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ABSTRACT

We develop an inference method that uses approximate Bayesian computation (ABC) to simultaneously
estimate mutational parameters and selective constraint on the basis of nucleotide divergence for protein-
coding genes between pairs of species. Our simulations explicitly model CpG hypermutability and
transition vs. transversion mutational biases along with negative and positive selection operating on
synonymous and nonsynonymous sites. We evaluate the method by simulations in which true mean
parameter values are known and show that it produces reasonably unbiased parameter estimates as long as
sequences are not too short and sequence divergence is not too low. We show that the use of quadratic
regression within ABC offers an improvement over linear regression, but that weighted regression has
little impact on the efficiency of the procedure. We apply the method to estimate mutational and selective
constraint parameters in data sets of protein-coding genes extracted from the genome sequences of
primates, murids, and carnivores. Estimates of CpG hypermutability are substantially higher in primates
than murids and carnivores. Nonsynonymous site selective constraint is substantially higher in murids and
carnivores than primates, and autosomal nonsynonymous constraint is higher than X-chromsome
constraint in all taxa. We detect significant selective constraint at synonymous sites in primates, carnivores,
and murid rodents. Synonymous site selective constraint is weakest in murids, a surprising result,
considering that murid effective population sizes are likely to be considerably higher than the other two taxa.

WHAT fraction of new mutations in the genome are
influenced by natural selection? One way to

address this question is to compare levels of between-
species nucleotide divergence at classes of candidate
selectively evolving and neutrally evolving sites. For
example, under the assumptions that nonsynonymous
mutations are either strongly deleterious or neutral and
there exists a class of sites that evolves neutrally, the
proportion of deleterious amino acid-changing muta-
tions in a protein-coding gene can be estimated from

CN¼ 1� DN=DNeutral; ð1Þ

where DN and DNeutral are rates of nonsynonymous and
neutral substitutions between the species pair, respec-
tively. CN is referred to as the selective constraint. In the
absence of positive selection, CN is expected to lie in the
range [0, 1]. However, CN , 0 can be taken as evidence
of the presence of many adaptive amino acid substitu-
tions (but see Parmley and Hurst 2007).

The neutral substitution rate, DNeutral, has often been
assumed to be equal to DS, the rate of synonymous
substitutions in protein-coding genes. That assumption,
however, is not justified in many species (reviewed by
Hershberg and Petrov 2008), and even in mammals
some form of selection appears to operate on synony-
mous mutations (Chamary et al. 2006). For example,
between-species divergence at fourfold degenerate sites
is significantly lower than in ancestral transposable
element repeats (ARs) (Eöry et al. 2010), and ARs are
among the best candidates for a class of sites that evolves
neutrally (Lunter et al. 2006; Meader et al. 2010;
Pollard et al. 2010). If we employ ARs as a neutral
reference, nonsynonymous and synonymous selective
constraint can be estimated as

CN¼ 1� DN=DAR ð2Þ

and

CS¼ 1� DS=DAR; ð3Þ

respectively, where DAR is the substitution rate for
intronic ARs. Note that intronic ARs represent a better
local neutral reference than intergenic ARs, since
mutation rates may differ between transcribed and
nontranscribed DNA due to transcription-coupled re-
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pair. In a genome-wide analysis employing ARs as a
neutral reference, Eöry et al. (2010) estimated mean CS

of 0.24 and 0.11 for hominids and murid rodents,
respectively, suggesting that mammalian synonymous
sites are subject to net purifying selection, albeit at
modest levels. Eöry et al. (2010) noted that the higher
CS estimate in hominids was unexpected, because
recent effective population size (Ne) has been estimated
to be two orders of magnitude higher in wild mice than
hominids (Eyre-Walker et al. 2002; Halligan et al.
2010). This difference in Ne would lead to more
effective selection against suboptimal synonymous mu-
tations in murids than hominids, if selection coeffi-
cients at these sites are similar in the two taxa. In
contrast, higher values of CN in murids than primates
have consistently been observed (Ohta 1993, 1995; Li

1997, Chap. 8; Eöry et al. 2010), suggesting that
selection against new amino acid mutations is more
effective in murids and that there is a significant fraction
of nearly neutral amino acid mutations in hominids
(Eyre-Walker et al. 2002). It is unclear, however,
whether the synonymous and nonsynonymous selective
constraint values inferred by Eöry et al. (2010) are
typical of mammals in general.

There are several limitations of previous approaches
that compare evolutionary rates between categories of
sequence to estimate selective constraint. First, mutational
parameters and constraint have been estimated separately,
whereas in principle it is desirable to jointly estimate all of
the relevant parameters within the same analysis. Second,
CpG sites outside of CpG islands in mammals are hyper-
mutable and their frequency differs between coding and
noncoding DNA, complicating inference of substitution
rates. In several previous analyses (e.g., Meunier and
Duret 2004; Keightley et al. 2005; Eöry et al. 2010), the
ad hoc procedure of excluding sites preceded by C or
followed by G (CpG-prone sites) has been employed,
but this excludes selective constraint at CpGs. The pro-
cedure of estimating separate evolutionary rates at sites
that are C followed by G in either species (CpG sites) and
non-CpG sites has also been frequently employed (e.g.,
Ebersberger et al. 2002; Hardison et al. 2003; Hellmann

et al. 2003; Subramanian and Kumar 2003; Chimpanzee

Sequencing and Analysis Consortium 2005; Parmley

et al. 2006), but this has been shown to be biased, po-
tentially seriously for closely related species (Gaffney and
Keightley 2008). Finally, in several analyses, only fourfold
degenerate synonymous sites and zerofold degenerate
nonsynonymous sites have been considered, whereas se-
lection on twofold sites has been excluded.

Here, we develop a method on the basis of approx-
imate Bayesian computation (ABC) to jointly estimate
mutation rates and selective constraint at nonsynon-
ymous and synonymous sites at CpG and non-CpG sites.
We attempt to capture several of the complexities of
mutation and selection operating simultaneously on
coding and noncoding sequences, particularly the

context-dependent hypermutability of CpG dinucleo-
tides in mammals. The ABC approach described here
has its origins in the rejection sampling method de-
scribed by Tavaré et al. (1997), with enhancements
introduced by Beaumont et al. (2002) (reviewed by
Csilléry et al. 2010). In ABC, multiple, independent
simulated data sets resembling the real data set are
generated according to an appropriate model. The
parameters for each simulation are sampled from prior
distributions (typically uniform) that have wide limits
encompassing the plausible true parameter values for
the real data under analysis. From each simulation
replicate, a set of easy-to-compute summary statistics,
correlated with the hard-to-estimate parameters of in-
terest are computed. The same set of summary statistics
is computed for the real data. A posterior distribution of
parameters for the real data can be approximated by
parameter values of simulations whose summary statis-
tics closely match the real data (Tavaré et al. 1997). In
the approach described by Beaumont et al. (2002),
parameter estimation is by multiple weighted regression
within the set of simulations that best match the real
data, where match to the data is measured by Euclidean
distance. Here, our starting point is the local linear
regression approach of Beaumont et al. (2002). We also
investigate whether incorporating quadratic regression
and an alternative measure of the distance between the
simulated and actual data (the Mahalanobis distance)
can improve the accuracy of estimates. We simulate
coding and noncoding sequences, incorporating hyper-
mutability at CpG sites, and transition:transversion
mutation rate bias, and infer mutation and selective
constraint parameters simultaneously within the same
model. We use simulations to investigate the perfor-
mance of the method. We then apply the method to
estimate constraint at synonymous and nonsynonymous
sites along with mutation rate parameters in the ge-
nomes of primates (Homo sapiens vs. Macaca mulatta),
murid rodents (Mus domesticus vs. Rattus norvegicus), and
carnivores (Felis catus vs. Canis familiaris).

METHODS

General description of the model: Ancestral protein-
coding gene sequences and intronic noncoding sequen-
ces closely linked to the coding sequences are assumed
to be at or near equilibrium for base composition, then
to evolve independently along a pair of lineages. The
mutation rates for noncoding and coding sequences of
the gene are assumed to be equal. We assume different
mutation rates for sites within and outside the CpG
dinucleotide context, and different transition and
transversion rates at both CpG and non-CpG sites. With
the exception of CpG dinucleotides, mutations are
assumed to occur independently in each sequence.
The mutation rate parameters of the model are listed
in Table 1.
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Selective elimination of deleterious mutations and
fixation of advantageous mutations are modeled by
constraint parameters, CS and CN, for synonymous and
nonsynonymous sites, respectively (Table 1). In the
absence of fixed differences driven by positive selection,
CS and CN represent the fractions of mutations that are
strongly deleterious and eliminated by natural selec-
tion. The values of CS and CN would then be in the range
[0, 1]. However, in our model, we also allow for the
possibility of adaptive evolution at synonymous and
nonsynonymous sites, and allow CS and CN to take
negative values.

Evolutionary model: We simulated sequence evolu-
tion using a discrete-time algorithm in which the period
since the most recent common ancestor is divided into s
steps. Let nCG and nnCG be the number of bases within
and outside of the CpG context, respectively. Write kCG

and knCG for the probabilities of a mutation occurring
at each such site during the time since most recent
common ancestor, and let a ¼ kCG/knCG be the ratio of
mutation rates within vs. outside the CpG context. We
determined the number of mutations that occurred in a
single time step by sampling from Poisson distributions
with parameter nCG kCG/(2s) for CpG sites and with
parameter nnCG knCG/(2s) for non-CpG sites. CpG and
non-CpG mutations were sampled in random order at
random CpG and non-CpG contexts, respectively. Mu-
tations at CpG contexts were randomly allocated to the
C or G base. A mutation was a transition with probability
bCG/(2 1 bCG) or bnCG/(2 1 bnCG) for CpG and non-
CpG sites, respectively, where bCG and bnCG are the
respective transition:transversion ratios (Table 1); oth-
erwise, it was a transversion.

For neutral sequences, a mutation led to a substitution
with probability 1. For coding sequences, the substitution
probability was (1� CS) if the mutation caused a syn-
onymous change, and (1� CN) if the mutation caused a
nonsynonymous change. If the sampled value of CS or CN

was negative, then all mutations resulted in substitutions.
We further generated an additional number of adaptive
substitutions by sampling from Poisson distributions with
parameters�Cx nCG kCG/(2s) for CpG sites and�Cx nnCG

knCG/(2s), where Cx ¼ CS or CN for synonymous and
nonsynonymous sites, respectively.

We began each simulation with a random sequence of
nucleotides. We then allowed the ancestral sequence to
evolve for s¼ 50 steps. To accelerate the convergence of
the ancestral sequence to an equilibrium base compo-
sition, the mutation rate in this initial period was set to
knCG¼ 10, a value that assures that almost all sites in the
genome will have experienced multiple hits, particu-
larly CpG sites. The speciation event then occurred, and
each descendant lineage evolved for an additional s ¼
50 steps. Increasing the number of steps to 100 had no
appreciable effect on the outcome of simulations
(supporting information, Figure S1).

Inference by approximate Bayesian computation:
For parameter estimation, our starting point is the ABC
method described by Beaumont et al. (2002). Inference
is based on a set of summary statistics, calculated from real
or simulated data, correlated with the parameters of
interest. Multiple simulated data sets are generated under
the model using parameter values sampled indepen-
dently from uniform prior distributions. In analyzing
simulated data sets for the purpose of evaluating the
inference method, we used priors with the limits shown in
Table 1. The true values of simulated parameter values
were chosen to fall well within these limits. In analyzing
real data, by definition we do not know the true
parameter values, so assigning limits for priors can
therefore be problematic. We therefore assigned limits
for the mutation rate parameter priors that are wide
ranges about empirically estimated values for mammals
(Siepel and Haussler 2004; Zhang et al. 2007). The
prior limits for CS and CN include the maximum possible
value (1) and a rate of synonymous or nonsynonymous
evolution twice the neutral rate (i.e., CS and CN¼�1). In
analyzing the real data, the prior limits were as shown in
Table 1, with the exception that the upper limit of the
prior for a was raised to 30, because a significant number
of estimates exceeded 20, especially in the case of
primates. There is a trade-off between accurately estimat-
ing parameters, i.e., values within the acceptance range
should be within the prior limits for each gene analyzed;
however, the computing time increases with the range of
the priors. Vectors of summary statistics, s and s9 for the
real data and each simulation replicate, respectively, are
calculated and then scaled (by the mean and standard

TABLE 1

Mutation and selection parameters fitted in the model and limits for uniform priors

Parameter Meaning Limits of uniform prior

knCG Mutation rate at non-CpG sitesa 0, 0.4
a CpG:non-CpG mutation rate ratio 2, 20
bnCG Transition:transversion ratio at non-CpG sites 1, 5
bCG Transition:transversion ratio at CpG sites 1, 20
CN Constraint at nonsynonymous sites �1, 1
CS Constraint at synonymous sites �1, 1

a The mutation rate refers to the rate down one of the two lineages.
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deviation across all simulations for each statistic). We
considered two measures of the distance between the
vectors s and s9, the Euclidean distance and the Mahala-
nobis distance measure (Morrison 1976). We expected
the Mahalanobis distance to be more powerful because it
takes into account correlations between the summary
statistics. Using the distance measure for each simulation,
the proportion Pd of simulations whose summary statistics
are closest to the real data is retained. Finally, multiple
regression is used to obtain parameter estimates. Re-
gression is carried out separately for each simulated
parameter using the ‘‘lm’’ function in the R statistical
computing language (www.r-project.org). We carry out
either weighted or unweighted, linear or quadratic
multiple regression of the simulated parameter values
on the matrix of summary statistics. For weighted re-
gression, we employed the Epanechnikov kernel scheme
suggested by Beaumont et al. (2002). Quadratic regres-
sion is carried out by including all squared summary
statistics in the multiple regression formula. Parameter
estimates, obtained by taking fitted values at the observed
summary statistics from the fitted model, correspond to
the posterior mean (see Beaumont et al. 2002).

A simulated data set consisted of a coding sequence
that matches the total lengths of the exons of the gene
under consideration, and a concatenated noncoding
sequence that matches the length of the concatenated
ARs that form the neutral standard for the gene under
consideration. The bases preceding and following the
AR or exon boundary of the real data and the simu-
lations were used to determine whether the first and last
base, respectively, is part of a CpG dinucleotide. We used
12 summary statistics for parameter estimation: the
fractions of transition and transversion differences at
CpG and non-CpG sites at nonsynonymous, synony-
mous, and AR sites. These counts are easy to compute by
a simple comparison of two sequences and are expected
to be correlated to the corresponding rates of sub-
stitution that we wish to estimate. However they do not
account for multiple hits, and the correlation is expected
to decrease with increasing sequence divergence. We
investigated the inclusion of additional summary statis-
tics computed from fractions of differences at non-CpG-
prone sites, but found that they made little difference to
the results.

In analyzing simulated data for the purpose of testing
the method, the lengths of the sequences to be analyzed
and the simulated sequences used for ABC inference
were identical. However, real genes vary in length, so it
was not feasible to generate simulated sequences of
identical length to each gene in the analysis. We
therefore generated approximate summary statistic for
each gene as follows. We simulated noncoding and
coding sequences of lengths 50,000 and 5000 bases,
respectively, and we stored summary statistics for the
maximum sequence lengths, and then in steps de-
creasing by 20% down to a minimum of 100 bases. For

each gene analyzed, we used linear interpolation within
ordered lists of summary statistics to generate statistics
corresponding to the actual noncoding and coding
lengths. If the real data sequence length exceeded the
maximum simulated sequence length, the sequence was
truncated.

Data: Genomic sequence data were downloaded from
the Ensembl MySQL server through the Perl API interface.
We obtained BLASTZ alignments for human–chimpanzee
and mouse–rat and downloaded the EPO-LOW-COVER-
AGE alignments for dog–cat and realigned these using
MAVID (Bray and Pachter 2004). Gene annotations
from Ensembl release 57 were used, and genes that
fulfilled the following system of criteria for orthology
were analyzed. We assumed any transcript to be orthol-
ogous between the reference and target species if both
started in a start and ended in a stop codon, did not
contain premature stop codons, and were not subject to
frameshift mutations. Genes were considered to be valid
if they contained at least one valid homologous transcript
in the target genome. In cases of genes with multiple
transcripts, a single transcript was chosen randomly and
used in the analysis. Transposable element (TE) annota-
tions were also downloaded from Ensembl and those TEs
with a putatively orthologous sequence in the target
genome (ARs) were used as neutral standards. The dis-
tribution of insertion–deletion substitution suggest that
these are among the best candidates for a category of
neutrally evolving sequence in mammals (Lunter et al.
2006). Overlapping dust and low complexity regions,
tandem and microsatellite repeats were masked off from
the analysis, since sequencing and alignment of these
regions may be problematic. Gaps and bases opposite gaps
were removed from alignments.

The genome was divided into 1-Mb blocks. The ABC
analysis was carried out using summary statistics on a
gene-by-gene or block-by-block basis. If the analysis was
carried out block by block, the exons of each gene
within each block were concatenated up to the limit of
5000 bases that could be used in the ABC analysis (see
above). The neutral reference was the concatenated
ARs mapped in the introns of that block up to the
maximum of 50,000 bases (see above). If the analysis was
gene by gene and the amount of noncoding sequence
exceeded 50,000 bases, ARs within the focal gene were
preferentially used and then random ARs from the

TABLE 2

Numbers of loci and 1-Mb blocks analyzed in three
species pairs

Species pair No. loci No. 1-Mb blocks

Human–macaque 12,992 2145
Mouse–rat 13,215 1893
Cat–dog 816 302
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block up to the maximum sequence length. To avoid a
contribution of excessively noisy parameter estimates
from genes having few nucleotide differences, a gene
was rejected from the ABC analysis if its number of
neutral reference bases was ,1000 or its number of
coding bases was ,400. The numbers of genes and 1-Mb
blocks that met these criteria are shown in Table 2.
Standard errors of mean parameter estimates were
obtained by bootstrapping by block 1000 times.

RESULTS

Simulations: We examined the performance of the
ABC inference procedure in simulations using four
regression models and a range of values for the pro-
portion of simulations accepted, Pd. We first compared
the results from analyzing long sequences of 100,000 bp
of coding and noncoding DNA (Figures 1 and 2) with
results for sequences of lengths comparable to mam-
malian genes (2000 coding and 10,000 noncoding
bases, Figures 3 and 4). Figures 1 and 3 show the
estimated amounts of bias for each parameter, ex-
pressed as mean percentage deviation from the true
parameter values, plotted a function of Pd. Figures 2 and
4 show the error of each parameter estimate, expressed
as mean percentage absolute deviation from the true
parameter values, also plotted a function of Pd. As
expected, mean bias is smaller for longer sequences

(compare Figures 1 and 3), and bias tends to decline as
Pd decreases. Interestingly, in these analyses there is
little advantage to using a weighted regression, whereas
quadratic regression can offer an appreciable advantage
over linear regression.

Different parameters are subject to different amounts of
bias, presumably as a consequence of varying amounts of
information in the data that can be used to estimate them.
In particular, it is difficult to get unbiased estimates of the
transition:transversion ratio at CpG sites, presumably
because there are few informative sites. Estimates of CN

are reasonably unbiased in all scenarios investigated.
Estimates of CS can also be reasonably unbiased, but only
with small values of Pd, quadratic regression, and (partic-
ularly) if a large number of simulations is used in the
analysis. The amount of variability among estimates for
each parameter tends to decline as Pd decreases (Figures 2
and 4). However, if a very small number of replicates is used
in the analysis (i.e., Pd¼ 0.0001 with 106 simulations or 100
simulations retained), variability starts to increase if a small
amount of sequence data is analyzed. This suggests that,
for analysis of real data, at least 106 replicates and Pd of
0.001 is appropriate. We then investigated the extent to
which the divergence between the sequences of the two
species affects the amount of bias. The results (Figure 5)
suggest that bias increases for most parameters if sequence
divergence is low (knCG , 0.02). Finally, we compared the
results obtained using Euclidean distance vs. Mahalanobis
distance (Figure S2). In general the amount of bias does
not differ greatly between the two methods, with the
exception of CS, which tends to be overestimated for
Euclid and underestimated for Mahalanobis. At Pd ¼

Figure 1.—Mean deviation of estimated parameter values
from simulated true values. Each point is the mean of 100 rep-
licates. There were 100,000 neutral and 100,000 coding sites
analyzed in each replicate. There were 105 independent sim-
ulations used for ABC inference. The simulated parameter
values were knCG ¼ 0.1, a ¼ 10, bnCG ¼ 2, bCG ¼ 5, CS ¼
0.2, and CN ¼ 0.8.

Figure 2.—Mean absolute deviation of estimated parame-
ter values from true values corresponding to results shown in
Figure 1.
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0.0001, Mahalanobis distance appears to slightly outper-
form Euclid.

Parameter inference by ABC analysis of coding
sequences in primates, murids, and carnivores: We
used the ABC procedure described in methods to an-
alyze gene sequence data from primates (human vs.
macaque), murid rodents (mouse vs. rat), and carni-
vores (dog vs. cat) using 1.5 3 106 simulation replicates.
We used quadratic unweighted regression and Euclid-
ean distance to select Pd ¼ 0.001 of the simulation
replicates for analysis. Mutational and constraint pa-
rameter estimates are presented in Table 3. The
estimates of the CpG:non-CpG mutation rate ratio (a)
suggest that, as expected, the CpG mutation rate is
about one order of magnitude higher than the non-CpG
mutation rate in all taxa. Notably, the a estimate in
primates is nearly twice that of murids and carnivores.
Estimates of transition:transversion mutational param-
eters (bCG and bnCG) are fairly similar between the two
taxa and broadly agree with previous estimates from a
different approach (i.e., bCG ¼ �10 and bnCG ¼ �4,
respectively; Zhang et al. 2007).

Estimates of mean selective constraint for nonsynon-
ymous sites also varies between the taxa. Mean non-
synonymous site constraint (CN) is substantially higher
in murids than primates, a result that agrees with Eöry

et al. (2010), who obtained, for example, estimates of
0.70 and 0.80 for single transcript genes in hominids
and murids, respectively. This is consistent with more
effective selection associated with a higher effective
population size in murids (Halligan et al. 2010).

Surprisingly, however, the highest CN estimate comes
from carnivores, and the estimate is substantially higher
than that in murids. The ranking is therefore the
opposite of what would be expected on the basis of
differences in effectiveness of selection brought about
by differences in effective population size, assuming
that predators have the smaller Ne. Estimates for
synonymous sites are also in general agreement with
Eöry et al. (2010). Mean constraint at synonymous sites
is substantially higher in primates than murid rodents.
We also observe significant selective constraint at syn-
onymous sites in carnivores. To check the sensitivity of
the results to the length of sequence analyses, we con-
catenated genes within 1-Mb blocks and recomputed
ABC estimates. Results are similar to the estimates com-
puted locus by locus (Table S1).

We then estimated CN and CS separately for autosomal
and X-linked loci (Table 4). In all three taxa, autosomal
CN is higher than chromosome X CN, and the difference
is highly significant in primates and murids. This effect
has been documented previously in birds and mammals
(Mank et al. 2010). The higher constraint at nonsynon-
ymous sites for autosomal loci is consistent with a lower
Ne for X-linked loci and with the presence of nearly
neutral amino acid mutations. This pattern is also con-
sistent with a higher rate of positively selected substitu-
tions on X-linked than autosomal loci, that can result
from several processes (Charlesworth et al. 1987). Sur-
prisingly, CS is significantly higher for murid X-linked
than autosomal loci (Table 4). A possible explanation is
the presence of stronger selection on synonymous sites
of X-linked genes, as has been suggested to occur in
Drosophila species (Vicoso et al. 2008).

Figure 3.—Mean deviation of estimated parameter values
from true values. Each point is the mean of 100 replicates.
There were 10,000 neutral and 2000 coding sites and 106 sim-
ulations used for inference. Simulated parameter values are as
in Figure 1.

Figure 4.—Mean absolute deviation of estimated parame-
ter values from true values for simulations corresponding to
Figure 3.

1158 P. D. Keightley et al.

http://www.genetics.org/cgi/data/genetics.110.124073/DC1/4


DISCUSSION

In this article, we have explored the utility of ABC in
the context of estimating mutational and selection
parameters from whole-genome sequence data from a
pair of species. Our principal conclusions from these
analyses are that CpG hypermutability varies between
mammalian taxa, and that there is variation in the
strength of selection on both nonsynonymous and
synonymous mutations between taxa and between the
X chromosome and autosomes.

Our model has several simplifying assumptions made
necessary by the limited number of parameters that can
be estimated simultaneously by ABC. By restricting the
analysis to pairs of species, we have needed to make
the assumption of equilibrium nucleotide frequencies.
However, G/C content is believed not to be at equilib-
rium in mammalian taxa (Duret and Arndt 2008), and
it has been suggested that G/C rich isochores are
gradually vanishing from mammalian genomes (Duret

et al. 2002). To account for the nonequilibrium G/C
content it would, for example, be necessary to extend
the approach to three species and to incorporate
additional summary statistics and parameters. Within
our model, we found it necessary to generate a mini-
mum of 106 simulation replicates, only 0.1% of which
were retained for the regression analysis on the basis of
similarity to the data. Unfortunately, as the number of

parameters increases, the number of replicates needed
increases nonlinearly. We found that the weighted re-
gression scheme suggested by Beaumont et al. (2002)
provided little advantage over unweighted regression.
On the other hand, a quadratic regression led to less
biased estimates than linear regression, a result consis-
tent with observations of Blum and Francxois (2010).
We also see potential improvement from using the
Mahalanobis rather than Euclidean distance, although
only if a small proportion of simulations are accepted in
the analysis. Further improvements could potentially be
made by combining ABC with Markov chain Monte
Carlo (MCMC) to focus on proposals that generate
summary statistics close to the data (Wegmann et al.
2009). However, this approach did not fit easily within
our implementation, since we generated simulations
that are used to analyze multiple genes of variable
length by storing summary statistics for a range of gene
lengths and use linear interpolation to generate ap-
proximate summary statistic values.

As expected, estimates of mutation parameters re-
veal CpG hypermutability and higher transition than
transversion mutation rates (Table 3). In agreement
with previous work (Siepel and Haussler 2004; Zhang

et al. 2007), the transition:transversion mutation rate
ratio is substantially higher at CpG than non-CpG sites.
The transition:transversion ratio parameters are fairly
consistent across the three taxa, but this contrasts with
the substantial differences among taxa in the CpG:non-
CpG mutation rate (a), most notably in primates. We

TABLE 3

Mean ABC estimates of mutation and selective
constraint parameters

Parameter estimate (SE)

Parameter Human–macaque Mouse–rat Cat–dog

2knCG 0.042 (0.0002) 0.140 (0.0004) 0.178 (0.0019)
a 24.5 (0.12) 15.3 (0.09) 12.7 (0.24)
bnCG 3.43 (0.007) 3.17 (0.008) 2.93 (0.032)
bCG 11.4 (0.06) 12.1 (0.05) 11.0 (0.15)
CN 0.689 (0.003) 0.796 (0.003) 0.824 (0.008)
CS 0.205 (0.004) 0.093 (0.005) 0.112 (0.020)

TABLE 4

Mean ABC estimates of CN and CS for autosomal and X-linked loci

CN (SE) CS (SE)

Human–macaque Mouse–rat Cat–dog Human–macaque Mouse–rat Cat–dog

Autosomes 0.693 (0.003) 0.801 (0.003) 0.827 (0.007) 0.206 (0.004) 0.089 (0.005) 0.114 (0.021)
Chr X 0.618 (0.017) 0.706 (0.023) 0.765 (0.041) 0.192 (0.022) 0.150 (0.022) 0.062 (0.080)
P ,0.002 ,0.002 0.10 0.43 0.002 0.53

The P-values are the probability of observing at least as large a difference between autosomal and chromosome (Chr) X mean
constraint under the null hypothesis that there is no difference, calculated from bootstrap estimates, assuming a two-tailed test.

Figure 5.—Effect of amount of sequence divergence
(knCpG) on mean percentage bias of parameter estimates.
Each point is the mean of 100 replicates. Other parameters
are as in Figure 1.
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obtained a similar estimate of a to the human–macaque
data set reported here in an analysis of a genome-wide
data set of human–chimpanzee genes (results not
shown). There are also substantial differences in selec-
tive constraint at nonsynonymous sites. In agreement
with several previous analyses (Ohta 1993, 1995; Li

1997, Chap. 8; Eöry et al. 2010), mean CN (primates) ,

CN (murids). Since the effective population size in wild
house mouse populations in the ancestral range ap-
proaches two orders of magnitude higher than recent
hominid Ne (Halligan et al. 2010) this can be taken as
evidence for a reduction in the effectiveness of selec-
tion in the primate lineage at amino acid sites. More
surprising is our observation of mean CN (carnivores) .

CN (murids). Since population sizes of murids are likely to
be higher than carnivores (Piganeau and Eyre-Walker

2009), this result runs contrary to the idea that effective
population size differences explain differences in selective
constraint (see also Eöry et al. 2010). A possible contrib-
uting factor is that slightly deleterious nonsynonymous
polymorphism increases apparent nonsynonymous diver-
gence disproportionately for closely related species (Wolf

et al. 2009). Alternatively, it is also possible that the rather
limited set of carnivore genes that we analyzed is biased
toward highly conserved genes, since carnivore genes are
frequently annotated on the basis of human annotations.
Distinguishing between theses alternatives could be
helped by an analysis restricted to orthologs present in
all six species.

Eöry et al. (2010) also reported mean CS (primates) .

CS (murids), and our results also show this pattern
(Table 3). Furthermore, we observe significant selective
constraint at synonymous sites of carnivores. Further
evidence from additional species pairs may help to
clarify whether murids are exceptional among mammals
in showing low selective constraint at synonymous sites.
This observation is another piece of evidence suggesting
that differences in Ne may not be the sole cause of
differences in selective constraint between taxa and that
more detailed information about the nature of selection
on synonymous sites in mammals may be necessary to
fully understand the observed patterns.
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FIGURE S1.–Effect of changing the number of steps used in the ABC analysis on mean deviation of estimated parameter 

values from their true values. 10,000 neutral and 2,000 coding sites were simulated per replicate.  There were 105 simulations 

used for ABC inference. Each point is the mean of 100 replicates. 
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Mean deviations: 

 

 

Mean absolute deviations: 

 

FIGURE S2.—Comparison of the performance of Euclidean and Mahalanobis distance for selection of points used in 

regression. There were 100,000 neutral and 100,000 coding sites and 106 simulations used for inference. Each point is the 

mean of 100 replicates. 
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TABLE S1 

Estimates of mutational and selective constraint parameters from comparisons between mammalian 

species 

 Parameter estimates (SE) 

Parameter  Human-macaque  Mouse-rat  Cat-dog   

2knCG  0.042 (0.0002)  0.140 (0.0005)  0.178 (0.0022)   

  23.8 (0.12)  14.6 (0.09)  12.3 (0.31)   

nCG  3.46 (0.007)  3.20 (0.009)  2.99 (0.039)   

CG  11.3 (0.06)  11.6 (0.06)  10.4 (0.20)   

CN  0.749 (0.003)  0.809 (0.004)  0.832 (0.008)   

CS  0.241 (0.005)  0.101 ( 0.005)  0.112 (0.021)   

Data were analysed as concatenated sequences within 1Mb blocks. 


