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The stratification score for a case-control study is the probability of disease modeled as a function of potential
confounders. The authors show that the stratification score is a retrospective balancing score and thus plays
a similar role in case-control studies as the propensity score plays in prospective studies. The authors further
show how standardization using the stratification score can be used to compare the distributions of exposures
that would be found among case and control participants if both groups had the same distribution of confound-
ing covariables. The authors illustrate these results using data from a genome-wide association study, the
GAIN (Genetic Association Information Network) study of schizophrenia among African Americans (2006–
2008).
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The propensity score is a popular method for controlling
confounding in prospective observational studies. The pro-
pensity score, the probability of exposure given confound-
ing covariates, is a balancing score (1, 2); the distribution of
potential confounders is independent of exposure status,
conditional on the propensity score. Thus, for persons with
the same propensity score, any association between expo-
sure and outcome does not reflect a difference in potential
confounders. Further, the difference in the prevalence of
disease among exposed and unexposed persons, after pro-
pensity-score-based stratification, can be used to estimate
the difference in the proportion of persons with disease by
exposure status that would be observed in a randomized
study. Of course, these statements assume that there are
no unmeasured confounders and that the propensity model
(or rankings based on it) is correct.

Although the propensity score is occasionally applied to
case-control studies, its use is properly limited to prospec-
tive studies, for 2 reasons. First, exposure probabilities in
a case-control study are not representative of the target
population, so the estimated propensity score does not

correspond to that in the target population. Second, compar-
ing the difference in proportions of persons with disease in
the exposed and the unexposed (the typical effect measure
for a propensity score analysis) is problematic with case-
control sampling, since the proportion of persons with dis-
ease in the study population is fixed by design.

We recently introduced the stratification score to control
for confounding when testing hypotheses (3). Here we
further develop the theory underlying the stratification
score and show that it has many of the properties of a pro-
pensity score but for a retrospective study. In particular,
the stratification score is a retrospective balancing score
(defined below) for a case-control study. Thus, conditional
on the stratification score and absent residual confounding,
the distributions of exposures among case and control par-
ticipants can be directly compared. Further, the stratifica-
tion score can be used to estimate the exposure distribution
that arises if, contrary to fact, case and control participants
had been sampled with the same distribution of confound-
ing variables. In particular, we can estimate the exposure
distribution among case participants if their distribution of
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confounding variables matches that in control participants,
which, under the rare disease approximation, approxi-
mates that in the target population. Note that the stratifi-
cation score differs from Miettinen’s confounder score (4),
since exposure does not enter the stratification score model.

METHODS

The stratification score as a retrospective balancing
score

Let D ¼ 1 (0) denote the fact that a person is a case
(control) participant. We study the association between D
and exposure E, possibly distorted by confounding variables
Z. The stratification score (3) is the estimated probability of
case status (D ¼ 1) given confounding variables Z. To con-
struct the stratification score, we first model P½DjZ; c�, typ-
ically by logistic regression, with parameters c, and obtain
estimates ĉ; then the ith study participant’s stratification
score S(Z) is given by S

�
Z
�
¼ P

�
D ¼ 1j Z ¼ zi; ĉ

�
. Note

that it is not necessary that the stratification score corre-
spond to any population quantity so long as it correctly de-
scribes the relation between disease and confounding
variables in the study population.

Because a case-control study is comprised of 2 separate
samples, the distribution of covariates may differ between
case and control participants. If these covariates are con-
founders, this difference may cause a spurious association.
A correctly specified stratification score is a retrospective
balancing score for a case-control study, meaning that

P½ZjD ¼ d; SðZÞ ¼ s� ¼ P½ZjSðZÞ ¼ s�;

a simple proof can be found in the Appendix. In words, the
distribution of potential confounders Z is independent of
case/control status, conditional on the stratification score.
Recall that for a prospective study, the distribution of po-
tential confounders, conditional on a balancing score, is in-
dependent of exposure status.

Because the stratification score is a retrospective balanc-
ing score, any observed association between disease and
exposure, among persons with the same value of the strat-
ification score, cannot be caused by differences in the dis-
tributions of confounders among cases and controls. Thus,
assuming no unmeasured confounders and a properly spec-
ified stratification score, conditioning on the stratification
score yields a true measure of the association between
disease and exposure. This observation suggests that the
stratification score be used for poststratification. Like anal-
yses that use the propensity score, participants are as-
signed to one of a fixed number of strata defined by
quantiles of the stratification scores in the study popula-
tion. Frequently, 5 strata are used (2), although for large
studies more strata can be used to better control residual
confounding.

After stratification, we can test for an association be-
tween exposure and disease using standard tests such as
the extended Mantel-Haenszel test. Unfortunately, odds
ratio estimates may be difficult to interpret. The difficulty
arises because, if we assume that a (prospective) logistic

model for disease given exposure and confounding cova-
riates holds, then the (marginal) model that only conditions
on exposure and stratification score is not necessarily lo-
gistic. A similar phenomenon occurs in prospective studies
that are analyzed by poststratification using the propensity
score (5).

Estimation of marginal associations in the presence
of confounding

Although odds ratio estimates after poststratification using
the stratification score do not correspond to association pa-
rameters of interest, there are quantities of potential interest
that are estimable using the stratification score. In particular,
the stratification score enables comparison of the exposure
distributions in the case and control populations.

A case-control study compares the difference in exposure
between cases and controls. For example, we may compare
allele frequencies among persons with and without a disease
of interest. However, exposure may appear to vary by dis-
ease status if confounders have different distributions in
persons with and without disease. Recall that potential con-
founders that have the same distribution by disease status
cannot lead to a spurious association between disease and
exposure.

The stratification score can be used to standardize data
from case or control participants, so that the distribution of
confounding variables Z is the same among case and control
participants. For convenience, we initially assume that the
data have been stratified into J strata based on the stratifi-
cation score, and within each stratum S(Z) takes the fixed
and distinct value sj. Then we can write

P½E jD ¼ d� ¼
XJ
j¼1

P½EjSðZÞ ¼ sj;D ¼ d�

3 P ½SðZÞ ¼ sjjD ¼ d�:
ð1Þ

The first term on the right, P
�
EjS
�
Z
�
¼ sj;D ¼ d

�
, can be

estimated by the empirical distribution of E among cases
(for D ¼ 1) or controls (for D ¼ 0) in the jth stratum.
Because the retrospective balancing score property assures
that the distribution of confounding covariates is indepen-
dent of disease status among persons with the same value of
the stratification score, the empirical distributions of expo-
sure among case and control participants are directly com-
parable without adjustment for confounding. The second
term, P

�
S
�
Z
�
¼ sjjD ¼ d

�
, can be estimated by the empir-

ical proportions of case (for D ¼ 1) or control (for D ¼ 0)
participants assigned to each stratum.

In equation 1, differences in the distribution of con-
founders Z between cases and controls have been isolated
to differences in the proportions of case and control partic-
ipants found in each stratum. If the same proportions were
used for both case and control participants when calculating
the exposure distribution in equation 1, the resulting expo-
sure distributions could be properly compared. To this end,
let PU½EjD ¼ d� denote the distribution of exposure given
disease status that arises if both case and control participants
have the same distribution U½s� of strata. Then we have
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PU½E jD ¼ d� ¼
XJ
j¼1

P½E jD ¼ d; SðZÞ ¼ sj�U ½sj�:

Note that PU½EjD ¼ 1� can be compared with PU½EjD ¼ 0�,
with the assurance that any differences seen are not due to
the effect of confounding covariates (assuming no unmea-
sured confounders and a correct model for the stratification
score).

The distribution PU½EjD ¼ d� corresponds to standard-
izing the exposure distribution among case and control
participants to the same distribution of stratification
scores U½sj�. A natural choice for the standardization dis-
tribution is U½s� ¼ P½SðZÞ ¼ sjD ¼ 0�, which, for a rare
disease, approximates the distribution of confounding co-
variates in the target population. We let Pc½EjD ¼ 1� de-
note the distribution of E among case participants after
this standardization. For this choice, PU½EjD ¼ 0� is the
actual distribution of E among controls. A second choice,
standardizing to the distribution of strata among cases,
can be achieved by exchanging the roles of cases and
controls, and this is appropriate when the goal of the anal-
ysis is to frequency-match controls to cases. A third option
is to use

U½s� ¼ n0
n
P½SðZÞ ¼ sjD ¼ 0� þ n1

n
P½SðZÞ ¼ sjD ¼ 1�;

where n0 (n1) is the number of control (case) participants,
corresponding to the distribution of S(Z) in the (artificial)
case-control study population. We let Ps½EjD ¼ d� denote
the distribution of general exposures E among case and
control participants after this standardization.

Stratified and individually weighted estimators of the
standardized exposure distributions

To develop estimators of the standardized exposure dis-
tributions, we initially restrict our attention to stratified
data and a categorical (or binned) exposure E. Then, the
observed data can be expressed as cell counts nedj, where e
indexes exposure levels, d indicates case/control status,
and j indicates stratum. Then, PU½EjD ¼ d� is estimated by

P̂U½E ¼ ejD ¼ d� ¼
XJ
j¼1

�
nedj
n:dj

�
ÛðsjÞ;

where ðnedj/n:djÞ is the empirical probability that E ¼ e
within stratum j among persons with D ¼ d. For standard-
izing to the control population, ÛðsjÞ ¼ ðn:0j/n:0:Þ (e.g., see
Table 2), while ÛðsjÞ ¼ ðn::j/nÞ when standardizing to the
study population.

To estimate Pc½E ¼ ejD ¼ 1�, write

P̂c½E ¼ ejD ¼ 1� ¼
XJ
j¼1

�
ne1j
n:1j

�
n:0j
n:0:

¼ 1

n:0:

XJ
j¼1

 
ne1j
n:1j
n:0j

!
;

which can be rewritten as a sum over contributions from
each person as

P̂c½E ¼ e jD ¼ d� ¼ 1

n:0:

X
i

I½Ei ¼ e;Di ¼ 1�
ĥ
�
ji
� ; ð2Þ

where ji is the stratum assignment for the ith individual and
where

ĥðjÞ ¼ n:1j
n:0j

is the empirical odds of disease in stratum j. The form of
equation 2 suggests the individually weighted estimator

P̂c½E ¼ e jD ¼ 1� ¼ 1

n:0:

X
i

I½Ei ¼ e;Di ¼ 1�
ĥ
�
Zi
� ;

where ĥðZiÞ[ðSðZiÞ/1� SðZiÞ
�
is the odds of disease given

covariates Z. Note that for the individually weighted esti-
mator, we need not assume that E is categorical or that the
stratification score takes only discrete values sj..

If the stratification score is logistic, then

ln
SðZÞ

1� SðZÞ ¼ aþ c � Z

and we obtain

P̂c½E ¼ e jD ¼ d�¼

8<:
1
n:0:

P
i

e�â�ĉ�Zi I½Ei ¼ e;Di ¼ 1�; d ¼ 1

1
n:0:

P
i
I½Ei ¼ e;Di ¼ 0�; d ¼ 0:

It is possible to prove that P̂c
�
E ¼ ejD ¼ d

�
estimates

Pc½E ¼ ejD ¼ d�. Note that the intercept â is the value ob-
tained by fitting the stratification score model to the case-
control data, not the intercept that would be obtained in
a prospective study.

The expression for P̂c
�
E ¼ ejD ¼ d

�
has the form of

a weighted estimator. Because the sum of the weights has
the expected value 1 but the weights may not sum exactly to
1 in finite samples, we prefer the estimator

P̃c½E¼ e jD¼d�¼

8>><>>:
P
i

�
e�ĉ�ZiP

i#

di# e
�ĉ�Z

i#

�
I½Ei¼ e;Di¼1�; d¼1

1
n:0:

P
i

I½Ei¼ e;Di¼0�; d¼0:

Because the weights used to calculate P̃c½E¼ ejD¼ d�
sum exactly to 1, it has the advantage thatP

eP̃c½E ¼ ejD ¼ d� ¼ 1. Extrapolating the results of
Lunceford and Davidian (6) to the stratification score, we
would also expect P̃c½E ¼ ejD ¼ d� to have lower sampling
variability than P̂c

�
E ¼ ejD ¼ d

�
. For these reasons, we

recommend P̃c½E ¼ ejD ¼ d� over P̂c
�
E ¼ ejD ¼ d

�
.

When standardizing the distribution of exposure given
disease status to the study population, arguments that par-
allel those just given lead to
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P̂s½E ¼ ejD ¼ d� ¼

8><>:
1
n

P
i

I½Ei¼e;Di¼1�
ŜðZiÞ

; d ¼ 1

1
n

P
i

I½Ei¼e;Di¼0�
1�ŜðZiÞ

; d ¼ 0:

As before, we advise normalizing the weights in
P̂s

�
E ¼ ejD ¼ d

�
to sum to 1 in finite samples to obtain

P̃s½E ¼ e jD ¼ d�

¼

8>>>>>>>>>><>>>>>>>>>>:

X
i

 
ŜðZiÞ�1P

i#
di#ŜðZi#Þ�1

!
I½Ei ¼ e;Di ¼ 1�; d ¼ 1

X
i

 �
1� Ŝ

�
Zi
���1P

i#

�
1� di#

�
½1� ŜðZi#Þ�

�1

!
I½Ei¼e;Di ¼ 0�; d ¼ 0:

Simple estimators of the sampling variance of
P̂U
�
E ¼ ejD ¼ d

�
or its moments can be obtained using

standard M-estimator theory (7), following the approach
used by Lunceford and Davidian (6); see the Appendix for
details. Finally, note that stratified estimators are special
cases of the individually weighted estimators obtained by
taking Zi ¼ ðI½Si ¼ 1�; I½Si ¼ 2�; � � � ; I½Si ¼ J�ÞT , where J is
the number of strata used, and then estimating the stratifi-
cation score model without an intercept.

Often interest centers on the average exposure (especially
when E is continuous) rather than the full distribution of E.
For example, we may wish to study risk allele frequencies,
not genotype distributions. When E is discrete and assumes
levels �e ¼ ðe1; e2; � � � ; eKÞ, the mean exposure level in the
standardized population, lUðdÞ, can be estimated by l̂U

�
d
�
,

given by

l̂UðdÞ [
XK
k¼1

ekP̂U
�
E ¼ ekjD ¼ d

�
:

An estimate of the sampling variance of l̂U
�
d
�
can be easily

obtained from the estimated sampling variance of
P̂U
�
E ¼ ejD ¼ d

�
. For a continuous exposure, the sum is

replaced by an integral; estimators of the sampling variance
of l̂U

�
d
�
when E is continuous are discussed in the Appendix.

RESULTS

Association between schizophrenia and SNP rs4322256
in a genome-wide association study of African
Americans

We illustrate our methods using data from the Genetic
Association Information Network (GAIN) study of schizo-
phrenia among African Americans (8). Rates of schizophre-
nia among African Americans are higher than those among
persons with purely European ancestry (9). Here we analyze
the association between disease and the single nucleotide
polymorphism (SNP) rs4322256, located in the netrin G1

gene (NTNG1), a gene previously linked to schizophrenia
in a Japanese sample (10). GAIN study data are available
in the Database of Genotypes and Phenotypes (http://
www.ncbi.nlm.nih.gov/gap) through accession number
phs000021.v2.p1 (http://www.ncbi.nlm.nih.gov/projects/gap/
cgi-bin/study.cgi?study_id¼phs000021.v2.p1)); in our analy-
sis, we used data on 845,814 available SNP genotypes from
the period 2006–2008. Here we show results obtained for 927
case participants and 901 control participants who had non-
missing data on genotype at SNP rs4322256. Additional in-
formation can be found in theWebAppendix, which is posted
on the Journal’s Web site (http://aje.oxfordjournals.org/).

Differences in the proportion of African ancestry between
cases and controls may confound the association between
schizophrenia and markers that have different allele fre-
quencies in Africans and Europeans, like SNP rs4322256,
which has an A allele frequency of 0.425 in Africans and
0.950 in Europeans (11). Such confounding would manifest
itself in correlated genotypes genome-wide; for example,
persons with a high proportion of African ancestry would
be more likely to have a pattern of genotypes characteristic
of an African population, while persons with a high pro-
portion of European ancestry would be more likely to have
a pattern of genotypes characteristic of a European popula-
tion. Because these correlations would occur genome-wide,
not just among adjacent SNPs as would be expected due to
linkage disequilibrium, this type of confounding can typi-
cally be resolved by using principal components, or related
techniques, applied to the variance-covariance matrix of
SNP genotypes genome-wide (12–14). We found that 3 lin-
ear combinations of SNP genotypes were adequate (14) to
describe the genome-wide correlations due to the admixture
of European and African ancestries in this population (see
Web Appendix for additional details). We then used these
linear combinations of SNP genotypes, calculated for each
person, as covariates in a logistic regression model to cal-
culate the stratification score.

In Figure 1, we show Q-Q plots for tests of association
between disease status and each of the 845,814 SNP geno-
types available in these data, calculated using the Cochran-
Mantel-Haenszel test for association. The extent of con-
founding in these data is evident in the first Q-Q plot, which
has not been adjusted for confounding and which shows
systematic differences between quantiles of the observed
test statistics and what we would expect under the (reason-
able) assumption that most loci are not associated with
schizophrenia. The second Q-Q plot uses stratified
Cochran-Mantel-Haenszel tests that are based on 5 nearly
equally populated strata based on the quantiles of the strat-
ification score; the close agreement between observed and
expected quantiles indicates that confounding has been con-
trolled in these data. Additionally, we show in Table 1 that
the stratification score balances the potential confounders.
We show the mean value of each potential confounder (stan-
dardized using its overall sample mean and standard devia-
tion) by case/control status. The association between the
outcome and each covariate is reduced by stratification,
most notably for the covariates that are most associated with
the outcome, and there is no significant within-stratum as-
sociation between disease status and any covariate.
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In Table 2, we show the distribution of genotypes at
rs4322256 in cases and controls for the 5 strata used in these
analyses. Note that cases outnumber controls in strata 1 and
2 but controls outnumber cases in strata 4 and 5, indicating
systematic differences between case and control participants
that must be accounted for. To illustrate our approach, we
use the data in Table 2 to estimate Pc½E ¼ 0jD ¼ 1�, the
distribution of exposures we would see among case partic-
ipants if their distribution of confounding covariates were
the same as that found among control participants. To con-
struct this estimate, we write

18

150
3

215

927
þ 35

169
3

193

927
þ 45

181
3

187

927
þ 55

207
3

159

927

þ 60

194
3

173

927
� 0:224:

In writing this expression, note that we have used the em-
pirical distributions of exposure calculated using data from
case participants within each stratum (e.g., 18 of 150 case
participants have E ¼ 0 in stratum 1) but have used the

empirical distribution of strata calculated using data from
control participants (e.g., 215 of 927 controls are assigned
to stratum 1). In contrast, the empirical proportion of cases
having E¼ 0 is approximately 0.236 ((18þ 35þ 45þ 55þ
60)/921 � 0.236), corresponding to a difference in this ex-
posure probability of approximately 5% that is attributable
to confounding.

We estimate the frequency of the A allele in case and
control participants using 6 stratification-score-based esti-
mators (Table 3). We also show the unadjusted A allele
frequency. Although the differences appear small, using
the analysis that standardizes to control participants im-
plies that 27.5% (individually weighted analysis) or
26.2% (stratified analysis) of the naively observed differ-
ence in allele frequency at rs4322256 is actually explained
by confounding. The test statistics obtained when stan-
dardizing to the study population are slightly larger than
those obtained when standardizing to the control popula-
tion, although this gain is small because the imbalance
between case and control participants assigned to each of
the strata in Table 2 is modest. The test statistics based on
standardized allele frequency differences are comparable

Figure 1. Q-Q plots for tests of association between disease status and each of 845,814 rs4322256 single nucleotide polymorphism genotypes,
before (left panel) and after (right panel) adjustment for confounding, GAIN study of schizophrenia in African Americans, 2006–2008. In each panel,
the observed and expected quantiles of the log10 P value for the marginal association tests are represented by gray dots. On the black line,
observed and expected quantiles are equal. (GAIN, Genetic Association Information Network).

Table 1. Covariate Balance Between Case and Control Participants, Before and After Stratification, GAIN Study of

Schizophrenia in African Americans, 2006–2008

Mean of Z1
P Value

Mean of Z2
P Value

Mean of Z3
P Value

D 5 0 D 5 1 D 5 0 D 5 1 D 5 0 D 5 1

Unadjusted �0.043 0.045 0.056 0.091 �0.094 5.582e-05 �0.009 0.010 0.684

Stratum 1 �1.096 �1.023 0.644 1.647 1.590 0.470 �0.075 �0.173 0.502

Stratum 2 0.527 0.489 0.233 0.333 0.328 0.851 �0.104 �0.145 0.758

Stratum 3 0.622 0.616 0.861 �0.262 �0.265 0.845 �0.145 �0.043 0.339

Stratum 4 0.383 0.352 0.356 �0.643 �0.647 0.710 0.102 0.131 0.626

Stratum 5 �0.487 �0.377 0.065 �1.053 �1.028 0.133 0.222 0.206 0.713

Stratified 0.547 0.613 0.932

Abbreviation: GAIN, Genetic Association Information Network.
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to the logistic regression Wald test for a gene-dose model
(Table 3).

In Figure 2, we plot the unadjusted and adjusted allele
frequency differences for all 845,814 loci. We also plot the
45-degree line corresponding to no adjustment, as well as
the regression line. From Figure 2 we see that, on average,
standardization-based adjustment for confounding in these
data has resulted in shrinkage, with larger deviations being
subject to larger correction.

DISCUSSION

The stratification score was originally proposed to control
confounding when testing hypotheses in a case-control

study (3). Here we have extended the stratification score
approach to accommodate estimation, which is preferred
by many epidemiologists over hypothesis-testing (15). By
showing that the stratification score is a retrospective bal-
ancing score, we have developed a standardization-based
approach to controlling confounding in case-control studies
which allows us to compare the exposure distributions be-
tween case and control participants that would be observed
if both groups had the same distribution of confounding
covariables. This comparison is attractive, since differences
in exposure frequency can be easily interpreted at the pop-
ulation level in a way that odds ratios from a logistic re-
gression model cannot. Similar comparisons could also be
made by stratifying on all confounders if the data were not

Figure 2. Naive difference in allele frequency versus adjusted dif-
ference in allele frequency between cases (P1) and controls (P0) for
each of 845,814 rs4322256 single nucleotide polymorphism loci (gray
dots), GAIN study of schizophrenia in African Americans, 2006–2008.
On the dashed line, the naive and adjusted allele frequency differ-
ences are equal. The solid line is the regression line. (GAIN, Genetic
Association Information Network).

Table 2. Distribution of Genotypes at Single Nucleotide

Polymorphism rs4322256, Poststratified Using the Stratification

Score, GAIN Study of Schizophrenia in African Americans, 2006–

2008a

E 5 0 E 5 1 E 5 2 Total P̂
�
S5sjD50

�
P̂
�
S5sjD51

�
Stratum 1

D ¼ 0 27 106 82 215 215
927 ¼ 0:232 150

901 ¼ 0:166

D ¼ 1 18 71 61 150

Stratum 2

D ¼ 0 29 90 74 193 193
927 ¼ 0:208 169

901 ¼ 0:188

D ¼ 1 35 91 43 169

Stratum 3

D ¼ 0 46 92 49 187 187
927 ¼ 0:202 181

901 ¼ 0:201

D ¼ 1 45 90 46 181

Stratum 4

D ¼ 0 37 86 36 159 159
927 ¼ 0:172 207

901 ¼ 0:230

D ¼ 1 55 104 48 207

Stratum 5

D ¼ 0 37 92 44 173 173
927 ¼ 0:187 194

901 ¼ 0:215

D ¼ 0 60 106 28 194

Abbreviation: GAIN, Genetic Association Information Network.
a Exposure E counts the number of A (minor) alleles at this locus.

The final 2 columns give the empirical distributions of strata among

cases and controls.

Table 3. Estimated Frequency of the A (Minor) Allele in Cases and Controls at Single Nucleotide Polymorphism

rs4322256, GAIN Study of Schizophrenia in African Americans, 2006–2008

Method
Standard
Population

Normalization m̂U
�
1
�

m̂U
�
0
�

m̂U
�
1
�
2m̂U

�
0
�

Var
�
m̂U
�
1
�
2m̂U

�
0
��

x2

Weighted Controls No 0.5214 0.5588 �0.0374 2.678 3 10�4 5.22

Weighted Controls Yes 0.5212 0.5588 �0.0376 2.678 3 10�4 5.28

Weighted Study No 0.5144 0.5538 �0.0394 2.593 3 10�4 5.99

Weighted Study Yes 0.5143 0.5539 �0.0396 2.593 3 10�4 6.05

Stratified Controls 0.5207 0.5588 �0.0381 2.724 3 10�4 5.33

Stratified Study 0.5141 0.5532 �0.0391 2.692 3 10�4 5.68

Unadjusted 0.5072 0.5588 �0.0516 2.726 3 10�4 9.77

Logistic regression 6.12

Abbreviation: GAIN, Genetic Association Information Network.
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too finely stratified. Correspondingly, matched studies are
simplified by matching on stratification scores rather than
matching on multiple potential confounders.

In our previous article (3), we tested whether the common
odds ratio over strata was equal to 1. Here we have shown
how to estimate the difference in mean exposure after stan-
dardizing the distribution of exposures, and have further
described how to estimate the variance of this difference
for discrete-valued exposures. As a result, we can construct
confidence intervals or test hypotheses about these standard-
ized differences. As Table 3 indicates in the context of a
single analysis, these tests can be comparable in power to
standard logistic regression.

We have considered both stratified and individually
weighted estimators of the exposure distribution. When de-
riving the stratified estimators, we assumed that the stratifi-
cation score had a constant value within each stratum.
Violations of this assumption may lead to residual con-
founding and favor the individually weighted estimator. In-
creasing the number of strata or even fine matching based on
the stratification score may be needed to resolve large-scale
within-stratum variability in the stratification score. How-
ever, as Rubin (16) noted in the context of propensity score
modeling, stratification is more robust to misspecification of
the stratification score model. An additional advantage of
stratification is that the extent of confounding can be seen.
For example, our Table 2 illustrates the extent to which
cases and controls are mismatched, which may be hard to
ascertain when individually weighted estimators are used.

When choosing variables to include in the stratification
score model, it is important to note that the goal is control of
confounding, rather than prediction of case status (17).
Thus, variables that predict case status but do not predict
exposure should not be included in the stratification score
model (18). Similarly, Brookhart et al. (19) found that vari-
ables that predict exposure but not outcome should not be
included in a propensity score model. Brookhart et al. (19)
further stated that variables which predict outcome but not
necessarily exposure can be beneficial when modeling the
propensity score. The stratification score analog to this find-
ing would be that variables which predict exposure but not
necessarily case status are salutory in a stratification score
model; however, we have not evaluated this claim and hence
make no recommendation at this time.

We assumed that all confounding variables were measured.
In fact, we only require that unmeasured confounders U be
balanced given the stratification score—that is, that
P½UjSðZÞ ¼ s;D ¼ d� ¼ P½UjSðZÞ ¼ s�. This is reasonable
if, as is often assumed in epidemiologic studies, measured
covariates are strongly correlated with U. For example, we
may adjust for demographic covariates that may not be causal
but covary with unmeasured confounders that are.

We have considered a ‘‘general exposure’’ without speci-
fying its nature. Thus, levels of exposure could, for example,
correspond to combinations of genotypes and environmental
covariables, allowing comparison of interaction terms in
case and control populations having the same distribution
of potential confounders. We are also developing a modeling
approach to such interaction models (unpublished data). Fi-
nally, our presentation emphasized the situation where the

exposure E is categorical; this was done for ease of presen-
tation and is not a restriction of our approach.
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APPENDIX

For this proof, we assume a ‘‘properly specified’’ stratifica-
tion score, by which we mean that SðZÞ [ P½DjZ� corre-
sponds to the law that generated the study data. We wish to
show

P½Z ¼ zjD ¼ d; SðZÞ ¼ s� ¼ Pr½Z ¼ zjSðZÞ ¼ s�:

Let Xs be the set of values of z for which S(z) ¼ s. Since
S(Z) is a coarsening of Z,

P½Z ¼ zjD ¼ d; SðZÞ ¼ s� ¼

8<:
PrðZ¼zjD¼dÞP

z*2Xs

PrðZ¼z*jD¼dÞ if z 2 Xs

0 otherwise :

Note that
P½Z ¼ zjD ¼ 1�P

z*2Xs

P½Z ¼ z*jD ¼ 1� ¼
SðzÞP½Z ¼ z�P

z*2Xs

Sðz*ÞP½Z ¼ z*�

¼ SðzÞP½Z ¼ z�
s
P

z*2Xs

P½Z ¼ z*�;

where P[Z ¼ z] is the distribution of Z in the study popula-
tion. Since S(z) ¼ s when z 2 Xs, we have

P½Z ¼ z jD ¼ 1; SðZÞ ¼ s� ¼

8<:
P½Z¼z�P

z*2Xs

P½Z¼z*� if z 2 Xs;

0 otherwise;

so that

P½Z ¼ zjD ¼ 1; SðZÞ ¼ s� ¼ P½Z ¼ zj SðZÞ ¼ s�:

The argument for P½Z ¼ zjD ¼ 0; SðZÞ ¼ s� ¼ P½Z ¼
zjSðZÞ ¼ s� is entirely similar. Thus, S(Z) is a retrospective
balancing score.

Note that the form of P½Z ¼ zjSðZÞ ¼ s� given above
seems to suggest that the distribution of Z among persons
having S(Z) ¼ s is the restriction of the distribution of
Z in the study population to values z*2 Xs. However, because

P½ZjD ¼ 1�}hðZÞP½ZjD ¼ 0�;

it is easy to see that we could just as well write

P½Z ¼ z jSðZÞ ¼ s� ¼

8<:
P½Z¼zjD¼d�P

z*2Xs

P½Z¼z*jD¼d� if z 2 Xs

0 otherwise

for either d ¼ 0 or d ¼ 1. This special property of the
stratification score allows us to use the empirical estimate
of P½EjD; SðZÞ ¼ s�, regardless of whether we are standard-
izing to the case, control, or study population.

We next outline estimation of the sampling variance
of P̂U

�
EjD ¼ d

�
. Let Pd ¼ ðPU½E ¼ 1jD ¼ d�;PU½E ¼

2jD ¼ d� ; � � � ;PU½E ¼ JjD ¼ d�ÞT , and, for the ith study

participant, let Ii ¼ ðI½Ei ¼ 1�; I½Ei ¼ 2�; � � � ; I½Ei ¼ J�ÞT :
Let P ¼ ðP0;P1; cTÞT . For any standardization, the unnor-
malized estimators are solutions to estimating equations

U0ðPÞ [
X
i

U0iðPÞ ¼
X
i

ð1� diÞfwi0Ii � P0g ¼ 0;

U1ðPÞ [
X
i

U1iðPÞ ¼
X
i

difwi1Ii � P1g ¼ 0;

and

UcðPÞ [
X
i

UciðPÞ ¼
X
i

�
di �

ec�Zi

1þ ec�Zi

�
Zi

¼
X
i

ðdi � pðZiÞÞZi:

For individually weighted estimators standardized to the
controls, use wi0 ¼ 1 and wi ¼ e�ĉ�Zi ; while standardizing

to the study population, use wid ¼ e�dĉ�Zi
	�

1þ e�ĉ�Zi
�
. For

stratified estimators, these same equations apply but with
Zi a vector of stratum-specific indicator functions in
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a stratification score model with no intercept. For normal-
ized estimators, the first 2 estimating equations are modified
to

U0ðPÞ [
X
i

U0iðPÞ ¼
X
i

ð1� diÞwi0fIi � P0g ¼ 0

and

U1ðPÞ [
X
i

U1iðPÞ ¼
X
i

diwi1fIi � P1g ¼ 0:

Expressing the parameters P as solutions to estimating
equations yields a sandwich estimator of their variance-
covariance matrix using M-estimator theory (e.g., see
Stefanski and Boos (7)). Joint estimation of all parameters
addresses the concerns of Pike et al. (20) regarding the

variance estimates of data poststratified using Miettinen’s
confounder score.

When exposure E is continuous, the sampling variance of
lUðdÞ, the mean exposure, can be calculated using a similar
approach. Let the parameter vector P be defined by
P ¼ ðlUð0Þ; lUð1Þ; cTÞ

T
, and then replace Ii by ei and Pd

by lUðdÞ in the estimating equations above. As before, stan-
dard M-estimator theory can be used to obtain a variance-
covariance estimator for bP.

Further simplification arises assuming that P½EjZ;D� is
not a function of c. Then we have

E½@Ud

@c
jD ¼ d� ¼ �E½UdUcjD ¼ d�;

all variance-covariance estimators reported here have been
calculated using this assumption.
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