines such as CCL21 (CCR7
ligand), and DC activation can be augmented by combination
of multiple TLR agonists. Further studies are also required
to unveil the molecular mechanisms underlying the expan-
sion of DCs post-induction of lymphodepletion. Progress in
the research in this area can advance our understanding of
the application of lymphodepletion for the maximal beneWt
of immunotherapy in the diVerent clinical settings.
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