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In randomized trials with follow-up, outcomes such as quality of life may be undefined for individuals who die
before the follow-up is complete. In such settings, restricting analysis to those who survive can give rise to biased
outcome comparisons. An alternative approach is to consider the ‘‘principal strata effect’’ or ‘‘survivor average
causal effect’’ (SACE), defined as the effect of treatment on the outcome among the subpopulation that would have
survived under either treatment arm. The authors describe a very simple technique that can be used to assess the
SACE. They give both a sensitivity analysis technique and conditions under which a crude comparison provides a
conservative estimate of the SACE. The method is illustrated using data from the ARDSnet (Acute Respiratory
Distress Syndrome Network) clinical trial comparing low-volume ventilation and traditional ventilation methods for
individuals with acute respiratory distress syndrome.
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Abbreviations: QOL, quality of life; SACE, survivor average causal effect.

In a number of randomized trials in which the outcome
requires considerable follow-up study, participants may die
before the trial is complete and the outcome is assessed. In
such cases, for the individuals who die before follow-up is
complete, the outcome is not simply missing but undefined.
If, for example, the outcome were quality of life (QOL) at
18 months’ follow-up, QOL for individuals who have died is
undefined. Some authors refer to this situation as one in
which the outcome is ‘‘truncated by death’’ (1–4) or ‘‘cen-
sored by death’’ (5) to distinguish this scenario from cases in
which the outcome is merely missing because of inadequate
data collection.

In these settings, a crude comparison of the outcome,
such as QOL, between those who survived in each treatment
arm may give misleading results; by conditioning on a post-
treatment event, namely, survival, we no longer preserve
randomization. The treatment may, for example, render sur-
vival more likely in addition to affecting QOL. A crude
comparison of QOL outcomes in both groups might erro-
neously lead to the conclusion that the untreated individuals
have a higher QOL, simply because the unhealthy individ-

uals die under the untreated condition. A treatment compar-
ison that makes sense in this setting would be to ask how
QOL differs between treated and untreated individuals in
the subpopulation that would have survived under either
arm. This effect is sometimes referred to as a survivor aver-
age causal effect (SACE) (6) or a principal strata effect, and
this approach to handling the ‘‘truncation by death’’ prob-
lem is sometimes referred to as the principal stratification
approach (1, 7). Unfortunately, this subpopulation of inter-
est is not identified; if we know that an individual survived
under one treatment arm, we do not know whether he or she
would have survived under the other one. A variety of stat-
istical and sensitivity analysis techniques have been devel-
oped in the causal inference literature in statistics to attempt
to address this problem (1–16). Unfortunately, many of
these techniques are difficult to implement in practice or
require special statistical programming.

The aim of this paper is 2-fold. First, we hope to bring
these concepts of principal stratification to the epidemiology
literature. Second, we describe a method for the SACE that
is particularly simple to use and does not require special
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statistical programming. We build on related work (17) for
‘‘principal strata direct effects’’ in the context of mediation
(18–24).

DEFINITIONS AND NOTATION

Suppose that A denotes the treatment variable in a
randomized trial that is binary, for example, A ¼ 1 indicates
treated and A¼ 0 indicates the control condition. Let Y be an
outcome of interest that is measured after some follow-up
period. Let S be an indicator of whether the individual is
alive when the outcome Y is measured, with S¼ 1 indicating
alive and S ¼ 0 indicating dead. For individuals who died
(S ¼ 0), the outcome Y is undefined.

For each individual, we can also consider ‘‘counterfactual
outcomes’’ or ‘‘potential outcomes’’ (25, 26) corresponding
to what would have happened had an individual been in the
treatment arm other than the one to which he or she was
assigned. Let S1 and S0 denote the survival status for each
individual under treatment A¼ 1 and A ¼ 0, respectively. In
actuality, we observe only one of S1 or S0; we observe S1 for
an individual who in fact had A ¼ 1, and we observe S0 for
an individual who in fact had A ¼ 0. We have no way of
observing the other potential outcome. However, at least
hypothetically, we can conceive of what the survival status
would have been for each individual under each of the 2
possible treatment scenarios. Likewise, we let Y1 and Y0
denote the outcome Y for each individual under treatment
A ¼ 1 and A ¼ 0, respectively. The variables Y1 and Y0 are
defined only if S1 ¼ 1 and S0 ¼ 1, respectively. Otherwise,
the individual would have died and the outcome Y would be
undefined.

A crude comparison of the outcome Y among the treated
and the controls would consist of, for example, comparing
the means of Y in each treatment arm among those who in
fact survived:

E½Y j A ¼ 1; S ¼ 1� � E½Yj A ¼ 0; S ¼ 1�:

Note that E[YjA¼ 1, S¼ 1] is estimated by the sample mean
of Y among those surviving in the treated group, and
E[YjA ¼ 0, S ¼ 1] is estimated by the sample mean of Y
among those surviving in the control arm.

As noted at the beginning of this paper, the simple crude
contrast given above is not a fair comparison because the
group that survived without treatment may be healthier
overall than those who survived with treatment. The control
condition may have resulted in unhealthy individuals dying
but for whom treatment would have kept alive. These less
healthy individuals who would have died under the control
condition but survived under treatment are included in the
average outcomes (e.g., QOL) when examining the treated
individuals who survived but would not be included in
the average when examining the controls who survived.
The crude comparison above effectively compares out-
comes for different populations, not for the same population
comparing different treatments. A simple example demon-
strating why a different approach is needed is given in
Appendix 1.

As an alternative to the crude measure, one can assess the
‘‘principal strata effect’’ or SACE. This is defined below as
in prior literature (1, 7, 8).

Definition 1: The principal strata effect or SACE is de-
fined as the effect of treatment among the subpopulation that
would have survived under either treatment arm:

SACE ¼ E½Y1 � Y0j S1 ¼ S0 ¼ 1�:

The SACE compares the outcome Yunder the treated versus
the control condition but among only the subpopulation
that would have survived irrespective of which treatment
arm they were assigned. A subpopulation such as this one
that is defined by reference to potential outcomes under 2
different treatment scenarios is referred to as a ‘‘principal
stratum’’ (7).

By restricting the comparison to the subpopulation that
would have survived under either treatment arm, we circum-
vent the problem with the crude comparison that, for the
treatment group, we include potentially less healthy individ-
uals who would have died if they had been in the control
arm. Trying to identify and estimate the SACE from data is
subject to the challenge that we do not know which individ-
uals would have survived under either treatment arm. In the
next section, we describe a very simple method that can be
used to try to assess the SACE. The analysis is facilitated by
what is sometimes referred to as a ‘‘monotonicity’’
assumption:

Assumption 1 (monotonicity): For all individuals, S0 �
S1.

Assumption 1 states that, for all individuals, survival
under the treatment condition is always at least as good as
survival under the control condition. In other words, survival
under control implies survival under treatment, and death
under treatment implies death under control. If treatment
cannot render death more likely than the control condition
for any individual, this assumption will be reasonable. Note
that the assumption would also hold if treatment had no
effect on survival. In the following section, we assume that
this assumption holds. In Appendix 2, we describe a method
that can be used even when this monotonicity assumption
does not hold.

A SIMPLE METHOD FOR THE SACE

Our main result in this paper expresses the SACE as the
difference between the crude comparison of the outcomes
across treatment arms among survivors and a sensitivity
analysis parameter. We state the result and then describe
its interpretation and use. A proof of this result is given in
Web supplement 1. (This information is described in the first
of 2 online supplements; each is referred to as ‘‘Web supple-
ment’’ in the text and is posted on the Journal’s Web site
(http://aje.oupjournals.org/).)

Result 1: Suppose that treatment A is randomized and
that the monotonicity assumption (assumption 1) holds;
then,
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SACE ¼ E½Yj A ¼ 1; S ¼ 1� � E½Y j A ¼ 0; S ¼ 1� � a;

where a ¼ E[Y1 j A ¼ 1, S ¼ 1] – E[Y1 j A ¼ 0, S ¼ 1].
The result states that, to obtain the SACE, one can use

the crude difference in outcomes Y between the treated
and control conditions among those who survived, E[Y j
A ¼1, S ¼ 1] – E[Y j A ¼ 0, S ¼ 1], and then subtract the
sensitivity analysis parameter a. The sensitivity analysis
parameter a is set by the investigator according to what is
thought plausible. The sensitivity analysis parameter can
be varied over a range of plausible values to examine how
conclusions vary under different values for the parameter.
Note that this result holds only under the monotonicity
assumption (assumption 1). Otherwise, the SACE is not
simply the difference between the crude estimate and
the sensitivity analysis parameter a, and a more complex
sensitivity analysis is required. We describe such an ap-
proach under violations of the monotonicity assumption
in Appendix 2.

To obtain the confidence interval for the SACE for a fixed
value of parameter a, one can simply subtract a from the
upper and lower confidence limits for E[Y j A ¼ 1, S ¼ 1] –
E[Y j A ¼ 0, S ¼ 1].

The parameter itself is the average difference in the out-
come that would have been observed under treatment com-
paring 2 different populations: the first is the population that
would have survived with treatment (A ¼ 1, S ¼ 1); the
second is the population that would have survived without
treatment (A ¼ 0, S ¼ 1). Because the second population
consists of individuals who survived even without treatment,
it will likely overall be healthier than the population that
would have survived with treatment. The interpretation of a
then is simply the difference in expected outcomes under
treatment for these 2 populations.

The fact that the population that would have survived
without treatment is likely healthier overall than the popu-
lation that would have survived with treatment will help us
derive a second result. This second result will essentially
show that, in certain circumstances, the crude comparison of
the outcome is conservative for the SACE. We will need one
further assumption:

Assumption 2: E½Y1jA ¼1; S ¼1��E½Y1jA¼ 0; S ¼1� � 0:
This second assumption, which will be used in our sec-

ond result below, requires that the sensitivity analysis pa-
rameter a ¼ E[Y1 j A ¼ 1, S ¼ 1] – E[Y1 j A ¼ 0, S ¼ 1] be
less than or equal to 0. If the outcome Y were QOL and if it
were indeed the case that the population that would have
survived without treatment (A ¼ 0, S ¼ 1) is healthier
overall than the population that would have survived with
treatment (A ¼ 1, S ¼ 1), and if owing to the fact that this
former group was healthier it also would have had higher
QOL outcomes under treatment, then assumption 2 will be
satisfied. Under assumptions 1 and 2, the crude comparison
of the outcomes Y between the treated and control
conditions among those who survived will give a lower
bound for the SACE.

Result 2: Suppose that treatment A is randomized and that
assumptions 1 and 2 hold; then,

SACE � E½Yj A ¼ 1; S ¼ 1�� E½Yj A ¼ 0; S ¼ 1�:

Result 2 follows immediately from result 1 and assumption
2. If QOL were the outcome of interest, then, under assump-
tions 1 and 2, we could use the data to estimate E[Y j A ¼ 1,
S ¼ 1] – E[Y j A ¼ 0, S ¼ 1]. Furthermore, we would know
from result 2 that this crude estimate was conservative for
the SACE, that is, conservative for the extent to which the
treatment increased QOL among the subpopulation that
would have survived irrespective of whether or not treat-
ment was given.

Note that, if assumption 2 is reversed so that E[Y1 j A¼ 1,
S ¼ 1] – E[Y1 j A ¼ 0, S ¼ 1] � 0, then the conclusion of
result 2 would be modified to SACE � E[Y j A ¼ 1, S¼ 1] –
E[Y j A ¼ 0, S ¼ 1]. If the outcome is QOL, then result 2 as
stated above will be the result of interest. In the following
section, we illustrate where the reverse of assumption 2 and
the reverse conclusion of result 2 is the setting that is
applicable.

ILLUSTRATION

The ARDSnet clinical trial (27) compared 2 methods of
ventilation for patients with acute lung injury and acute
respiratory distress syndrome. The 2 methods compared
were low-volume ventilation (A¼ 1) and traditional-volume
ventilation (A ¼ 0). Table 1 describes the ARDSnet patients
and the outcomes between the treatment arms. The study
found a significant decrease in 180-day mortality (P ¼
0.003) comparing the low-volume group (146/473; 31%)
with the traditional-ventilation group (173/429; 40%). Note
that the ARDSnet clinical trial was controversial because
some commentators in the literature thought that the ‘‘stand-
ard of care’’ for high tidal volume was set unethically high
so as to assure a positive study finding (28).

As shown in Table 1, the study also assessed a variety of
outcomes that were defined for only those who had survived
up through 180 days. One of these outcomes was number of
days to return home. It was found that those in the low-
volume group required fewer days (–7.15; P ¼ 0.03; 95%
confidence interval: –13.73, –0.56) to return home (mean:
33.55) compared with the traditional-ventilation group
(mean: 40.70). These means were calculated among those

Table 1. Data From the ARDSnet Clinical Triala

Low-Volume
Group

Traditional-
Ventilation Group

No. % No. %

Patients 473 429

180-Day survivors 327 256

Proportion of survivors 69 60

Mean days to return
home (survivors)

33.55 40.70

a Refer to reference 27 for further information about this trial.
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who survived 180 days. Because the proportion of survival
in the low-volume group was higher, some of the individuals
who survived in the low-volume group may have died had
they been in the traditional-ventilation group. The crude
comparisons of means may thus not be an adequate measure
of the extent to which the low-volume-ventilation method
decreases days to return home. We might thus instead be
interested in the effect of low-volume ventilation versus
traditional ventilation among the subset that would have
survived under either ventilation method, that is, the SACE.

The low-volume ventilation method significantly reduced
mortality, suggesting that the monotonicity assumption (as-
sumption 1) may be reasonable; we will, however, return to
this point below. Under assumption 1, we can apply result 1
to yield estimates of the SACE under different specifications
of the sensitivity analysis parameter:

a ¼ E½Y1j A ¼ 1; S ¼ 1��E½Y1j A ¼ 0; S ¼ 1�:

The sensitivity analysis parameter compares the days to
return home under the low-volume-ventilation method be-
tween 2 populations: the population that would have sur-
vived under low-volume ventilation and the population that
would have survived under traditional ventilation. Because
traditional ventilation is more likely to result in mortality,
those who would have survived under traditional ventilation
are likely a healthier population and one more likely to
return home sooner if given low-volume ventilation. If we
thought that the difference between these populations were
small, we might specify a difference to return home of a¼ 1
day, which, by result 1, would give an estimate of the SACE
of –8.15 (95% confidence interval: –14.73, –1.56); if we
thought that the difference in the populations were some-
what larger, we might specify a difference of a ¼ 4 days,
which, by result 1, would give an estimate of the SACE of
–11.15 (95% confidence interval: –17.73, –4.56). Figure 1
depicts how estimates of the SACE change as the sensitivity
analysis parameter a changes.

Irrespective of the actual value of a, if we thought that the
population that would survive under traditional ventilation
was indeed healthier and would return home sooner with
low-volume ventilation than the population that would sur-
vive under low-volume ventilation, then we would have that
a � 0, that is, the reverse of assumption 2. We thus would
have the reverse conclusion of result 2 that the SACE was
in fact less than or equal to the crude estimate, E[Y j A ¼ 1,
S ¼ 1] – E[Y j A ¼ 0, S ¼ 1]. We would then conclude that
–7.15 days (P ¼ 0.03; 95% confidence interval: –13.73,
–0.56) was an upper bound on, that is, conservative for, the
SACE.

The data from the ARDSnet clinical trial were also ana-
lyzed within a principal stratification framework by Hayden
et al. (6). However, their technique was considerably more
difficult to implement, and it required specification of 2
cumulative proportional odds models and use of a minimi-
zation algorithm. The method used by Hayden et al. did not
impose the monotonicity assumption. Although the signifi-
cant reduction in mortality among the low-volume group
suggests that monotonicity may be reasonable here, this
assumption cannot be verified from data. In Appendix 2,
we describe a relatively simple approach to assess the SACE
that does not require the monotonicity assumption.

DISCUSSION

In this paper, we have described a simple technique that
can be used to assess the SACE. Analysis of such an effect is
important when the outcome is potentially ‘‘truncated’’ or
undefined for individuals who die before the outcome occurs
or is measured. Under a monotonicity assumption, our
method requires only that the investigator specify a single
sensitivity analysis parameter. Under certain assumptions,
our method also gives the result that the crude estimator is
conservative for the SACE.

Using the additive scale for the sensitivity analysis pa-
rameter, as in result 1, has 2 advantages: 1) the formula for
the SACE is very simple, and thus our method is very easy
to implement in practice; and 2) once the sensitivity param-
eter has been fixed, the standard error is the same as that of
the crude estimate, and thus confidence intervals are ob-
tained immediately by just subtracting a from both limits
of the confidence interval for the crude estimate. By using
the other parameterizations such as multiplicative sensitiv-
ity analysis parameters, one may be able to obtain a simple
SACE formula, but obtaining the confidence intervals is
generally more difficult than what is required by our addi-
tive parameterization.

Throughout this paper, we have focused on the setting of
a clinical trial in which the primary treatment of interest is
randomized. Our results also hold in an observational study,
if the effect of the treatment on the outcome is uncon-
founded conditional on some set of covariates C. If the
effect of the treatment on the outcome is unconfounded
conditional on C, then results 1 and 2 hold conditional on
C and assumption 2 also needs to be modified to be condi-
tional on C. However, these results carry over in a very
straightforward way.

Figure 1. Sensitivity analysis of the survivor average causal effect in
the ARDSnet clinical trial (27). Solid line: estimated survivor average
causal effect; broken lines: 95% confidence interval.
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Analysis of the SACE (or principal strata effect) is impor-
tant in assessing QOL outcomes in settings in which some of
the participants may die. Similarly, analysis of the SACE is
important in assessing the cost of different treatment options
when individuals may die before the full costs of different
treatments are incurred. If one pursues a naive analysis re-
stricted to individuals who survive, there may be situations in
which treatment A is less expensive than treatment B for
every individual who would have survived under both treat-
ments, but it appears that treatment B is less expensive in the
crude comparison: Individuals who are unhealthy and poten-
tially quite costly might die under treatment B before the cost
is incurred. In such settings, it may be informative to present
both the crude and the principal strata analysis because the
former may still be of use in cost-effectiveness analyses con-
cerning dollars per life-year saved.

Principal strata effects have also been of use in infectious
disease contexts and vaccine trials in which an outcome (e.g.,
human immunodeficiency virus viral load) is defined only for
those individuals who, during the trial, are infected (9–12).
A number of further applications concerning principal strata
effects have also been pursued in the literature (4–6, 13–16).
We hope that the contributions in this paper will help bring
these ideas to epidemiologists and provide them with a sim-
ple tool for analyzing these principal strata effects.
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21. Sjölander A, Humphreys K, Vansteelandt S, et al. Sensitivity
analysis for principal stratum direct effects, with an applica-
tion to a study of physical activity and coronary heart disease.
Biometrics. 2009;65(2):514–520.

22. VanderWeele TJ. Bias formulas for sensitivity analysis for
direct and indirect effects. Epidemiology. 2010;21(4):540–
551.

23. Chiba Y. Estimating the principal stratum direct effect
when the total effects are consistent between two
standard populations. Stat Probab Lett. 2010;80(11–12):
958–961.

24. Robins JM, Richardson TS, Spirtes P. On identification and
inference for direct effects. Epidemiology. In press.

25. Neyman J. On the application of probability theory to agri-
cultural experiments [1923; in French]. Excerpts reprinted in

A Simple Method for Principal Strata Effects 749

Am J Epidemiol. 2011;173(7):745–751



English (Dabrowska D, Speed T, translators). Stat Sci.
1990;5(4):463–472.

26. Rubin D. Estimating causal effects of treatments in random-
ized and non-randomized studies. J Educ Psychol. 1974;
66(5):688–701.

27. Ventilation with lower tidal volumes as compared with tradi-
tional tidal volumes for acute lung injury and the acute res-
piratory distress syndrome. The Acute Respiratory Distress
Syndrome Network. N Engl J Med. 2000;342(18):1301–1308.

28. Mann H. Controversial choice of a control intervention in a
trial of ventilator therapy in ARDS: standard of care arguments
in a randomised controlled trial. J Med Ethics.
2005;31(9):548–553.

APPENDIX 1

A Hypothetical Example

Consider a hypothetical randomized trial for evaluating
the effect of a treatment on QOL at 18 months’ follow-up.
For simplicity, the outcome is dichotomized into high and
low QOL scores. Two hundred participants were random-
ized to a treatment group and a placebo group. As shown in
Appendix Table 1, of 100 participants assigned to the treat-
ment group, 20 died before follow-up was complete, and 40
of 80 survivors had high QOL scores. Regarding the placebo
group, 50 of 100 participants died before follow-up was
complete, and 10 of 50 survivors had high QOL scores. A
crude comparison of the proportion of participants who had
high QOL scores between 2 groups is

E½Yj A ¼ 1; S ¼ 1� � E½Y j A ¼ 0; S ¼ 1�
¼ 40=80� 10=50 ¼ 0:3:

This comparison would not be fair, as noted in the main text
of this paper. To make a fair comparison, a principal strat-
ification approach (1, 7) could be used. This approach con-
siders 4 types of participants that define 4 ‘‘principal strata’’:
1) always survivors, who would survive irrespective of
the assigned group, that is, S1 ¼ S0 ¼ 1; 2) never survivors,
who would die irrespective of the assigned group, that is,
S1 ¼ S0 ¼ 0; 3) compliers, who would survive if they were
assigned to the treatment group and would die if they were
assigned to the placebo group, that is, S1¼ 1 and S0¼ 0; and
4) defiers, who would die if they were assigned to the treat-
ment group and would survive if they were assigned to the
placebo group, that is, S1 ¼ 0 and S0 ¼ 1. In this example,
if no defiers exist, the number of always survivors, never
survivors, and compliers might be as shown in Appendix
Table 2.

Comparisons of QOL scores for each of these 3 principal
strata are fair, because the comparisons are made between
the different 2 treatment arms for the same populations. Of
these 3 principal strata, we can compare QOL scores among
only always survivors; for never survivors and compliers
assigned to the placebo group, no survivor exists and their
QOL scores cannot be defined. This comparison among al-
ways survivors with S1¼ S0¼ 1 is the SACE of definition 1:
SACE ¼ E[Y1 – Y0 j S1 ¼ S0 ¼ 1]. Again, this comparison is

fair because it is made between the different 2 treatment
arms for the same populations. The data in Appendix Table
2 show that the estimate of the SACE is

SACE ¼ E½Y1�Y0j S1 ¼ S0 ¼ 1� ¼ 35=50�10=50 ¼ 0:5:

Note that, unfortunately, we cannot know from the observed
data which participants are always survivors in the treatment
group. The situation is more complex if defiers exist and
makes assessment of the SACE more difficult. In Appendix
2, however, we also provide a sensitivity analysis technique
that can be used even if there are defiers.

APPENDIX 2

An Approach Without Monotonicity

In this Appendix, we describe a method that can be used
even when the monotonicity assumption (assumption 1)
does not hold, that is, when there might be individuals
who would survive under the control condition but not under
treatment. Our result expresses the SACE using the ob-
served difference between the outcomes across arms among
survivors but, unlike result 1, uses 3 sensitivity analysis
parameters rather than just one. The result is as follows:

Result 3. Suppose that treatment A is randomized; then,
the SACE is given by

SACE ¼ E½Yj A ¼ 1; S ¼ 1� � E½Y j A ¼ 0; S ¼ 1�

þp01
p0

b0 �
p1 � p0 þ p01

p1
b1;

where pa ¼ Pr(S ¼ 1 j A ¼ a) and where b0, b1, and p01 are
sensitivity analysis parameters:

b0 ¼ E½Y0j S1 ¼ 0; S0 ¼ 1��E½Y0j S1 ¼ S0 ¼ 1�;

b1 ¼ E½Y1j S1 ¼ 1; S0 ¼ 0��E½Y1j S1 ¼ S0 ¼ 1�;

and p01 ¼ Pr(S1 ¼ 0, S0 ¼ 1).
A proof of this result is given in Web supplement 1. Here,

we describe the interpretation and use of result 3. Result 3
states that, to obtain the SACE, one can use the crude differ-
ence in outcomes Y between the treated and control subjects
among those who survived, E[Y jA¼ 1, S¼ 1] – E[Y jA¼ 0,
S ¼ 1]. The sensitivity analysis parameters b0, b1, and p01
are set by the investigator according to what is thought
plausible. The probabilities p1 ¼ Pr(S ¼ 1 j A ¼ 1) and
p0 ¼ Pr(S ¼ 1 j A ¼ 0) can be estimated from the data. The

Appendix Table 1. Data From a Hypothetical Randomized Trial

Treatment Group Placebo Group

No. overall 100 100

No. of survivors 80 50

No. of survivors with high QOL 40 10

Abbreviation: QOL, quality of life.
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sensitivity analysis parameters can be varied over a range
of plausible values to examine how conclusions vary under
different values for the parameter.

The parameters b0 and b1 are the differences in the out-
come that would have been observed under different treat-
ments comparing 2 different populations. The first
parameter, b0 ¼ E[Y0 j S1 ¼ 0, S0 ¼ 1] – E[Y0 j S1 ¼
S0 ¼ 1], contrasts the average outcomes under the control
condition between 1) the population that would have sur-
vived under control but not under treatment and 2) the popula-
tion that would have survived under both treatment and control.
The second parameter,b1¼ E[Y1 j S1¼ 1, S0¼ 0] – E[Y1 j S1¼
S0 ¼ 1], contrasts the average outcomes under treatment be-
tween 1) the population that would have survived under
treatment but not under control and 2) the population that
would have survived under both treatment and control.
Note that, because the second population in both compar-

isons constitutes the group that would have survived irre-
spective of treatment, it is likely that, overall, this
population will be healthier than the other population in
each comparison, suggesting that the parameters b0 and b1
will both likely be negative. The third sensitivity analysis
parameter, p01¼ Pr(S1¼ 0, S0¼ 1), is the proportion of the
defiers who would have survived under the control condi-
tion but not under treatment. The parameter p01 is simply
the proportion of defiers. This proportion is assumed to be 0
by the monotonicity assumption (assumption 1) and result
1 but is allowed to be nonzero by result 3.

By varying the 3 parameters, b0, b1, and p01, a researcher
can use result 3 to assess what the SACE might be, even
when the monotonicity assumption (assumption 1) is vio-
lated. Some further remarks about bounds in the context of
violations of the monotonicity assumption are given in Web
supplement 2.

Appendix Table 2. Data From a Hypothetical Randomized Trial Under the Principal Stratification

Treatment Group Placebo Group

Always Survivor Never Survivor Complier Always Survivor Never Survivor Complier

No. overall 50 20 30 50 20 30

No. of survivors 50 0 30 50 0 0

No. of survivors
with high QOL

35 Undefined 5 10 Undefined Undefined

Abbreviation: QOL, quality of life.
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