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ABSTRACT

The sequentially Markov coalescent is a simplified genealogical process that aims to capture the
essential features of the full coalescent model with recombination, while being scalable in the number of
loci. In this article, the sequentially Markov framework is applied to the conditional sampling distribution
(CSD), which is at the core of many statistical tools for population genetic analyses. Briefly, the CSD
describes the probability that an additionally sampled DNA sequence is of a certain type, given that a
collection of sequences has already been observed. A hidden Markov model (HMM) formulation of the
sequentially Markov CSD is developed here, yielding an algorithm with time complexity linear in both the
number of loci and the number of haplotypes. This work provides a highly accurate, practical approxi-
mation to a recently introduced CSD derived from the diffusion process associated with the coalescent
with recombination. It is empirically demonstrated that the improvement in accuracy of the new CSD over
previously proposed HMM-based CSDs increases substantially with the number of loci. The framework
presented here can be adopted in a wide range of applications in population genetics, including imputing
missing sequence data, estimating recombination rates, and inferring human colonization history.

THE conditional sampling distribution (CSD) de-
scribes the probability, under a particular pop-

ulation genetic model, that an additionally sampled
DNA sequence is of a certain type, given that a collec-
tion of sequences has already been observed. In many
important settings, the relevant population genetic
model is the coalescent with recombination, for which
the true CSD, denoted by p, does not have a known
analytic formula. Nevertheless, the CSD p and, in par-
ticular, approximations thereof have found a wide range
of applications in population genetics.

One important problem in which the CSD plays a
fundamental role is describing the posterior distri-
bution of genealogies under the coalescent process.
Stephens and Donnelly (2000) showed that the true
posterior distribution can be written in terms of p and
can be approximated by using an approximate CSD,
denoted p̂. This observation has been used (Stephens

and Donnelly 2000; Fearnhead and Donnelly 2001;
De Iorio and Griffiths 2004a,b; Fearnhead and
Smith 2005; Griffiths et al. 2008) to construct impor-
tance sampling schemes for likelihood computation
and ancestral inference under the coalescent, including
extensions such as recombination and population struc-

ture. In conjunction with composite-likelihood frame-
works (Hudson 2001; Fearnhead and Donnelly 2002),
these importance sampling methods have been used, for
example, to estimate fine-scale recombination rates
(McVean et al. 2004; Fearnhead and Smith 2005;
Johnson and Slatkin 2009).

Li and Stephens (2003) introduced a different
application of the CSD, observing that the probability
of sampling a set of haplotypes can be decomposed into
a product of CSDs and therefore can be approximated
by a product of approximate CSDs p̂. Similar applications
of the CSD have yielded methods for estimating recom-
bination rates (Li and Stephens 2003; Crawford et al.
2004; Stephens and Scheet 2005) and gene conversion
parameters (Gay et al. 2007; Yin et al. 2009), for phasing
genotype data into haplotype data (Stephens and Scheet

2005), for imputing missing data to improve power in
association studies (Stephens and Scheet 2005; Li and
Abecasis 2006; Scheet and Stephens 2006; Marchini

et al. 2007; Howie et al. 2009), for inferring ancestry in
admixed populations (Price et al. 2009), and for inferring
demography (Hellenthal et al. 2008; Davison et al.
2009).

In all applications, the fidelity with which the sur-
rogate CSD p̂ approximates the true CSD p is critical to
the quality of the result. Furthermore, the time re-
quired to compute probabilities under the CSD is
important, as many of the above methods are now
routinely applied to genome-scale data sets. As a
result, many approximate CSDs have been proposed,

Supporting information is available online at http://www.genetics.org/
cgi/content/full/genetics.110.125534/DC1.

1Corresponding author: Department of EECS, 683 Soda Hall, no. 1776,
University of California, Berkeley, CA 94720-1776.
E-mail: yss@cs.berkeley.edu

Genetics 187: 1115–1128 (April 2011)

http://www.genetics.org/cgi/content/full/genetics.110.125534/DC1
http://www.genetics.org/cgi/content/full/genetics.110.125534/DC1
http://www.genetics.org/cgi/content/full/genetics.110.125534/DC1
http://www.genetics.org/cgi/content/full/genetics.110.125534/DC1
http://www.genetics.org/cgi/content/full/genetics.110.125534/DC1


particularly for the coalescent with recombination.
Fearnhead and Donnelly (2001) introduced an
approximation in which an additionally sampled hap-
lotype is constructed as an imperfect mosaic of pre-
viously sampled haplotypes, with mosaic breakpoints
caused by recombination events and imperfections
corresponding to mutation events. The resulting CSD,
which we denote by p̂FD, can be cast as a hidden Markov
model (HMM), and the associated conditional sam-
pling probability (CSP) can be computed with time
complexity linear in both the number of previously
sampled haplotypes and the number of loci. Li and
Stephens (2003) proposed a related model that can be
viewed as a modification to p̂FD limiting the state space
of the HMM, hence providing a constant factor im-
provement in the time complexity; we denote the
corresponding CSD by p̂LS.

Following the theoretical work of De Iorio and
Griffiths (2004a), Griffiths et al. (2008) derived an
approximate CSD from the Wright–Fisher diffusion
process associated with the two-locus coalescent with
recombination. More recently, Paul and Song (2010)
generalized this work to an arbitrary number of loci and
demonstrated that the resulting CSD, which we denote
by p̂PS, can also be described by a genealogical process.
Though it is more accurate than both p̂LS and p̂FD,
computing the CSP under p̂PS has time complexity
superexponential in the number of loci. To ameliorate
this limitation, Paul and Song introduced the approx-
imate CSD p̂PS;1, which follows from prohibiting co-
alescence events in the genealogical process associated
with p̂PS. Computing the CSP under p̂PS;1 has time
complexity exponential in the number of loci. Although
this is an improvement over the superexponential
complexity associated with p̂PS, it is still impracticable
to use p̂PS;1 for .20 loci.

In this article, we introduce an alternate approxima-
tion that is scalable in the number of loci, while
maintaining the key features of p̂PS that lead to high
accuracy. Specifically, motivated by the sequentially
Markov coalescent (SMC) introduced by McVean and
Cardin (2005), we derive a sequentially Markov ap-
proximation to p̂PS. The key idea is to consider the
marginal genealogies at each locus sequentially, using
the genealogical description of p̂PS. In general, the
sequence of marginal genealogies is not Markov, but, as
in McVean and Cardin (2005), we make approxima-
tions to provide a Markov construction for the se-
quence. We denote the resulting approximation of p̂PS

by p̂SMC. The CSD p̂SMC can also be obtained from p̂PS by
prohibiting a certain class of coalescence events, a fact
that mirrors the relation between the SMC and the
coalescent with recombination (McVean and Cardin

2005). We formalize this relation by proving that p̂SMC is,
in fact, equal to p̂PS;1.

Due to its sequentially Markov construction, p̂SMC can
be cast as an HMM. Unfortunately, the state space of the

HMM is continuous, and so efficient algorithms for CSP
computation and posterior inference are not known.
Our solution is to discretize the state space. The
discretization procedure we develop is related, though
not identical, to the Gaussian quadrature method
employed by Stephens and Donnelly (2000) and
Fearnhead and Donnelly (2001). Although we focus
on the CSD problem here, we believe that our general
approach has the potential to foster applications of the
SMC in other settings as well (see Hobolth et al. 2007;
Dutheil et al. 2009).

Having discretized the continuous state space, we
apply standard HMM theory to obtain an efficient
dynamic program for computing the CSP under the
discretized approximation of p̂SMC. The resulting time
complexity is linear in both the number of previously
sampled haplotypes and the number of loci. This time
complexity is the same as that for p̂FD and p̂LS and hence
is a substantial improvement over p̂PS;1. In summary, the
work presented here provides a practical approximation
to p̂PS, which was derived from the diffusion process
associated with the coalescent with recombination.
Furthermore, as detailed later, the improvement in
accuracy of our new CSD over p̂FD and p̂LS increases
substantially with the number of loci.

The remainder of this article is organized as follows.
In model, we present the necessary notation and
background and describe our new CSD p̂SMC. We also
give an overview of the proof that p̂SMC is equivalent to
p̂PS;1 and demonstrate several other useful properties.
In discretization of the hmm, we describe the
discretization of p̂SMC, and in empirical results, we
provide empirical evidence that the discretized approx-
imation performs well, with regard to both accuracy and
run time. Finally, in discussion we mention some
connections to existing models and describe possible
applications and extensions, in particular conditionally
sampling more than one haplotype.

MODEL

In this section, we describe the key transition and
emission distributions for the HMM underlying p̂SMC.
Further, we demonstrate that p̂SMC is equivalent to p̂PS;1,
the variant of p̂PS with coalescence disallowed, and also
show that the transition density satisfies several useful
properties.

Notation: We consider haplotypes in the finite-sites
finite-alleles setting. Denote the set of loci by L ¼
{1, . . . ,k} and the set of alleles at locus ‘ 2 L by E‘.
Mutations occur at locus ‘ 2 L at rate u‘/2 and ac-
cording to the stochastic matrix P ‘ð Þ ¼

�
P ‘ð Þ

a;a9

�
a;a92E ‘

.
Denote the set of breakpoints by B¼ {(1, 2), . . . , (k� 1,
k)}, where recombination occurs at breakpoint b 2 B at
rate rb/2.
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The space of k-locus haplotypes is denoted by H ¼
E1 3 . . . 3 Ek. Given a haplotype a 2 H, we denote by
a[‘] 2 E‘ the allele at locus ‘ 2 L and by a[1 : ‘] the
partial haplotype (a[1], . . . , a[‘]). A sample configura-
tion of haplotypes is specified by a vector n ¼ nað Þa2H,
with na being the number of haplotypes of type a in the
sample. The total number of haplotypes in the sample is
denoted by jnj ¼ n. Finally, we use ea to denote the
singleton configuration comprising a single a haplotype.

A brief review of the CSD p̂PS: The approximate
CSD p̂PS is described by a genealogical process closely
related to the coalescent with recombination. We pro-
vide below a brief description of the framework and
refer the reader to Paul and Song (2010) for further
details.

Suppose that, conditioned on having already ob-
served a haplotype configuration n, we wish to sample
a new haplotype a. Define A*(n) to be the nonrandom
trunk ancestry for n, in which lineages associated with
the haplotypes do not mutate, recombine, or coalesce
with one another, but rather extend infinitely into the
past. We assume that the unknown ancestry associated
with n is A*(n) and sample a conditional ancestry C as-
sociated with a. Within the conditional ancestry, line-
ages evolve backward in time with the following rates:

Mutation: Each lineage mutates at locus ‘ 2 L with rate
u‘/2, according to P(‘).

Recombination: Each lineage undergoes recombination
at breakpoint b 2 B with rate rb/2.

Coalescence : Each pair of lineages coalesces with rate 1.
Absorption: Each lineage is absorbed into each lineage of
A*(n) at rate 1/2.

When every lineage has been absorbed into A*(n),
the process terminates. The type of every lineage in
C can now be inferred, and a sample for a is gen-
erated. An illustration of this process is presented in
Figure 1A.

Although a recursion for computing the CSP p̂PSðajnÞ
is known (Paul and Song 2010, Equation 7), it is
computationally intractable, and Paul and Song approx-
imate the genealogical process by disallowing coales-
cence within the conditional genealogy, denoting the
resulting CSD by p̂PS;1. The recursion for p̂PSðajnÞ (Paul

and Song 2010, Equation 12) is amenable to dynamic
programming, though it still has time complexity expo-
nential in the number k of loci.

The sequentially Markov coalescent: The sequential
interpretation of the coalescent with recombination was
introduced by Wiuf and Hein (1999). They observed
that an ancestral recombination graph (ARG) may be
simulated sequentially along the chromosome. In partic-
ular, the marginal coalescent tree at a given locus can be
sampled conditional on the marginal ARG for all
previous loci. The full ARG is then sampled by first
sampling a coalescent tree at the leftmost locus and
then proceeding to the right.

McVean and Cardin (2005) proposed a simplification
of this process. Though McVean and Cardin presented
their work for the infinite-sites model, we state (but do
not derive) the analogous results for a finite-sites, finite-
alleles model. In their approach, the marginal coales-
cent tree at locus ‘ is sampled conditional only on the
marginal coalescent tree at locus ‘ � 1. In particular,
setting b¼ (‘� 1, ‘)2 B, (1) recombination breakpoints
are realized as a Poisson process with rate rb/2 on the
marginal coalescent tree at locus ‘ � 1, (2) the lineage
branching from each recombination breakpoint asso-
ciated with locus ‘ � 1 is removed, and (3) the lineage
branching from each recombination breakpoint associ-
ated with locus ‘ is subject to coalescence with other
lineages at rate 1. The resulting tree is the marginal
genealogy at locus ‘. This approximation is called the
sequentially Markov coalescent (SMC) and is equivalent
to a variant of the coalescent with recombination that

Figure 1.—Illustration of the corresponding genealogical
and sequential interpretations for a realization of p̂PSð� jnÞ.
The three loci of each haplotype are each represented by a
solid circle, with the color indicating the allelic type at that
locus. The trunk genealogy A*(n) and conditional genealogy
C are indicated. Time is represented vertically, with the pre-
sent (time 0) at the bottom of the illustration. (A) The gene-
alogical interpretation: Mutation events, along with the locus
and resulting haplotype, are indicated by small arrows. Re-
combination events, and the resulting haplotype, are indi-
cated by branching events in C. Absorption events, and the
corresponding absorption time [t(a) and t(b)] and haplotype
[h(a) and h(b), respectively], are indicated by dotted-dashed
horizontal lines. (B) The corresponding sequential interpre-
tation: The marginal genealogies at the first, second, and
third locus (S1, S2, and S3) are emphasized as dotted, dashed,
and solid lines, respectively. Mutation events at each locus,
along with resulting allele, are indicated by small arrows. Ab-
sorption events at each locus are indicated by horizontal lines.
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disallows coalescence between lineages ancestral to
disjoint regions of the sequence (McVean and Cardin

2005).
The sequentially Markov CSD p̂SMC: We now de-

scribe a sequentially Markov approximation to the
genealogical process underlying p̂PS. Our construction
is similar to that given by McVean and Cardin (2005),
described above, though the resulting dynamics are
less involved since the conditional genealogy is con-
structed for a single haplotype. First, observe that under
p̂PSð�j nÞ, the marginal conditional genealogy at a given
locus ‘ 2 L is entirely determined by two random
variables: the absorption time, which we denote T‘,
and the absorption haplotype, which we denote H‘.
The present corresponds to time 0 and T‘ 2 [0, ‘]. See
Figure 1B for an illustration. For convenience, we
write S‘ ¼ (T‘, H‘) for the random marginal condi-
tional genealogy at locus ‘ 2 L and s‘ ¼ (t‘, h‘) for a
realization.

Within the marginal conditional genealogy at locus
‘ 2 L, note that T‘ and H‘ are independent, with T‘
distributed exponentially with parameter n/2 and H‘

distributed uniformly over the n haplotypes of n. Thus,
the marginal conditional genealogy S‘ at locus ‘ is
distributed with density z(n), where

zðnÞðs‘Þ ¼
nh‘

2
e�ðn=2Þt ‘ : ð1Þ

Conditioning on S‘�1¼ s‘�1¼(t‘�1, h‘�1), the mar-
ginal conditional genealogy S‘, for ‘ $ 2, is sampled by
a process analogous to that described above for the
SMC. Setting b¼ (‘� 1, ‘) 2 B, the sampling procedure
is as follows (see Figure 2 for an accompanying
illustration): (1) Recombination breakpoints are re-
alized as a Poisson process with rate rb/2 on the
marginal conditional genealogy s‘�1; (2) going back-
ward in time, the lineage associated with locus ‘�1
branching from each recombination breakpoint is
removed, so that only the lineage more recent than
the first (i.e., the most recent) breakpoint remains; and
(3) the lineage associated with locus ‘ branching from
the first recombination breakpoint is absorbed into a
particular lineage of A*(n) at rate 1/2.

From the above description, we deduce that there
is no recombination between loci ‘�1 and ‘ with
probability exp �ðrb=2Þt‘�1ð Þ, and in this case the
marginal conditional genealogy is unchanged; that is,
S‘ ¼ s‘�1. Otherwise, the time Tr of the first recombina-
tion breakpoint is distributed exponentially with pa-
rameter rb/2, truncated at time t‘�1, and the additional
time Ta until absorption is distributed exponentially
with parameter n/2. Thus we have S‘ ¼ (Tr 1 Ta, H‘),
where H‘ is chosen uniformly at random from the
sample n. Taking a convolution of Tr and Ta, the
transition density f nð Þ

rb
ð�js‘�1Þ is given by

fðnÞrb
ðs‘js‘�1Þ ¼ e�ðrb=2Þt ‘�1 � ds‘�1;s‘

1
nh‘

n

ðt ‘�1^t ‘

0

rb

2
e�ðrb=2Þt

� �
n

2
e�ðn=2Þðt ‘�tÞdt;

ð2Þ

where t‘�1^t‘ denotes the minimum of t‘�1 and t‘.
Finally, conditioning on S‘¼ s‘, recall that mutations

are realized as a Poisson process (cf. Stephens and
Donnelly 2000) with rate u‘/2. Therefore, a particular
allele a 2 E‘ is observed with probability

j
ðnÞ
u‘
ðajs‘Þ ¼ e�ðu‘=2Þt ‘

X‘

m¼0

1

m!

u‘

2
t‘

� �m

ðPð‘ÞÞm
� �

h‘ ‘½ �;a : ð3Þ

Hereafter, we omit the superscript nð Þ and the subscripts
u‘ and rb from these densities, whenever the context is
unambiguous.

The sequentially Markov approximation to p̂PS can
be cast as a continuous-state HMM. In generating a
haplotype a, the observed state, the hidden state, and
initial, transition, and emission densities are given by
the following:

Observed state: At locus ‘ 2 L, the observed state is the
allele a[‘].

Hidden state: At locus ‘ 2 L, the hidden state is the
marginal genealogy S‘ ¼ (T‘, H‘).

Initial density: z is defined in (1).
Transition density: f is defined in (2).
Emission density: j is defined in (3).

Writing p̂SMC for the sequentially Markov approxima-
tion to p̂PS, we can use the forward recursion (see, e.g.,
Doucet and Johansen 2008) to get

Figure 2.—Illustration of the (Markov) process for sam-
pling the absorption time T‘ given the absorption time
T‘�1 ¼ t‘�1. In step 1, recombination breakpoints are realized
as a Poisson process with rate rb/2 on the marginal condi-
tional genealogy with absorption time t‘�1. In step 2, the lin-
eage branching from each breakpoint associated with locus
‘�1 is removed, so that only the lineage more recent than
the first breakpoint, at time Tr, remains. In step 3, the lineage
branching from the first recombination breakpoint associ-
ated with locus ‘ is absorbed after time Ta distributed expo-
nentially with rate n/2. Thus, T‘ ¼ Tr 1 Ta.
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p̂SMCða jnÞ ¼
ð

f SMCða½1 : k�; skÞdsk ; ð4Þ

where fSMC (�, �) is defined by

f SMCða½1 : ‘�; s‘Þ ¼ jða½‘� j s‘Þ

3

ð
fðs‘ j s‘�1Þf SMCða½1 : ‘� 1�; s‘�1Þds‘�1; ð5Þ

with base case

f SMCða½1�; s1Þ ¼ jða½1�js1Þ � zðs1Þ: ð6Þ

Though we cannot analytically solve the above recursion
for p̂SMC, in the next section we derive a discretized
approximation with time complexity linear in both the
number of loci k and the number of haplotypes n.
Before doing so, we briefly discuss some appealing
properties of p̂SMC.

Properties of p̂SMC: Recall that the SMC approxima-
tion of McVean and Cardin (2005) is equivalent to a
variant of the coalescent with recombination disallow-
ing coalescence events between lineages ancestral to
disjoint regions. Similarly, the CSD p̂PS;1, when used to
sample a single haplotype, is a variant of p̂PS disallowing
the same class of coalescence events. We might there-
fore expect that the sequentially Markov approximation
of p̂PS described above is equivalent to p̂PS;1, and in fact
we can show that this is true.

Proposition 1. For an arbitrary single haplotype a 2 H
and haplotype configuration n, p̂SMCða jnÞ ¼ p̂PS;1ða jnÞ.

We present a sketch of the proof here and refer the
reader to supporting information, File S1, for further
details.

Sketch of Proof. The key idea of the proof is to introduce
a genealogical recursion for f(a, sk), the joint density func-
tion associated with sampling haplotype a under p̂PS;1ð Þ
and the marginal genealogy at the last locus sk.This recursion
can be constructed following the lines of Griffiths and
Tavaré (1994) to explicitly incorporate coalescent time into
a genealogical recursion.

By partitioning with respect to the most recent event
occurring at the last locus k, it is possible to inductively
show that fSMC(a, sk) ¼ f(a, sk). Furthermore, the equal-
ity
Ð
f ða; skÞdsk ¼ p̂PS;1ðajnÞ can be verified, and thus we

conclude that

p̂PS;1ða jnÞ ¼
ð

f ða; skÞdsk ¼
ð

f SMCða; skÞdsk ¼ p̂SMCða j nÞ: h

We now describe other intuitively appealing proper-
ties of p̂SMC. In particular, it can be verified that the
detailed-balance condition

fðs9 j sÞzðsÞ ¼ fðs j s9Þzðs9Þ ð7Þ

holds for the initial and transition densities, z and
f, respectively. This immediately implies that the ini-
tial distribution z is stationary under the given tran-
sition dynamics; i.e., the invariance condition

zðsÞ ¼
ð

fðs j s9Þzðs9Þds9

is satisfied. Thus, S‘ is marginally distributed according
to z for all loci ‘ 2 L, and in particular the marginal
distribution of T‘ is exponential with rate n/2. This
parallels the fact that the marginal genealogies under
the SMC (and the coalescent with recombination) are
distributed according to Kingman’s coalescent.

Similarly, the transition density exhibits a consistency
property, which we call the locus-skipping property. In-
tuitively, this property states that transitioning directly
from locus ‘ � 1 to ‘ 1 1 can be accomplished by using
the transition density parameterized with the sum of the
recombination rates. Formally, the following equality
holds for all r1, r2 $ 0:ð

fr2ðs‘11 j s‘Þfr1ðs‘ j s‘�1Þds‘ ¼ fr1 1 r2ðs‘11 j s‘�1Þ: ð8Þ

This property, in conjunction with recursion (5), is
computationally useful, as it enables loci ‘ 2 L for which
a[‘] is unobserved to be skipped in computing the CSP
p̂SMCða jnÞ.

Finally, the conditional expectation of T‘ given T‘�1¼
t‘�1 is

E½T ‘jt‘�1� ¼
2

rb
1

2

n

� �
ð1� e�ðrb=2Þt ‘�1Þ; ð9Þ

where b ¼ (‘ � 1, ‘) 2 B. Asymptotically, this expression
provides several intuitive results. As rb / ‘,E[T‘jt‘�1] /
2/n; that is, recombination happens immediately, and
2/n is the expectation of the additional absorption time
Ta. As rb / 0, we get E[T‘jt‘� 1] / t‘�1. In this case there
is no recombination, and the absorption time does not
change. Further, E[T‘jt‘� 1] / 2/rb 1 2/n holds as t‘�1

/ ‘. Here, recombination must occur, and the expo-
nentially distributed time is not truncated, so the
expectation is the sum of the expectations of two
exponentials. Finally, as t‘�1 / 0 we have E[T‘jt‘� 1]
/ 0. No recombination can occur, and so the absorp-
tion time is unchanged.

DISCRETIZATION OF THE HMM

In the previous section we described a sequentially
Markov approximation of the CSD p̂PS and showed
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that it can be cast as an HMM. Because the absorption
time component of the hidden state is continuous, the
dynamic program associated with the classical HMM
forward recursion is not applicable. However, by dis-
cretizing the continuous component, we are once
again able to obtain a dynamic programming algo-
rithm, resulting in an approximate CSP computation
linear in both the number of loci and the number of
haplotypes.

Rescaling time: Recall from the previous section that
the marginal absorption time at each locus is expo-
nentially distributed with parameter n/2. To use the
same discretization for all n, we follow Stephens and
Donnelly (2000) and Fearnhead and Donnelly

(2001) and transform the absorption time to a more
natural scale in which the marginal absorption time is
independent of n. In particular, define the trans-
formed state S ¼ (T, H) where T ¼ (n/2)T. We de-
note a realization of S by s ¼ (t, h). In the appendix,
we provide expressions for the transformed quanti-
ties z̃ �ð Þ; f̃ �j�ð Þ; j̃ �j�ð Þ and f̃SMCð�; �Þ derived from (1),
(2), (3), and (5), respectively.

Using this time-rescaled model, the marginal ab-
sorption time at each locus is exponentially distrib-
uted with parameter 1. Because this distribution is
independent of n and the coalescent model parame-
ters r and u, we expect that a single discretization of
the transformed absorption time is appropriate for a
wide range of haplotype configurations and parameter
values.

Discretizing absorption time: Our next objective is
to discretize the absorption time T 2 R$0. Let 0 ¼ x0 ,

x1 , ��� , xd ¼ ‘ be a finite strictly increasing sequence
in R$0 [ {‘} so that D ¼ {Dj ¼ [xj�1, xj)}j¼1, . . . ,d is a
d-partition of R$0.

Toward formulating a D -discretized version of the
dynamics exhibited by the transformed HMM, we
define the following D -discretized version of the density
f̃SMC :

f̃SMCða½1 : ‘�; ðDj ; h‘ÞÞ :¼
ð

Dj

f̃SMCða½1 : ‘�; ðt‘; h‘ÞÞdt‘;

ð10Þ

for all ‘ 2 L. Unfortunately, we cannot obtain a recur-
sion for f̃SMC a½1 : ‘�; ðDj ; h‘Þ

� �
via the definition of f̃SMC.

Therefore, we make an additional approximation,
namely that the transition and emission densities are
conditionally dependent on the absorption time T
only through the event {Dj 3 T }; i.e., the densities de-
pend on the interval Dj to which T belongs but not
on the actual value of T. Abusing notation, define
f̃ �jðDj ; hÞ
� �

and j̃ �jðDj ; hÞ
� �

as the transition and emis-
sion densities, respectively, conditioned on the
event {Dj 3 T }. Formally, we make the following
approximations:

Approximation 1: For all t 2 Dj ; f̃ð�jðt; hÞÞ � f̃ð�jðDj ; hÞÞ:

ð11Þ

Approximation 2: For all t 2 Dj ; j̃ð�jðt; hÞÞ � j̃ð�jðDj ; hÞÞ:

ð12Þ

Together with the building blocks of the time-rescaled
HMM, these assumptions provide a recursive approxi-
mation of f̃SMC a½1 : ‘�; ðDj ; h‘Þ

� �
, which we denote by

F a
‘ Dj ; h‘
� �

. Specifically, assumptions (11) and (12)
imply that the integral recursion for f̃SMC reduces to
the discrete recursion

F a
‘ ðDj ; h‘Þ ¼ j̃ða½‘� j ðDj ; h‘ÞÞ

3
X
h
‘�1

Xd

i¼1

f̃ððDj ; h‘ÞjðDi ; h‘�1ÞÞF a
‘�1ðDi ; h‘�1Þ;

ð13Þ
with base case

F a
1 ðDj ; h1Þ ¼ j̃ða½1� j ðDj ; h1ÞÞ � z̃ððDj ; h1ÞÞ; ð14Þ

where we have defined distributions f̃ ðDj ; h‘Þ j ðDi ;
�

h‘�1ÞÞ :¼
Ð

Dj
f̃ ðt‘; h‘Þ j ðDi ; h‘�1Þð Þdt‘ and z̃ Dj ; h‘

� �� �
:¼Ð

Dj
z̃ t‘; h‘ð Þð Þdt‘. Setting w ið Þ ¼

Ð
Di

e�tdt, we get

z̃ðDi ; h‘Þ ¼
nh‘

n
� wðiÞ: ð15Þ

Turning to the transition density f̃ �jðDi ; hÞð Þ, which is
conditioned on the event {Dj 3 T }, and recalling that T
is marginally exponentially distributed with parameter
1, we obtain

f̃ððDj ; h‘ÞjðDi ; h‘�1ÞÞ

¼ 1

wðiÞ

ð
Dj

ð
Di

f̃ððt‘; h‘Þ j ðt‘�1; h‘�1ÞÞe�t‘�1 dt‘�1dt‘

¼ yðiÞ � di;j dh‘�1;h‘ 1 zði;jÞ � nh‘

n
;

ð16Þ

with analytic expressions for y(i) and z(i,j) provided in the
appendix. Note that assumption (11) is not used here;
rather, the formula follows from using the time-rescaled
version of the transition density (2) in the double
integral. An expression for the emission density
j̃ �jðDj ; hÞ
� �

can be similarly obtained,

j̃ða½‘� j ðDi ; h‘ÞÞ ¼
1

wðiÞ

ð
Di

j̃ða½‘� j ðt‘; h‘ÞÞe�t‘dt‘

¼
X‘

k¼0

yðiÞðkÞ � ðPð‘ÞÞ
k

h ‘ ‘½ �;a ‘½ �; ð17Þ

with an analytic expression for y(i)(k) also given in the
appendix. Again, assumption (12) is not used here; the

1120 J. S. Paul, M. Steinrücken and Y. S. Song



second equality of (17) follows from using the time-
rescaled version of the emission probability (3) in the
integral. In summary, F a

‘ Dj ; h‘
� �

can be computed ef-
ficiently using (13), and p̂SMC að Þ can be approximated by

p̂SMCðaÞ �
X

hk

Xd

j¼1

F a
k ðDj ; hkÞ: ð18Þ

Equations 13–18 provide the requisite D -discretized
versions of the transformed densities. Note that these
equations characterize an HMM; that the Markov
property holds on the discretized state space D follows
from assumptions (11) and (12) (Rosenblatt 1959). In
fact, (13–18) may alternatively be obtained by assuming
that the Markov property holds on D and writing down
the relevant transition and emission probabilities with
the interpretations given above. In the remainder of this
section, we examine some general properties of the
discretized dynamics and also provide one method for
choosing a discretization D.

Computational complexity of the discretized recursion:
We first consider the asymptotic complexity of computing
the CSP under the D-discretized approximation for p̂SMC.
Substituting Equation 16 into the key recursion (13) gives

F a
‘ ðDj ; h‘Þ ¼ j̃ða½‘� j ðDj ; h‘ÞÞ

3 yðjÞF a
‘�1ðDj ; h‘Þ1

nh‘

n

Xd

i¼1

zði;jÞ
X
h‘�1

F a
‘�1ðDi ; h‘�1Þ

" #

ð19Þ
for ‘ $ 2. For a fixed discretization D, the expressions
j̃ �jðDj ; hÞ
� �

, y(i), and z(i,j) depend only on the total sample
size n, the mutation and recombination rates (u‘ and
r‘), and the boundary points x0, . . . , xd of D ; these may
be precomputed and cached for relevant ranges of
values. In conjunction with the base case (14), there is a
dynamic program (see the appendix for details) for
computing the CSP under the D -discretized approxi-
mation (18) for p̂SMC with time complexity O(k � (nd 1

d 2)), where k is the number of loci. As in Fearnhead

and Donnelly (2001), this time complexity is better
than O(k � (nd)2), the result that would be obtained by
naive use of the HMM forward algorithm.

Properties of the discretization: Recall the detailed-
balance condition (7) associated with p̂SMC. Using ex-
pressions (15) and (16), together with Bayes’ rule, we
find that

f̃ððDj ; h‘Þ j ðDi ; h‘�1ÞÞ � z̃ðDi ; h‘�1Þ
¼ f̃ððDi ; h‘�1Þ j ðDj ; h‘ÞÞ � z̃ðDj ; h‘Þ ð20Þ

holds (the details are provided in the appendix). Thus,
the discretized approximation of p̂SMC satisfies an anal-
ogous detailed balance condition. As a result, the mar-

ginal distribution at each locus of the discretized Markov
chain is (again) given by z̃ and the approximation ex-
hibits the expected symmetries; for example, equal CSPs
are computed whether starting at the leftmost locus and
proceeding right or starting at the rightmost locus and
proceeding left.

Furthermore, recall the locus-skipping property (8)
associated with p̂SMC. The first equality in (16) and
assumption (11) imply the relation

f̃r1 1 r2 ððDj ; h‘11Þ j ðDi ; h‘�1ÞÞ

�
X

h‘

Xd

m¼1

f̃r2ððDj ; h‘11Þ j ðDm ; h‘ÞÞ � f̃r1 ððDm ; h‘Þ j ðDi ; h‘�1ÞÞ

ð21Þ
for all r1, r2 $ 0 (see the appendix for details). Thus, the
discretized approximation of p̂SMC approximately sat-
isfies an analogous locus-skipping condition, up to the
error introduced via approximation (11). This approx-
imation is particularly useful in scenarios when data are
missing (i.e., a[‘] is unknown for one or more ‘ 2 L),
since this property reduces the time complexity of the
dynamic program given above. In particular, when m of
the k loci are missing, the time complexity is reduced to
O((k � m) � (nd 1 d 2)). This is relevant, for example, in
importance sampling applications (Fearnhead and
Donnelly 2001).

Discretization choice and the definition of p̂SMC dð Þ:
Finally, we discuss a method for choosing a discretiza-
tion D of the absorption time. Recalling that marginally
the transformed absorption time is exponentially dis-
tributed with parameter 1, let {(w( j), t( j))}j ¼ 1, . . . ,d be
the d-point Gaussian quadrature associated with the
function f(t) ¼ e�t (Abramowitz and Stegun 1972,
Section 25.4.45). Set x0 ¼ 0, and set xj such thatÐ xj

xj�1
e�tdt ¼ w jð Þ. Since

P
d
j¼1 w jð Þ ¼ 1, the points

0¼ x0 , � � � , xd ¼ ‘ determine a partition D ¼
{Dj ¼ [xj�1, xj)}j¼1, . . . ,d of R$0.

The use of Gaussian quadrature evokes the work of
Stephens and Donnelly (2000) and Fearnhead and
Donnelly (2001). Although the method we employ is
related, it is different in that we do not use the
quadrature directly [for example, the values of the
quadrature points {t(j )} are never used explicitly]; rather,
we use the Gaussian quadrature as a reasonable way
of choosing a discretization D. We henceforth write
p̂SMC dð Þ for the d-point Gaussian quadrature-discretized
version of p̂SMC.

EMPIRICAL RESULTS

In the previous section, we defined a discretized
approximation p̂SMC dð Þ of the CSD p̂SMC. In this section,
we examine the accuracy of this approximation and also
compare it to the widely used CSDs p̂FD and p̂LS, thereby
providing evidence that p̂SMC dð Þ is a more accurate and
computationally tractable CSD.
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Data simulation: For simplicity, we consider a two-
allele model with P ‘ð Þ ¼ P ¼ ð 0 1

1 0
Þ, u‘ ¼ u for ‘ 2 L and

rb ¼ r for b 2 B. We sample a k-locus haplotype
configuration n by (i) using a coalescent with recombi-
nation simulator, with r ¼ r0 and u ¼ u0, to sample a k0-
locus (with k0 [ k) n-haplotype configuration n0, and
(ii) restricting attention to the central k segregating loci
in n0. This procedure corresponds to the usage of the
CSD on typical genomic data, in which only segregating
sites are considered.

Given a k-locus n-haplotype configuration n, we
obtain a k-locus n-haplotype conditional configuration
C¼ (a, n� ea) by withholding a single haplotype a from
n uniformly at random. For notational simplicity, we
define p on such a conditional configuration in the
natural way: p(C) ¼ p(a j n � ea).

CSD accuracy: We evaluate the accuracy of a CSD p̂

relative to a reference CSD p0 using the expected
absolute log-ratio (ALR) error,

ALRErrk;nðp̂ jp0Þ �
1

N

XN
i¼1

����log10
p̂ðC ðiÞÞ
p̂0ðC ðiÞÞ

� �����; ð22Þ

where N denotes the number of simulated data sets and
C(i) is a k-locus n-haplotype conditional configuration
sampled as indicated above, and both p̂ and p0 are
evaluated using the true parameter values u¼ u0 and r¼
r0. For example, if ALRErrk;nðp̂ jp0Þ ¼ 1, the CSP
obtained using p̂ differs from that obtained by p0 by a
factor of 10, on average, for a randomly sampled k-locus
n-haplotype conditional configuration.

Using the ALR error, we evaluate the accuracy of
several CSDs: p̂FD (Fearnhead and Donnelly 2001);
p̂LS (Li and Stephens 2003); p̂SMC, evaluated using the
recursion for p̂PS;1 (Paul and Song 2010); and p̂SMC dð Þ,
the d-point quadrature-discretized version of p̂SMC, for
d 2 {4, 18, 16}. We also evaluate p̂SMC-R, a variant of p̂PS;2

introduced in Paul and Song (2010) with computa-
tional time complexity O(k3 � n); the CSD p̂SMC-R is
described in more detail in the appendix.

In what follows, we set u0¼ 0.01 and r0¼ 0.05 and fix
n ¼ 10. For k # 10, it is possible to obtain a very good
approximation to the true CSD p using computationally
intensive importance sampling. The resulting values of
ALRErrk,n(� jp) are plotted in Figure 3A, as a function of
k. Supporting the conclusion of Paul and Song (2010),
p̂SMC is more accurate than both p̂LS and p̂FD, with the
disparity increasing as k increases. Moreover, the CSD
p̂SMC 8ð Þ is nearly as accurate as p̂SMC, suggesting that the
discretization is fairly accurate even for modest values of
d. Finally, the CSD p̂SMC-R has accuracy that is indistin-
guishable from p̂SMC.

To investigate these results as k increases, we consider
the ALR error relative to p̂SMC, which can be evaluated
exactly for k # 20; the resulting values of ALRErrk;n

ð�jp̂SMCÞ are plotted in Figure 3B, as a function of k. As k

increases, both p̂LS and p̂FD continue to diverge from
p̂SMC, suggesting that the increasing disparity in accu-
racy, directly observable in Figure 3A, continues for
larger values of k. As expected, the discretized approx-
imation p̂SMC dð Þ shows increased fidelity to p̂SMC for
larger values of d, and even p̂SMCð4Þ is substantially more
accurate, relative to p̂SMC, than are p̂LS and p̂FD.

It is too computationally expensive to compute p̂SMC

for k . 20. However, Figure 3B suggests that the CSD
p̂SMC-R is nearly indistinguishable from p̂SMC. Motivated
by this observation, we consider the error relative to
p̂SMC-R for k . 20. The values of ALRErrk;n �jp̂SMC-Rð Þ and
the analogously defined signed log-ratio (SLR) error
SLRErrk;n �jp̂SMC-Rð Þ are plotted as a function of k in
Figure 4, A and B, respectively. The trends observed in
Figure 3 are recapitulated in Figure 4A, suggesting that
they continue to hold for substantially larger values of k.
Interestingly, Figure 4B shows that p̂LS and p̂FD produce

Figure 3.—Absolute log-ratio error (ALRErr) of various
conditional sampling distributions. See (22) for a formal def-
inition of ALRErrk,n(� j �). The accuracy of p̂SMC-R is almost in-
distinguishable from that of p̂SMC, the most accurate of all
approximate CSDs considered here. As expected, discretiza-
tion reduces the accuracy somewhat, but even p̂SMC 4ð Þ is sub-
stantially more accurate than p̂LS and p̂FD. With u0¼ 0.01 and
r0 ¼ 0.05, we used the methodology described in the text to
sample 250 conditional configurations, each with n ¼ 10 hap-
lotypes and k loci. (A) Error is measured relative to the true
CSD p, estimated using computationally intensive importance
sampling. (B) Error is measured relative to p̂SMC, computed by
numerically solving a recursion for the equivalent CSD p̂PS;1.
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values significantly smaller than p̂SMC-R (and p̂SMC); for
example, p̂LS takes values that are, on average, a factor
of 10 smaller than p̂SMC-R for k ¼ 100. In conjunction
with our conclusion that p̂SMC is more accurate than p̂LS

and p̂FD, this suggests a similar systematic error with
respect to the true CSD.

For a discussion of CSD accuracy in the context of the
product of approximate conditionals (PAC) method (Li

and Stephens 2003), we refer the reader to Paul and
Song (2010). Since p̂SMCðdÞ is very close to p̂SMC ¼ p̂PS;1

(as demonstrated in the present paper), we anticipate
that using it produces similar results for PAC likelihood
estimation and recombination rate inference.

Running time comparison: We next consider the
empirically observed running time required to compute
each CSP. The results, obtained using the conditional
configurations with n¼ 10 and k2 {1, . . . , 100} simulated
as previously described, are presented in Table 1.
Looking across each row, it is evident that the running
time under p̂SMCðdÞ; p̂FD, and p̂LS depends linearly on

the number of loci k, matching the asymptotic time
complexity. Similarly, the running time under p̂SMC-R is
well matched by the theoretical cubic dependence on k.

Next, comparing p̂SMCðdÞ; p̂FD, and p̂LS, observe that
the running time for p̂SMCð4Þ is approximately a factor of
10 slower than p̂LS and approximately a factor of 2
slower than p̂FD. Similarly, p̂SMCð8Þ is approximately a
factor of 20 and of 4 slower than p̂LS and p̂FD,
respectively; and p̂SMCð16Þ is approximately a factor of
40 and of 8 slower than p̂LS and p̂FD, respectively.
Importantly, these factors are constant, depending on
neither the number of loci k nor the number of
haplotypes n. Also note that the time required to com-
pute the CSD for p̂SMCðdÞ appears to depend linearly,
rather than quadratically, on d for the modest (but
relevant) values considered.

DISCUSSION

We have formulated a sequentially Markov approxi-
mation of p̂PS, which we call p̂SMC. The relationship
between the genealogical process underlying p̂PS and
p̂SMC is analogous to the relationship between the
coalescent with recombination and the SMC. In partic-
ular, p̂SMC is equivalent to p̂PS with a certain class of
coalescence events disallowed. In the case of sampling
one additional haplotype, this corresponds to disallow-
ing all coalescence events, the same approximation
used to obtain p̂PS;1, and so we find that p̂SMC ¼ p̂PS;1.

Though the CSD p̂SMC can be cast as an HMM, the
associated CSP cannot be evaluated using typical HMM
methodology because of the continuous state space; to
our knowledge, exact evaluation is possible only via the
known recursion for p̂PS;1, which has time complexity
exponential in the number of loci. By discretizing the
continuous state space into d intervals, obtained using
Gaussian quadrature, we obtain the discretized approxi-
mation p̂SMCðdÞ for which computing the CSP has time
complexity linear in both the number of loci and the
number of haplotypes. We find that, even for modest
values of d, p̂SMCðdÞ is a very good approximation of
p̂SMC. Importantly, p̂SMCðdÞ is more accurate than p̂FD

and p̂LS with only a (small) constant factor penalty in
run time. We remark that we investigated alternative
methods for discretizing the CSP computation (e.g.,
point-based rather than interval-based methods), but
settled on the described approach as it exhibited desir-
able properties and is theoretically well motivated.

We attribute the observed increase in accuracy of
p̂SMC to the incorporation of two key features of the
coalescent with recombination that are not integrated
into either p̂FD or p̂LS. Consider the genealogy associ-
ated with two particular haplotypes within an ARG. First,
observe that the times to the most recent common
ancestor (MRCA) at two neighboring loci are depen-
dent, even if ancestral lineages at the two loci are

Figure 4.—Comparison of the accuracy of various condi-
tional sampling distributions relative to p̂SMC-R (see Figure
3 for the accuracy of p̂SMC-R). A and B illustrate that the im-
provement in accuracy of p̂SMC dð Þ over p̂LS and p̂FD is ampli-
fied as the number of loci k increases and that both p̂LS and
p̂FD produce significantly smaller values than p̂SMC-R (and
p̂SMC). For u0 ¼ 0.01 and r0 ¼ 0.05, we used the methodology
described in the text to sample 250 conditional configura-
tions with n ¼ 10 haplotypes and k loci. (A) Absolute log-ratio
error. (B) Signed log-ratio error.
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separated by a recombination event. p̂SMC explicitly mod-
els a Markov approximation to the analogous absorption-
time dependence across breakpoints, whereas both p̂FD

and p̂LS assume independence. Second, if the time to the
MRCA at a locus is small, the probability of recombina-
tion between this locus and neighboring loci is small,
since it would have had to occur prior to the MRCA.
While p̂SMC models this property by diminishing the
probability of recombination between neighboring
loci if the absorption time at the first locus is small,
p̂FD and p̂LS assume that recombination is independent
of absorption time. We believe that p̂FD and p̂LS tend to
underestimate, on average, the true CSP (as suggested
in Figure 4B) due to the omission of these key features.
The relationship between several CSDs, including p̂SMC

and p̂FD, is illustrated in Figure 5.
Toward future research, recall that the CSD can be

extended to sampling more than one additional haplo-
type (Paul and Song 2010). Of particular importance
to population genetics tools (Stephens and Scheet

2005; Marchini et al. 2007; Howie et al. 2009) for
diploid organisms is sampling two additional haplo-
types. Though we focused on conditionally sampling a
single additional haplotype in the present work, we note
that the sequentially Markov approximation to p̂PS is, in
principle, applicable to sampling multiple haplotypes.
However, the state space of the resulting HMM de-
scription increases exponentially with the number of
haplotypes. In this domain, we anticipate that random-
ized techniques for CSP computation, such as impor-
tance sampling and Markov chain Monte Carlo, will
exhibit high accuracy and the efficiency required for
modern data sets. We pursue this line of research in a
forthcoming article.

We believe that it is possible to extend the ideas
presented here to different demographic scenarios, for
example, spatial structure or models of population
subdivision (Davison et al. 2009). It should be possible
to extend the principled approach of Paul and Song

(2010) toward the CSD via the diffusion generator to
these scenarios, as in De Iorio and Griffiths (2004b)
and Griffiths et al. (2008). In other scenarios, for
example varying population size, the principled ap-
proach might not be applicable, so one would have to
modify the genealogical interpretation heuristically,
e.g., varying coalescence rates. As in the present article,
prohibiting certain coalescence events in the condi-
tional genealogy should then allow for an efficient
implementation of the resulting CSDs as HMMs.

Though the SMC has been used for simulating
population genetic samples (Marjoram and Wall

TABLE 1

Asymptotic time complexity and empirically observed average running time

Method Complexity

No. of loci

k ¼ 10 k ¼ 20 k ¼ 60 k ¼ 100

p̂SMC ¼ p̂PS;1 O(ck � n) 6.4 3 100 4.8 3 104 NA NA
p̂SMC-R O(k3 � n) 2.9 3 100 2.3 3 101 5.6 3 102 2.5 3 103

p̂SMC 16ð Þ O(k � (nd 1 d 2)) 1.0 3 10�1 2.1 3 10�1 6.1 3 10�1 1.0 3 100

p̂SMC 8ð Þ O(k � (nd 1 d 2)) 4.6 3 10�2 9.6 3 10�2 3.0 3 10�1 4.7 3 10�1

p̂SMC 4ð Þ O(k � (nd 1 d 2)) 2.3 3 10�2 5.1 3 10�2 1.6 3 10�1 2.8 3 10�1

p̂FD O(k � n) 1.1 3 10�2 2.7 3 10�2 7.7 3 10�2 1.3 3 10�1

p̂LS O(k � n) 2.1 3 10�3 4.6 3 10�3 1.5 3 10�2 2.5 3 10�2

The second column shows asymptotic time complexity (with the value c indicating an unknown constant) and the last four
columns show empirically observed average running time (in milliseconds) required to compute the CSP under various CSDs,
for n ¼ 10 and the number of loci k as specified. ‘‘NA’’ indicates that the computation could not be completed within a reasonable
amount of time. Results were obtained on a single core of a MacPro with dual quad-core 3.0-GHz Xeon CPUs.

Figure 5.—Illustration of the relationship between vari-
ous CSDs. The CSD at the head of each arrow can be seen
as an approximation to the CSD at the tail. Each arrow is also
annotated with a (short) description of this approximation.
The CSDs below the dashed line can be cast as an HMM:
Those above the dotted line (including a continuous-state
version of p̂FD, which we denote p̂FD-C) have a continuous
and infinite state space, while those below have a finite
and discrete state space and are therefore amenable to sim-
ple dynamic programming algorithms. For more thorough
descriptions of each approximation, see the main text and
also Paul and Song (2010). Recall in particular that the
equality p̂SMC ¼ p̂PS;1 holds only for conditionally sampling
a single haplotype.
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2006; Chen et al. 2009), it can also be cast as an HMM
and used for inference in scenarios in which using the
full coalescent with recombination is cumbersome. As
described above, the state space of the HMM increases
exponentially with the number of haplotypes, making
exact computation intractable for large numbers of
haplotypes. Nevertheless, research (Hobolth et al.
2007; Dutheil et al. 2009) is in progress for modest
numbers of haplotypes. We believe that choosing a
discretization using Gaussian quadrature, as described
in discretization of the hmm, and the forthcoming
randomized techniques alluded to above, will foster
progress in this area.

We conclude by recalling that a broad range of
population genetic tools have been developed, and will
continue to be developed, on the basis of the CSD.
These tools typically employ p̂LS; p̂FD, or a similar
variant, because the underlying HMM structure admits
simple and fast recursions for the relevant calculations
(e.g., the CSP). We have introduced a new CSD p̂SMC

and a discretized approximation p̂SMCðdÞ, which also have
simple underlying HMM structures and substantially
improve upon the accuracy of p̂LS and p̂FD. We believe
that p̂SMCðdÞ, when used in the same contexts as p̂LS and
p̂FD, has the potential to produce more accurate results,
with only a small constant factor penalty in run time.
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APPENDIX

Time-transformed model: Rewriting the HMM Equations 1–6 in terms of the transformed state S ¼ (T, H)
introduced in discretization of the hmm yields

p̂SMCða½1 : ‘�Þ ¼
ð

f̃SMCða½1 : ‘�;s‘Þds‘; ðA1Þ

where the transformed density f̃SMC is given by

f̃SMCða½1 : ‘�;s‘Þ ¼ j̃ða½‘� js‘Þ �
ð

f̃ðs‘ js‘�1Þf̃SMCða½1 : ‘� 1�;s‘�1Þds‘�1; ðA2Þ

with the base case

f̃SMCða½1�;s1Þ ¼ j̃ða½1� js1Þ � z̃ðs1Þ: ðA3Þ

The transformed initial, transition, and emission densities are given by

z̃ðs‘Þ ¼
nh‘

n
e�t‘ ; ðA4Þ

f̃ðs‘ js‘�1Þ ¼ e�ðrb=nÞt‘�1 ds‘�1;s‘ 1
nh‘

n

ðt‘�1^t‘

0

rb

n
e�ðrb=nÞtp e�ðt‘�tpÞdtp ; and ðA5Þ

j̃ða½‘� js‘Þ ¼
X‘

k¼0

e�ðu‘=nÞt‘ððu‘=nÞt‘Þ
k

k!
ðP ð‘ÞÞkh‘½‘�;a½‘�: ðA6Þ

Note that care must be taken upon transforming the Dirac-d in the expression for f̃ð�j�Þ.
Analytic expressions for emission and transition probabilities: We now provide analytic expressions for the

quantities y(i), z(i,j), and y(i)(k) introduced for the transition probability (16) and the emission probability (17).
Recalling that Di ¼ [xi�1, xi) and Dj ¼ [xj�1, xj) and evaluating the associated integrals, we get

yðiÞ ¼ 1

wðiÞ
n

rb 1 n
ðe�ððrb 1 nÞ=nÞxi�1 � e�ððrb 1 nÞ=nÞxi Þ; ðA7Þ

zði;jÞ ¼ 1

wðiÞ
rb

rb � n
�

wðiÞðwðjÞ � n
rb
ðe�ðrb=nÞxj�1 � e�ðrb=nÞxj ÞÞ; if j , i;

wð jÞðwðiÞ � n
rb
ðe�ðrb=nÞxi�1 � e�ðrb=nÞxi ÞÞ; if j . i;

wðiÞðwðiÞ � n
rb
ðe�ðrb=nÞxi�1 � e�ðrb=nÞxi ÞÞ

� rb�n
rb

n
rb 1 n ðe

�ððrb 1 nÞ=nÞxi�1 � e�ððrb 1 nÞ=nÞxi Þ

� n
rb
ðe�xi�1 e�ðrb=nÞxi � e�xi e�ðrb=nÞxi�1Þ; if j ¼ i;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ðA8Þ

for rb 6¼ n,

zði;jÞ ¼ 1

wðiÞ
�

wðiÞðwð jÞ1 ðxj�1e�xj�1 � xj e
�xj ÞÞ; if j , i;

wð jÞðwðiÞ1 ðxi�1e�xi�1 � xie
�xi ÞÞ; if j . i;

wðiÞðwðiÞ1 ðxi�1e�xi�1 � xie
�xi ÞÞ

� ðxi�1 � xiÞe�ðxi�1 1 xiÞ � 1
2 ðe
�2xi�1 � e�2xi Þ; if j ¼ i;

8>>>>>><
>>>>>>:

ðA9Þ

for rb ¼ n, and
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yðiÞðkÞ ¼ 1

wðiÞ
ððu‘=nÞt ‘Þk

k!

Xk

j¼0

n

u‘ 1 n

� �j11 k!

ðk � jÞ! e�ððu‘ 1 nÞ=nÞxi�1 x
k�j
i�1 � e�ððu‘ 1 nÞ=nÞxi x

k�j
i

h i
: ðA10Þ

Note that the recursive structure of y(i)(k) [together with P ‘ð Þ� �k
and the sum in Equation 17] suggests an efficient

implementation.
Description of the dynamic program for D-discretized p̂SMC: Let D ¼ {D1, . . . , Dd} be a finite partition of R$0 as

described in the text. Recalling the recursion for F a
‘ Dj ; h‘
� �

given in Equation 19, consider the following dynamic
programming algorithm for computing the D-discretized approximation of p̂SMCðajnÞ:

1. For each Dj 2 D and h 2 H such that nh . 0, compute F a
1 Dj ; h
� �

using (14), and set Q 1 Dj

� �
¼
P

h F a
1 Dj ; h
� �

:
2. For each ‘ 2 {2, . . . , k},

(a) For each Dj 2 D, compute R ‘ Dj

� �
¼
P

d
i¼1 z i;jð ÞQ ‘�1 Dið Þ:

(b) For each Dj 2 D and h 2 H such that nh . 0, compute

F a
‘ ðDj ; hÞ ¼ j̃ða½‘� jðDj ; hÞÞ yðjÞF a

‘�1ðDj ; hÞ1
nh

n
R ‘ðDjÞ

h i
;

and set Q ‘ Dj

� �
¼
X

h F a
1 Dj ; h
� �

:

3. Compute D-discretized approximation p̂SMCða jnÞ �
P

h

P
d
j¼1 F a

k ðDj ; hÞ.

The time complexities of steps 2a and 2b are O(d 2) and O(nd), respectively. The time complexities of steps 1 and
3 are both O(nd). We can therefore conclude that the time complexity of the dynamic program is
O nd 1 k � 1ð Þ � d2 1 ndð Þ1 ndð Þ ¼ O k � nd 1 d2ð Þð Þ.

Detailed balance and locus skipping: The detailed-balance condition (20) for the discretized model p̂SMC dð Þ can be
shown using expressions (15) and (16). Together with Bayes’ rule, we find that the following holds:

f̃ððDj ; h‘ÞjðDi ; h‘�1ÞÞ � z̃ðDi ; h‘�1Þ

¼ 1

wðiÞ

ð
Dj

ð
Di

f̃ððt ‘; h‘Þjðt ‘�1; h‘�1ÞÞe�t‘�1 d t‘�1d t‘

" #
� nh‘�1

n
wðiÞ

¼
ð

Di

ð
Dj

f̃ððt ‘�1; h‘�1Þjðt ‘; h‘ÞÞz̃ðt ‘; h‘Þ
z̃ðt‘�1; h‘�1Þ

e�t‘�1 d t‘d t‘�1

" #
� nh‘�1

n

¼ 1

wð j Þ

ð
Di

ð
Dj

f̃ððt‘�1; h‘�1Þ j ðt‘; h‘ÞÞe�t‘dt‘dt‘�1

" #
� nh‘

n
wðjÞ

¼ f̃ððDi ; h‘�1Þ j ðDj ; h‘ÞÞ � z̃ðDj ; h‘Þ: ðA11Þ

Using expression (16) and assumption (11) we can show that

f̃r1 1 r2ððDk ; h‘11ÞjðDi ; h‘�1ÞÞ

¼ 1

wðiÞ

ð
Dk

ð
Di

f̃r1 1 r2ððt ‘11; h ‘11Þ j ðt ‘�1; h‘�1ÞÞe�t‘�1 d t‘�1dt‘11

¼ 1

wðiÞ

ð
Dk

ð
Di

ð
f̃r2ððt‘11; h‘11Þjs‘Þ � f̃r1ðs‘ j ðt‘�1; h‘�1ÞÞds‘

	 

e�t‘�1 dt‘�1dt‘11

�
X

h‘

Xd

j¼1

ð
Dk

f̃r2ððt‘11; h‘11ÞjðDj ; h‘ÞÞdt‘11

	 
	 ð
Dj

f̃r1ððt‘; h‘ÞjðDi ; h‘�1ÞÞdt‘
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¼
X

h‘

Xd

j¼1

f̃r2ððDk ; h‘11ÞjðDj ; h‘ÞÞ � f̃r1ððDj ; h‘Þ j ðDi ; h‘�1ÞÞ ðA12Þ

holds; thus the locus-skipping property (21) for the discretized model p̂SMC dð Þ holds only approximately. Here we make
explicit that the error is introduced by approximation (11) in the third step. Thus it is possible to explicitly assess the
error and it goes to zero as the number of intervals used for the discretization becomes large.

A description of p̂SMC-R: Computing the CSP for p̂PS;1 can be done via a genealogical recursion (Paul and Song

2010, Equation 12), but has time complexity exponential in the number of loci, k. To improve upon this result, Paul
and Song suggest using the genealogical recursion until the first mutation, and thereafter using a fast alternative CSD
p̂Alt (Paul and Song 2010, Equation 13). In particular, choosing p̂Alt¼p̂FD yields p̂PS;2, for which CSP computation has
asymptotic time complexity O(k3� n).

Similarly, choosing p̂Alt¼ p̂SMC 16ð Þ yields p̂SMC-R, for which CSP computation has the same asymptotic time
complexity O(k3 � n). Importantly, p̂SMC 16ð Þ is more accurate than p̂FD, and so the resulting CSD p̂SMC-R is more accurate
than p̂PS;2.
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PROOF OF EQUIVALENCE OF π̂SMC AND π̂PS,1

We now want to give a more detailed proof of Proposition 1 from the main text. With the notation
as in the paper we have:

Proposition 1. For an arbitrary single haplotype α ∈ H and haplotype configuration n, π̂SMC(α|n) =
π̂PS,1(α|n).

Recall that the initial (stationary) density was given by

ζ(n)(S` = (t`, h`)) =
nh`

2
e−

n
2

t` , (S.1)

the transtition density by

φ(n)
ρb

(s` | s`−1) = e−
ρb
2

t`−1δs`−1,s`
+

nα`

n

∫ t`−1∧t`

tb=0

ρb

2
e−

ρb
2

tb
n

2
e−

n
2
(t`−tb), (S.2)

and the emission probability by

ξ
(n)
θ`

(α[`] | s`) =
[
e

θ`
2

t`·(P (`)−I)
]
h`[`],α[`]

. (S.3)

Since the configuration n is fixed, we will drop the superscript (n) in the sequel. As in the main text
we will also omit the recombination and mutation rate when unambiguous. Further, we will omit the
d· whenever we write down integrals. If not specified differently, equation-references refer to equations
from the main paper.

Proof of Proposition 1. We start by showing inductively that the joint density
fSMC(α[`′ : `], (t`, h`)) of observing the partial haplotype α[`′ : `] and being in the hidden state (t`, h`)
(basically) introduced in equations (4)-(6) satisfies a genealogical recursion f , defined as follows [c.f.,
Griffiths and Tavaré (1994)]:

f(α[`′ : `], (t`, h`)) =
∫ t`

tp=0
e−

n+
P

u θu+
P

u ρu
2

tp

[
nh`

δα[`′:`],h`[`′:`]

2
δtp,t`

+
∑

u∈L(`′:`)

θu

2

∑
a∈Eu

P
(u)
a,α[u]f(Sa

u(α)[`′ : `], (t` − tp, h`))

+
∑

u∈B(`′:`)

ρu

2

( ∫
su1

f(α[`′ : u1], su1)
)

f(α[u2, `], (t` − tp, h`))
]
, (S.4)

where the sum
∑

u is over L(`′ : `), all loci between (and including) `′ and `, and
∑

u is over B(`′ : `),
the breakpoints between `′ and `. Here Sa

u(α) denotes the haplotype obtained by substituting the
allele a at locus u of α, and u = (u1, u2). For `′ = ` (so that `− `′ = 0),

f(α[`], s`) =
∫ t`

tp=0
e−

n+θ`
2

tp

[
nh`

δα[`],h`[`]

2
δtp,t` +

θ

2

∑
a∈E`

P
(`)
a,α[`]f(a, (t` − tp, h`))

]
.
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Substituting f = fSMC on the right-hand side,∫ t`

tp=0
e−

n+θ`
2

tp

[
nh`

δα[`],h`[`]

2
δtp,t` +

θ`

2

∑
a∈E`

P
(`)
a,α[`]fSMC(a, (t` − tp, h`))

]

= e−
n+θ`

2
t`

nh`
δα[`],h`[`]

2
+

∫ t`

tp=0
e−

n+θ
2

tp θ`

2

∑
a∈E`

P
(`)
a,α[`]p(a | (t` − tp, h`)) · q1(tu − tp, hu)

=
nh`

2
e−

n+θ`
2

t`

(
δα[`],h`[`] +

∞∑
m=0

( ∑
a∈E`

P
(`)
a,h[`]

[
(P (`))m

]
h`[`],a

) ∫ t`

tp=0

θ`

2

(
θ`
2 (t` − tp)

)m

m!

)

=
nh`

2
e−

n+θ`
2

t`

(
δα[`],h`[`] +

∞∑
m=0

[
(P (`))m+1

]
h`[`],α[`]

(
θ`
2 (t`)

)m+1

(m + 1)!

)
=

nh`

2
e−

n
2

t` ·
[
e

θ`
2

t`·(P (`)−I)
]
h`[`],α[`]

,

with the final result equal to ξ(α[`] | s`)ζ(s`) = fSMC(α[`], s`). Now, inductively assuming that
fSMC(α[`′ : `], s`) = f(α[`′ : `], s`) for 0 ≤ `− `′ < m and all values of s`, let `′ < ` such that `− `′ = m.
Substituting f = fSMC on the right-hand side of (S.4), we obtain∫ t`

tp=0
e−

n+
P

u θu+
P

u ρu
2

tp

[
nh`

δα[`′:`],h`[`′:`]

2
δtp,t`

+
∑

u∈L(`′:`)

θu

2

∑
a∈Eu

P
(u)
a,α[u]fSMC(Sa

u(α)[`′ : `], (t` − tp, h`))

+
∑

u∈B(`′:`)

ρu

2

( ∫
su1

fSMC(α[`′ : u1], su1)
)

fSMC(α[u2, `], (t` − tp, h`))
]
. (S.5)

We consider this expression one term at a time. Beginning with the first term:∫ t`

tp=0
e−

n+
P

u θu+
P

u ρu
2

tp
nh`

δα[`′:`],h`[`′:`]

2
δtp,t`

=
∫

s`−1

∫ t`−1

tp=0
e−

n+
P′

u θu+
P′

u ρu
2

tp
nh`−1

δα[`′:`−1],h`−1[`′:`−1]

2
δtp,t`−1

[
e−

θ`+ρb
2

tpδα[`],h`[`]δs`−1,s`

]
, (S.6)

where
∑′

u is over L(`′ : ` − 1) and
∑′

u is over B(`′ : ` − 1). Moving on to the second term, expand
using the definition (5) of fSMC, and then use the inductive hypothesis to replace the resulting fSMC

terms with the corresponding f terms:∫ t`

tp=0
e−

n+
P

u θu+
P

u ρu
2

tp
∑

u∈L(`′:`)

θu

2

∑
a∈Eu

P
(u)
a,α[u]fSMC(Sa

u(α)[`′ : `], (t` − tp, h`))

=
∫ t`

tp=0
e−

n+
P

u θu+
P

u ρu
2

tp
∑

u∈L(`′:`−1)

θu

2

∑
a∈Eu

P
(u)
a,α[u]

× ξ(α[`] | (t` − tp, h`))
∫

s`−1

φ((t` − tp, h`) | s`−1)f(Sa
u(α)[`′ : `− 1], s`−1)

+
∫ t`

tp=0
e−

n+
P

u θu+
P

u ρu
2

tp θ`

2

∑
a∈Eu

Pa,α[`]

× ξ(a | (t` − tp, h`))
∫

s`−1

φ((t` − tp, h`) | s`−1)f(α[`′ : `− 1], s`−1).
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Concentrating on the first sub-term, making the substitution t`−1 → t`−1 + tp, and changing the order
of integration, we obtain∫

s`−1

∫ t`∧t`−1

tp=0
e−

n+
P′

u θu+
P′

u ρu
2

tp
∑

u∈L(`′:`−1)

θu

2

∑
a∈Eu

P
(u)
a,α[u]f(Sa

u(α)[`′ : `− 1], (t`−1 − tp, h`−1))

×
[
e−

θ`
2

tpp(α[`] | (t` − tp, h`)) · e−
ρb
2

tpq((t` − tp, h`) | (t`−1 − tp, h`−1))
]
. (S.7)

Now concentrating on the second sub-term and expanding using definition (S.4) of f :∫ t`

tp=0
e−

n+
P

u θu+
P

u ρu
2

tp θ`

2

∑
a∈Eu

Pa,α[`]ξ(a | (t` − tp, h`))
∫

s`−1

φ((t` − tp, h`) | s`−1)

×
∫ t`−1

tq=0
e−

n+
P′

u θu+
P′

u ρu
2

tq

[
nh`−1

δα[`′:`−1],h`−1[`′:`−1]

2
δtq ,t`−1

+
∑

u∈L(`′:`−1)

θu

2

∑
a∈Eu

P
(u)
a,α[u]f(Sa

u(α)[`′ : `− 1], (t`−1 − tq, h`−1))

+
∑

u∈B(`′:`−1)

ρu

2

( ∫
su1

f(α[`′ : u1], su1)
)

f(α[u2, `− 1], (t`−1 − tq, h`−1))
]

=
∫

s`−1

∫ t`−1

tq=0
e−

n+
P′

u θu+
P′

u ρu
2

tq

[
nh`−1

δα[`′:`−1],h`−1[`′:`−1]

2
δtq ,t`−1

+
∑

u∈L(`′:`−1)

θu

2

∑
a∈Eu

P
(u)
a,α[u]f(Sa

u(α)[`′ : `− 1], (t`−1 − tq, h`−1))

+
∑

u∈B(`′:`−1)

ρu

2

( ∫
su1

f(α[`′ : u1], su1)
)

f(α[u2, `− 1], (t`−1 − tq, h`−1))
]

×
[ ∫ tq∧t`

tp=0
e−

θ`
2

tp θ`

2

∑
a∈Eu

Pa,α[`]ξ(a | (t` − tp, h`)) · e−
ρb
2

tpφ((t` − tp, h`) | (t`−1 − tp, h`−1))
]
,

(S.8)

with the equality obtained by making the substitutions t`−1 → t`−1 + tp and tq → tq + tp and then
changing the order of integration. Finally, moving onto the third term, expand using the defini-
tion (5) of fSMC, and then use the inductive hypothesis to replace the resulting fSMC terms with the
corresponding f terms:∫ t`

tp=0
e−

n+
P

u θu+
P

u ρu
2

tp
∑

u∈B(`′:`)

ρu

2

( ∫
sul

fSMC(α[`′ : ul], sul
)
)

fSMC(α[ur, `], (t` − tp, h`))

=
∫ t`

tp=0
e−

n+
P

u θu+
P

u ρu
2

tp
∑

u∈B(`′:`−1)

ρu

2

( ∫
sul

f(α[`′ : ul], sul
)
)

× ξ(α[`] | (t` − tp, h`))
∫

s`−1

φ((t` − tp, h`) | s`−1)f(α[ur : `− 1], s`−1)

+
∫ t`

tp=0
e−

n+
P

u θu+
P

u ρu
2

tp ρb

2

( ∫
s`−1

f(α[`′ : `− 1], s`−1)
)
· f(α[`], (t` − tp, h`)).
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Concentrating on the first sub-term, making the substitution t`−1 → t`−1 + tp, and changing the order
of integration, we obtain:

∫
s`−1

∫ t`∧t`−1

tp=0
e−

n+
P′

u θu+
P′

u ρu
2

tp
∑

u∈B(`′:`−1)

ρu

2

( ∫
su1

f(α[`′ : u1], su1)
)

f(α[u2 : `− 1], (t`−1 − tp, h`−1))

×
[
e−

θ`
2

tpξ(α[`] | (t` − tp, h`)) · e−
ρb
2

tpφ((t` − tp, h`) | (t`−1 − tp, h`−1))
]
. (S.9)

Now concentrating on the second sub-term and expanding using definition (S.4) of f :

∫ t`

tp=0
e−

n+
P

u θu+
P

u ρu
2

tp ρb

2
f(α[`], (t` − tp, h`))

×
∫

s`−1

∫ t`−1

tq=0
e−

n+
P′

u θu+
P′

u ρu
2

tq

[
nh`−1

δα[`′:`−1],h`−1[`′:`−1]

2
δtq ,t`−1

+
∑

u∈L(`′:`−1)

θu

2

∑
a∈Eu

P
(u)
a,α[u]f(Sa

u(α)[`′ : `− 1], (t`−1 − tq, h`−1))

+
∑

u∈B(`′:`−1)

ρu

2

( ∫
su1

f(α[`′ : u1], su1)
)

f(α[u2, `− 1], (t`−1 − tq, h`−1))
]

=
∫

s`−1

∫ t`−1

tq=0
e−

n+
P′

u θu+
P′

u ρu
2

tq

[
nh`−1

δα[`′:`−1],h`−1[`′:`−1]

2
δtq ,t`−1

+
∑

u∈L(`′:`−1)

θu

2

∑
a∈Eu

P
(u)
a,α[u]f(Sa

u(α)[`′ : `− 1], (t`−1 − tq, h`−1))

+
∑

u∈B(`′:`−1)

ρu

2

( ∫
su1

f(α[`′ : u1], su1)
)

f(α[u2, `− 1], (t`−1 − tq, h`−1))
]

×
[ ∫ tq∧t`

tp=0
e−

θ`
2

tpξ(α[`] | (t` − tp, h`)) · e−
ρb
2

tp ρb

2
nh`

2
e−

n
2
(t`−tp)

]
, (S.10)

with the equality obtained by using the (one-locus) definition (6) for fSMC(α[`], (t` − tp, h`)), making
the substitutions t`−1 → t`−1 + tp and tq → tq + tp, and changing the order of integration.

Having appropriately expanded each term of our key expression (S.5), we aggregate common terms
across the resulting sub-expressions. Collecting the nh`−1

δα[`′:`−1],h`−1[`′:`−1] terms from (S.6),(S.8),
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and (S.10),

∫
s`−1

∫ t`−1

tp=0
e−

n+
P′

u θu+
P′

u ρu
2

tp
nh`−1

δα[`′:`−1],h`−1[`′:`−1]

2
δtp,t`−1

×
[
e−

θ`+ρb
2

tpδα[`],h`[`]δs`−1,s`

+
∫ tp∧t`

tq=0
e−

θ`
2

tq θ`

2

∑
a∈Eu

Pa,α[`]ξ(a | (t` − tq, h`)) · e−
ρb
2

tqφ((t` − tq, h`) | (t`−1 − tq, h`−1))

+
∫ tp∧t`

tq=0
e−

θ`
2

tqξ(α[`] | (t` − tq, h`)) · e−
ρb
2

tq ρb

2
nh`

2
e−

n
2
(t`−tq)

]
=

∫
s`−1

∫ t`−1

tp=0
e−

n+
P′

u θu+
P′

u ρu
2

tp
nh`−1

δα[`′:`−1],h`−1[`′:`−1]

2
δtp,t`−1

×
[
e−

ρb
2

t`−1δs`−1,s`
·
(

e−
θ`
2

t`δα[`],h`[`]

)
+ e−

ρb
2

t`−1δs`−1,s`

( ∫ t`

tz=0
e−

θ`
2

tz θ`

2

∑
a∈Eu

Pa,α[`]ξ(a | (t` − tz, h`))
)

+
∫ t`−1∧t`

tq=0

ρb

2
e−

ρb
2

tq nh`

2
e−

n
2
(t`−tq)

( ∫ tq

tz=0
e−

θ`
2

tz θ`

2

∑
a∈Eu

Pa,α[`]ξ(allele | (t` − tz, h`))
)

+
∫ t`−1∧t`

tq=0

ρb

2
e−

ρb
2

tq nh`

2
e−

n
2
(t`−tq)

(
e−

θ`
2

tqξ(α[`] | (t` − tq, h`))
)]

=
∫

s`−1

∫ t`−1

tp=0
e−

n+
P′

u θu+
P′

u ρu
2

tp
nh`−1

δα[`′:`−1],h`−1[`′:`−1]

2
δtp,t`−1

× ξ(α[`] | s`)
[
e−

ρb
2

t`−1δs`−1,s`
+

∫ t`−1∧t`

tq=0

ρb

2
e−

ρb
2

tq nh`

2
e−

n
2
(t`−tq)

]
=

∫
s`−1

∫ t`−1

tp=0
e−

n+
P′

u θu+
P′

u ρu
2

tp
nh`−1

δα[`′:`−1],h`−1[`′:`−1]

2
δtp,t`−1

×
[
ξ(α[`] | s`)φ(s` | s`−1)

]
, (S.11)

where the first equality is obtained by making use of the δtp,t`−1
and δs`−1,s`

expressions and expanding
the q term using equation (S.2) and exchanging integrals, the second equality is obtained by combining
the first/second and third/fourth term along with the definition (S.3) of p, and final equality by again
making use of the equation (S.2).

Similarly, collecting the f(Sa
u(α)[`′ : `−1], (t`−1−tq, h`−1)) terms from the resulting sub-expressions
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(S.7),(S.8), and (S.10),∫
s`−1

∫ t`−1

tp=0
e−

n+
P′

u θu+
P′

u ρu
2

tp
∑

u∈L(`′:`−1)

θu

2

∑
a∈Eu

P
(u)
a,α[u]f(Sa

u(α)[`′ : `− 1], (t`−1 − tp, h`−1))

×
[
I(tp≤t`)e

− θ`
2

tpξ(α[`] | (t` − tp, h`)) · e−
ρb
2

tpφ((t` − tp, h`) | (t`−1 − tp, h`−1))

+
∫ tp∧t`

tq=0
e−

θ`
2

tq θ`

2

∑
a∈Eu

Pa,α[`]ξ(a | (t` − tq, h`)) · e−
ρb
2

tqφ((t` − tq, h`) | (t`−1 − tq, h`−1))

+
∫ tp∧t`

tq=0
e−

θ`
2

tqξ(α[`] | (t` − tq, h`)) · e−
ρb
2

tq ρb

2
nh`

2
e−

n
2
(t`−tq)

]
=

∫
s`−1

∫ t`−1

tp=0
e−

n+
P′

u θu+
P′

u ρu
2

tp
∑

u∈L(`′:`−1)

θu

2

∑
a∈Eu

P
(u)
a,α[u]f(Sa

u(α)[`′ : `− 1], (t`−1 − tp, h`−1))

×
[
I(tp≤t`)e

− ρb
2

tpφ((t` − tp, h`) | (t`−1 − tp, h`−1))
(

e−
θ`
2

tpξ(α[`] | (t` − tp, h`))
)

+ I(tp≤t`)e
− ρb

2
tpφ((t` − tp, h`) | (t`−1 − tp, h`−1))

( ∫ tp

tz=0
e−

θ`
2

tz θ`

2

∑
a∈Eu

Pa,α[`]ξ(a | (t` − tz, h`))
)

+
∫ tp∧t`

tq=0

ρb

2
e−

ρb
2

tq nh`

2
e−

n
2
(t`−tq)

( ∫ tq

tz=0
e−

θ`
2

tz θ`

2

∑
a∈Eu

Pa,α[`]ξ(a | (t` − tz, h`))
)

+
∫ tp∧t`

tq=0

ρb

2
e−

ρb
2

tq nh`

2
e−

n
2
(t`−tq)

(
e−

θ`
2

tqξ(α[`] | (t` − tq, h`))
)]

=
∫

s`−1

∫ t`−1

tp=0
e−

n+
P′

u θu+
P′

u ρu
2

tp
∑

u∈L(`′:`−1)

θu

2

∑
a∈Eu

P
(u)
a,α[u]f(Sa

u(α)[`′ : `− 1], (t`−1 − tp, h`−1))

× ξ(α[`] | s`)
[
I(tp≤t`)e

− ρb
2

tpφ((t` − tp, h`) | (t`−1 − tp, h`−1)) +
∫ tp∧t`

tq=0

ρb

2
e−

ρb
2

tq nh`

2
e−

n
2
(t`−tq)

]
=

∫
s`−1

∫ t`−1

tp=0
e−

n+
P′

u θu+
P′

u ρu
2

tp
∑

u∈L(`′:`−1)

θu

2

∑
a∈Eu

P
(u)
a,α[u]f(Sa

u(α)[`′ : `− 1], (t`−1 − tp, h`−1))

×
[
ξ(α[`] | s`)φ(s` | s`−1)

]
, (S.12)

where the first equality is obtained by expanding the φ term1 in the second term using equation (S.2),
the second equality is obtained by combining the first/second and third/fourth term along with the
definition (S.3) of ξ, and final equality by again making use of the equation (S.2) and considering
separately the case when tp ≤ t` and tp > t`.

The situation is identical when collecting terms with f(α[u2, ` − 1], (t`−1 − tq, h`−1)) from (S.9),

1We use the following expansion for φ, which can be verified in the present context, namely that tq ≤ tp ≤ t`−1 and
tq ≤ t`:

φ((t` − tq, h`) | (t`−1 − tq, h`−1)) = I(tp≤t`)e
− ρb

2 (tp−tq) · φ((t` − tp, h`) | (t`−1 − tp, h`−1))

+

Z (tp∧t`)−tq

tz=0

ρb

2
e−

ρb
2 tz

nh`

2
e−

n
2 (t`−tq−tz)
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(S.8), and (S.10):

∫
s`−1

∫ t`−1

tp=0
e−

n+
P′

u θu+
P′

u ρu
2

tp
∑

u∈B(`′:`−1)

ρu

2

( ∫
su1

f(α[`′ : u1], su1)
)

f(α[u2 : `− 1], (t`−1 − tp, h`−1))

×
[
I(tp≤t`)e

− θ`
2

tpξ(α[`] | (t` − tp, h`)) · e−
ρb
2

tpφ((t` − tp, h`) | (t`−1 − tp, h`−1))

+
∫ tp∧t`

tq=0
e−

θ`
2

tq θ`

2

∑
a∈Eu

Pa,α[`]ξ(a | (t` − tq, h`)) · e−
ρb
2

tqφ((t` − tq, h`) | (t`−1 − tq, h`−1))

+
∫ tp∧t`

tq=0
e−

θ`
2

tqξ(α[`] | (t` − tq, h`)) · e−
ρb
2

tq ρb

2
nh`

2
e−

n
2
(t`−tq)

]
=

∫
s`−1

∫ t`−1

tp=0
e−

n+
P′

u θu+
P′

u ρu
2

tp
∑

u∈B(`′:`−1)

ρu

2

( ∫
su1

f(α[`′ : u1], su1)
)

f(α[u2 : `− 1], (t`−1 − tp, h`−1))

×
[
ξ(α[`] | s`)φ(s` | s`−1)

]
. (S.13)

Thus, combining equations (S.11),(S.12), and (S.13), we may re-write (S.5):

ξ(α[`] | s`)
∫

s`−1

φ(s` | s`−1) ·
∫ t`−1

tp=0
e−

n+
P′

u θu+
P′

u ρu
2

tp

[
nh`−1

δα[`′:`−1],h`−1[`′:`−1]

2
δtp,t`−1

+
∑

u∈L(`′:`−1)

θu

2

∑
a∈Eu

P
(u)
a,α[u]f(Sa

u(α)[`′ : `− 1], (t`−1 − tp, h`−1))

+
∑

u∈B(`′:`−1)

ρu

2

( ∫
su1

f(α[`′ : u1], su1)
)

f(α[u2 : `− 1], (t`−1 − tp, h`−1))
]

= ξ(α[`] | s`)
∫

s`−1

φ(s` | s`−1)f(α[`′ : `− 1], s`−1)

= fSMC(α[`′ : `], s`),

where the first equality is obtained by definition (S.4) for f , and the second equality by using the
inductive hypothesis and the definition (5). Therefore, fSMC satisfies the recursion for f , and we
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conclude that fSMC = f . Moreover,∫
s`

f(α[`′ : `], s`) =
∫

s`

∫ t`

tp=0
e−

n+
P

u θu+
P

u ρu
2

tp

[
nh`

δα[`′:`],h`[`′:`]

2
δtp,t`

+
∑

u∈L(`′:`)

θu

2

∑
a∈Eu

P
(u)
a,α[u]f(Sa

u(α)[`′ : `], (t` − tp, h`))

+
∑

u∈B(`′:`)

ρu

2

( ∫
su1

f(α[`′ : u1], su1)
)

f(α[u2, `], (t` − tp, h`))
]

=
1

n +
∑

u∈L(α[`′:`]) θu +
∑

u∈B(α[`′:`]) ρu

[ ∑
α′∈H:

α′[`′:`]=α[`′:`]

nα′

+
∑

u∈L(α[`′:`])

θu

∑
a∈Eu

P
(u)
a,α[u]

∫
s`

f(Sa
u(α)[`′ : `], s`)

+
∑

u∈B(α[`′:`])

ρu

∫
su1

f(α[`′ : u1], su1)
∫

s`

f(α[u2, `], s`)
]
,

where the first equality is by definition (S.4), and the second equality obtained by exchanging the
integrals and making the substitution t` → t` − tp. Thus,

∫
s`

f(α[`′ : `], s`) satisfies the recursion for
π̂PS,1 (Paul and Song, 2010, Equation (12)) and we conclude that

∫
s`

f(α[`′ : `], s`) = π̂PS,1(α[`′ : `]).
Thus,

π̂SMC(α[`′ : `]) =
∫

s`

fSMC(α[`′ : `], s`) =
∫

s`

f(α[`′ : `], s`) = π̂PS,1(α[`′ : `]),

thereby establishing the desired identity.
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