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ABSTRACT

Complex genetic interactions lie at the foundation of many diseases. Understanding the nature of these
interactions is critical to developing rational intervention strategies. In mammalian systems hypothesis
testing in vivo is expensive, time consuming, and often restricted to a few physiological endpoints. Thus,
computational methods that generate causal hypotheses can help to prioritize targets for experimental
intervention. We propose a Bayesian statistical method to infer networks of causal relationships among
genotypes and phenotypes using expression quantitative trait loci (eQTL) data from genetically
randomized populations. Causal relationships between network variables are described with hierarchical
regression models. Prior distributions on the network structure enforce graph sparsity and have the
potential to encode prior biological knowledge about the network. An efficient Monte Carlo method is
used to search across the model space and sample highly probable networks. The result is an ensemble of
networks that provide a measure of confidence in the estimated network topology. These networks can be
used to make predictions of system-wide response to perturbations. We applied our method to kidney
gene expression data from an MRL/MpJ 3 SM/J intercross population and predicted a previously
uncharacterized feedback loop in the local renin–angiotensin system.

MULTIFACTORIAL experiments performed with a
randomized experimental design provide con-

ditions for uncovering causation (Fisher 1926). In pop-
ulations derived from inbred strain crosses, the genetic
variation that occurs naturally within a population serves
as a multifactorial perturbation ( Jansen and Nap 2001).
Randomization of alleles during meiosis ensures the
unidirectional influence of genotype on phenotype,
allowing for the identification of quantitative trait loci
(QTL) causal to phenotypes. Expression quantitative trait
loci (eQTL) data consist of genotypes at markers across
the genome, genome-wide gene expression, and other
phenotypes. Identifying causal relationships between
complex traits from eQTL data has recently become a
topic of great interest (Rockman 2008; Li et al. 2010).

QTL can act as causal anchors to distinguish direct
and indirect relationships between pairs of phenotypes
(Li et al. 2006). Conditional independence tests among
triplets (two phenotypes and a shared QTL) have been
widely used to sort out causal, reactive, and independent

relationships between pairs of phenotypes (Schadt

et al. 2005). These methods have been extended to
allow for the interaction between genotype and pheno-
type (Kulp and Jagalur 2006). The TRIGGER algo-
rithm was developed for large-scale inference using
conditional independence tests to generate networks
at a desired false discovery rate (Chen et al. 2007). In
another approach, an undirected network is estimated
using only continuous phenotypes and QTL are added
and used to direct the edges in the network (Chaibub-
Neto et al. 2008). Bayesian Network (BN) methodology
has been previously implemented with structural priors
derived from QTL analysis and the conditional anal-
ysis of triplets (Zhu et al. 2004, 2007). Many current
approaches are based on the local analysis of small sets
of variables that are pieced together from multiple ca-
usality tests between phenotypes. This can be problem-
atic because local relationships between variables can be
altered in the context of a larger network of interactions.

Recently methodologies have emerged for the joint
modeling of genotypes (discrete variables) and pheno-
types (continuous variables). A method that employs
simulated annealing and Markov chain Monte Carlo
(MCMC) methods was proposed and applied to dy-
namic data (Winrow et al. 2010). A method called
QTLnet uses a modified Metropolis–Hastings algorithm
to estimate the QTL network conditional on a proposed
phenotype network (Chaibub-Neto et al. 2010).
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In this article we describe a Bayesian approach to the
joint inference of the genotype–phenotype map from
eQTL data. We define local models in which a child
node representing a continuous phenotype is causally
connected to parent nodes that may be discrete (gen-
otypes) or continuous (phenotypes) and describe their
relationships through hierarchical regression models,
which can accommodate interaction terms. We derive a
scoring metric for evaluating local models and place
constraints on the network through a structural prior.
A search procedure designed for efficient graph sam-
pling is proposed. We have applied our method to
expression data from the kidneys of an MRL/MpJ 3

SM/J intercross to infer causal relationships among
genes known to react in the renal renin–angiotensin
system (RAS).

METHODS

Statistical model and sampling strategy: Bayesian
networks are graphical models that leverage conditional
independencies between variables to describe joint mul-
tivariate probability distributions (Heckerman 1997).
Network nodes correspond to discrete or continuous
random variables and edges represent variable depen-
dencies. We define the data as

D ¼ fX 1; . . . ;X n;Q 1; . . . ;Qmg;

where X and Q are the sets of random variables rep-
resenting phenotypes and genotypes at QTL markers,
respectively.

The graph G is restricted to be a directed acyclic
graph (DAG). G obeys the Markov condition, which
states that, each variable, Di, is independent of its non-
descendants (unconnected), given its parents in G.
Under these assumptions, the joint probability distribu-
tion can be conveniently decomposed into the product

PðD1;D2; . . . ;DN Þ ¼
Yk

i¼1

P Di jpG ðDiÞð Þ; ð1Þ

where pG(Di) is the set of parents of Di in G. The posterior
probability of the graph G after the data D is taken into
account and can be written as the product of the
structural prior P(G) and the marginal likelihood P(D jG):

PðG jDÞ} P D jGð ÞPðGÞ:

The marginal likelihood requires integration over the
parameters u,

P D jGð Þ}
ð

P D j u;Gð ÞP u jGð Þdu;

where P(ujG) is the prior on the parameters for a given
graph structure. The DAG restriction permits factoriza-
tion of the marginal likelihood according to Equation 1.

Identifying the DAG that best explains the data is a
nondeterministic polynomial-time hard (NP-hard) prob-

lem. We impose structural priors to constrain the model
space and apply a search procedure to sample highly
probable graphs. Following Imoto et al. (2004), we ex-
press prior knowledge through an energy function

eðGÞ ¼
XN
i;j¼1

jBi;j � Gi;j j;

where B is the prior matrix with elements 0 # bi;j # 1
that express the prior probability that there is a causal
edge from node Xi to node Xj. The prior distribution
takes the form of an energy function embedded in a
Gibbs distribution,

PðGÞ} e�t�eðGÞ;

where t is referred to as the inverse temperature
hyperparameter. The prior parameter matrix can be
thought of as a Gaussian belief network where the indexes
bi,j represent the strength of the dependency between
variables Xi and Xj (Heckerman 1997). The energy
function measures the Manhattan distance between the
belief network and the graph at hand. In our applications,
we enforce a noninformative prior by setting B ¼ 0m3n

and t¼ 0.1, which promotes sparsity by penalizing dense
graphs. In principle, biological knowledge of the graph
structure from previous experiments and literature can
be encoded into this framework, but this is outside the
scope of this article (Werhli and Husmeier 2007).

The computational intensity of the sampling scheme
necessitates an additional constraint on parent cardi-
nalities. We enforce a fan-in restriction of at most k
parents for every node in the network. In our applica-
tions we set k ¼ 3. For each child node we enumerate
and precompute scores for all possible parent sets,
penalizing for more complex graph structures.

We define a local family to be a child node and its
parents (Figure 1) and model them with multilevel
regression models (Gelman and Hill 2007). Consider
the general case, when a continuous child node y ¼ Xm

has parents pG(y) ¼ {Q1, . . . , Qk, X1, . . . , Xn}. We use the
model

y ¼b0 1 b1Q A;i 1 b2Q B;i 1 b3Q H ;i 1 . . . 1 bs�2Q A;k 1 bs�1Q B;k

1 bsQ H ;k 1 bs11X 1 1 . . . 1 bt X n 1 e;

where b0 is constant, b1; . . . ;bs � N 0;s2
1

� �
and

bs11; . . . ;bt �N 0;s2
2

� �
. The model in matrix notation

is given by

y ¼ A � b 1 e;

where A 2 Rn3k, y, e 2 Rn, and b 2 Rk. The columns of A
correspond to a constant term, a binary matrix in-
dicating genotypes for each parental Qj, and columns
for each parental Xi. In our formulation, we set a diffuse
prior by assuming the mean effects are all the same. This
can be modified to reflect available a priori information
about the QTL effects.
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For convenience, we make the assumption that un-
known parameters of local probability distributions
are independent and utilize the normal and inverse
gamma distributions, which are conditionally conju-
gate. In addition, we assume that the prior distribution
of the parameters for local models depends only on
the parents (parameter modularity). For a local model,
the joint distribution for the parameters is

Pðb;s2Þ ¼ P b js2
� �

Pðs2Þ;

where

P b js2
� �

� N
�

mpr; c2
X

pr

�
;

Pðs2Þ � IGða; bÞ:

The parameters a and b can be thought of as carrying
information from a prior experiment, where a is the
number of observations and b ¼ la/(a � 1) is the prior
estimate of s2 (George and McCulloch 1993). Small
values for a and b can convey ignorance about the
parameters. Notably, as a, b / 0, the posterior does not
have a proper limiting distribution, and posterior
inference has been shown to be sensitive (Dongen

2006; Gelman 2006). We use values between 10�3 and
10�1 and have not encountered any instability. In our
experience, changing the values of a and b does have an
effect on the precomputed scores, but overall the
sampled networks do not change much. The resulting
marginal likelihood for a model G is given by

P Y jGð Þ ¼ c�p jSpostj
jSprj

� �1=2 1

2
SSpost 1 b

� �n=2�a

;

where p is the dimension of the parameter vector b, n is
the sample size, and j�j is the determinant (Ntzoufras

2009).

The posterior sum of squares, SSpost, is defined as

SSpost¼ yT y � b̂
T

AT Ab̂

1 ðb̂� mprÞT ððAT AÞ�1 1 c2SprÞ�1ðb̂� mprÞ;

where the posterior estimates of b and s are

bpost ¼ SpostðAT Ab̂ 1 c�2S�1
pr mprÞ;

S�1
post ¼ AT A 1 c�2S�1

pr :

The regression matrix A is typically ill-conditioned
and can give rise to unstable parameter estimates. We
implement a Tikhonov regularization scheme that sta-
bilizes the least-squares problem and penalizes the cur-
vature of the solution (Hansen 1998; Calvetti et al.
2006). The least-squares solution for the regression pa-
rameters b̂ is obtained by solving the following mini-
mization problem,

min
���Ab� y

���
2

2
1 l2

���L2b

���
2

2
	 


;

where L2 is the discrete approximation of the second
derivative,

L2 ¼
1 �2 1

1 1 1
1 �2 1

0
@

1
A;

and l is a Tikhonov regularization parameter. For
convenience, in the global model (full graph), we omit
reference to the regression matrix A, as it is implicit
in the local graph structures Gk. The score u for a local
family Gk can be calculated as

c Gk jDð Þ ¼ P Y jGkð ÞPðGkÞ;

where Gk is the model that contains parents pGk
ðyÞ.

The posterior distribution for the full DAG can be
calculated as the product of scores for local regression
models:

p G jDð Þ ¼
Yn

i¼1

c Gn jDð Þ:

We implement a Metropolis–Hastings strategy to
sample networks from the posterior distribution. Single
edge proposals of adding, deleting, or reversing an
edge in the current graph are known to not mix well
and are slow to converge (Madigan and York 1995).
The reversible edge (REV) proposal takes into account
whether the reversal of an edge is useful in combination
with the other nodes in the parent sets (Grzegorczyk

and Husmeier 2008). The REV move reverses the edge
between two nodes and then samples new parent sets
such that the new graph structure is acyclic. We propose
a combination of modified edge reversals and single-
edge proposals for the discrete-continuous domain that

Figure 1.—Example of a local family, where continuous
child node y ¼ Xm has discrete and continuous parents
pG(y) ¼ {Q1, Q2, . . . , Qs, X1, X2, . . . , Xt}.
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arises in eQTL data (supporting information, File S1).
This adaptation is restricted to edge reversals between
continuous nodes, thereby preserving the unidirec-
tional relationship between genotype and pheno-
type. Although the modified REV move operates only
between continuous nodes (phenotypes), the geno-
type topology can be substantially changed indirectly
through the re-estimation of the parent sets. All calcu-
lations are done in Matlab and the code is available
upon request.

Applications: Simulation study: We simulated five
continuous phenotypes and four discrete QTL (Figure
2) for intercross populations of size 500 using R/QTL
(Broman and Sen 2009). The genome consists of five
chromosomes of length 100, with 10 genetic markers
randomly distributed across each chromosome. Pheno-
types X1, X2, X3, and X4 have one QTL each on
chromosomes 1, 2, 3, and 4, respectively, and pheno-
type X5 has no QTL. The QTL are unlinked and occur
near the center of the chromosome. Additive and dom-
inance effects were generated from U[0.5, 1] and U[0,
0.5], respectively. Phenotypes were generated from a
normal distribution X � N(0, 1) and were then modi-
fied according to a conditional Gaussian distribution,

N m 1
Xm

j¼1

bi;jðX j � mjÞ; e
 !

;

to preserve the structural relationships shown in Figure
2. The regression coefficients, bi,j, were fixed at 1=

ffiffiffi
2
p

,
and the variance, e, was of the order of 1e � 1.

MRL/MpJ 3 SM/JF2 intercross: We applied our meth-
ods to kidney eQTL data from an MRL/MpJ 3 SM/J
intercross (Figure S1; Hageman et al. 2011). Pathway
enrichment analysis revealed the RAS pathway (Figure
3) as overrepresented (P-value ,0.001) in the chro-
mosome 4 trans-band. Of 18 genes in this pathway, 7
have a QTL in the chromosome 4 region, all of which
were trans-regulated (Table S1). We identified 7 addi-
tional genes in this pathway that have at least
one significant QTL elsewhere in the genome. These
14 genes, along with SNPs corresponding to signifi-
cant QTL, were selected as variables. In cases with more
than one significant SNP per chromosome, the SNP
corresponding to the highest LOD score was selected

(Table S2). These data are available in NCBI’s Gene
Expression Omnibus under accession no. GSE23310
(Edgar et al. 2002).

RESULTS AND DISCUSSION

We have proposed a Bayesian statistical framework for
the joint inference of the causal phenotype–genotype
network from the natural genetic variation in segregat-
ing populations. Networks are decomposed into local
models with continuous children and scored using a
Bayesian posterior probability. Structural priors that can
encode sparsity and biological knowledge are used to
constrain the model space. The modified Metropolis–
Hastings algorithm relies on a single edge and reversible
edge proposals for efficient DAG sampling. The result is
an ensemble of highly probable networks from which
predictions can be made.

In the simulation study, four chains were run from
different random initial DAGs for 50,000 iterations
for each data set. The acceptance rate in all cases was
between 21% and 33%, and the reduction of scale
parameters was ,1.2 (Gilks et al. 1996). The initial
burn-in was discarded, and the chains were combined
for Bayesian model averaging (BMA) over graphs of
high probability (Madigan and Raferty 1984). For
each simulated data set, the BMA result is a matrix
with entries that are estimates of the marginal proba-
bility of an edge (e.g., Table S3). To summarize this in-
formation, we compare the posterior probabilities for
the causal relationship, Xi / Xj, and reactive relation-
ship Xj / Xi for each phenotype. If there is a negligible
difference (,0.05), we conclude that we are unable to
establish the nature of relationship Xi 4 Xj. To de-
termine whether the relationships between QTL and
phenotypes were adequately recovered, for each simu-
lation we identified the parental QTL with the maxi-
mum posterior probability for each phenotype. The
number of times features were recovered across the
100 simulated data sets is given in Table 1. Overall, our
method performed well recovering both direct and
indirect relationships from simulated data. The edges
between QTL and phenotype were easier to recover
than the edges between phenotypes. We struggled to
identify the relationship between X1 and X5, which
share a common QTL; however, this may be inherent to
the structure of the model.

The RAS pathway plays a major role in blood pressure
regulation (Fyhrquist and Saijonmaa 2008). Both sys-
temic RAS and the activation of local tissue RAS have
been associated with hypertension, diabetes, and car-
diovascular and renal damage. We selected this pathway
to demonstrate our approach on real kidney data from
an F2 intercross. Our data, and hence our models, re-
flect only the local (renal) RAS, which is different from
the more commonly referred to systemic RAS. The local
RAS is not a closed system and can interact with the en-

Figure 2.—The simulated network was generated as the
compilation of local models.
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docrine RAS as well as other peptide systems outside the
kidney that are not considered here.

We applied our method to a reduced RAS pathway with
14 genes that have significant QTL somewhere in the
genome. Two parallel chains were seeded from random
DAGs and run for 800,000 iterations. Acceptance rates
were 10% and 13%. The initial burn-in was discarded.
The estimated posterior probabilities of the parameters
(edges) were in strong agreement (r ¼ 0.99), indicating
convergence (Figure S2), and the distribution of poste-
rior probabilities was clearly bimodal. Edges with prob-
abilities .0.5 were selected for the final network on the
basis of BMA (Figure 4). The posterior probabilities for
all edges are given in Table S4. Alternatively, we employed
model selection to extract the four most probable
networks (Figure S3 and Figure S4).

Our final model (Figure 5) differs from the canonical
pathway (Figure 3), suggesting enzyme regulation in
regions of the pathway that are not directly linked.
For example, Mas1, which encodes the MAS1 onco-
gene and binds the angiotensin II metabolite angio-
tensin(1–7), has a large effect on Lnpep. Lnpep encodes
the leucyl/cystinyl aminopeptidase, a receptor for an-
other angiotensin II metabolite. The expression of
Lnpep affects the expression of both Thop1 and Mme,
both encoding enzymes that produce angiotensin(1–
7), the ligand for the MAS1 oncogene. This relation-
ship suggests a feedback loop in the canonical pathway.
Mas1 appears to be a master regulator ; we predict that
intervention at this level will perturb nearly all pathway
members with the exception of Ren and Agt. Ren was

found to be causally linked to Mme with low probability
(0.366); however, Mme is upstream of Ren with proba-
bility 0.245 (Table S4). We believe that Ren and Mme
are causally linked, but the direction of causality is un-
clear. The actions of Ren likely do not occur at the
transcriptional level.

A major feature of this approach is the ability to
generate hypotheses and perform in silico experiments
with the networks. The Markov property allows us to
consider each local family as independent of its pred-
ecessors. From the BMA network the most probable
connections can be determined. Once a network is

Figure 3.—The RAS path-
way as depicted in KEGG
was overrepresented in the
chromosome 4 trans-band
for the MRL/MpJ 3 SM/J
intercross. Members of this
pathway with significant
QTL are indicated. These
enzymes and QTL were se-
lected as network variables.

TABLE 1

The number of times that each possible causal relationship
had the highest posterior probability (top) and number
of times that the causal QTL had the highest posterior

probability (bottom)

Phenotypes / ) )/

(X1, X2) 94 0 6
(X1, X3) 92 0 8
(X1, X5) 9 16 75
(X2, X4) 100 0 0
(X3, X4) 100 0 0

QTL–phenotypes /
(Q1, X1) 86
(Q2, X2) 100
(Q3, X3) 100
(Q4, X4) 100
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identified it can be parameterized by the regression
coefficients of the local families. In the parameterized
network, the sign and magnitude of the regression co-
efficients reveal the nature of the relationships between
variables, and forward quantitative predictions can be
made by simulation. We parameterized a highly proba-
ble region of the BMA network for the RAS pathway
that involved Mas1, Lnpep, Mme, Thop, and QTL on
chromosomes 4 and 12 (Figure 6). Examination of the
regression coefficients suggests Mas1 inhibits the Lnpep
receptor, which in turn inhibits Thop. The expression
of Mme depends on the expression of Lnpep, but also
the genotype on the chromosome 4 locus, e.g., Mme
is strongly activated by a homozygous MRL genotype
at the chromosome 4 locus. Further testing is required
to validate these hypotheses. Nonetheless, our method
provides a framework for predicting the effects of in-
terventions, such as drugs, that attempt to modify gene
action to alter downstream phenotypes.

The size of the model space grows at a superexpo-
nential rate with the number of nodes (Friedman et al.
2000), and adequate coverage of the model space be-
comes difficult and quickly impossible with increasing
numbers of variables. These issues are inherent in BN
methodologies. Even with the addition of the reversible-
edge proposal, our method can reconstruct networks
only on the order of 30 nodes before becoming un-
stable. This is a far stretch from the number of tran-
scripts in an eQTL data set (�30,000). The small sample
size compared to the number of measured traits (n ? p)
that arises in eQTL data is another limiting consider-
ation. Variable selection is a major challenge for any

network inference method. We found that restriction
to a moderate number of biologically motivated varia-
bles is required for reliable inference and tractable
sampling. A method that can infer mixed-domain dy-
namic BNs up to 10,000 nodes has been proposed
(Winrow et al. 2010), but it is difficult to assess the
validity of such large-scale networks. We are currently
investigating improvements to our sampling scheme
and priors that will allow us to infer larger systems, but
we expect to achieve only modest increases.

QTLnet is an algorithm similar to our approach that
uses homogeneous conditional Gaussian regression
models and a hybrid Metropolis–Hastings algorithm
to estimate network connections (Chaibub-Neto et al.
2010). In the QTLnet sampling scheme, a phenotype
network is generated via single-edge proposals, and
then the genetic architecture is estimated conditional
on the proposed network. A combination of single-
edge proposals and conditional genome scans makes
QTLnet computationally intensive. We have applied
both QTLnet (version 0.4.1) and our algorithm to the
RAS pathway data (Figure S10, Figure S11, and Table
S5). Both methods predict many of the same connec-
tions, including the identification of Mas1 as a master
regulator and feedback in the canonical pathways be-
tween Mas1, Lnpep, Mma, and Thop. With no sparsity
restrictions, QTLnet predicted a much denser set of
interactions, which was expected. When we extended
the number of variables by including gene expression
data on RAS components that did not have QTL, our

Figure 4.—Posterior probabilities estimated by BMA for
each network node. Each point is an entry in the consensus
matrix, which represents the probability of a connection asso-
ciated with the given node. Connections with probabilities
.0.5 serve as nodes in the final weighted network. Figure 5.—A graphical representation of the final RAS

network based on BMA. Edges were drawn if their probability
exceeded 0.5.
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method provided essentially the same network (Fig-
ure S5, Figure S6, Figure S7, Figure S8, Figure S9, and
Table S6). The QTLnet algorithm did not exhibit the
same concordance (Figure S10, Figure S11, and Table
S5); we found that genes with no significant QTL in
the single-trait analysis were connected in the network,
with the exception of Agtr1b.

An advantage of the QTLnet method is that it es-
timates unobserved QTL genotypes conditional on SNP
markers using hidden Markov models (HMM) and co-
nditions on them in the sampling process (Broman

and Sen 2009). In contrast, we use selected SNPs
for QTL in the model space. Therefore, the QTLnet
model space is always smaller than ours, which eases
the sampling process. On the other hand, conditional
genome scans are performed and single-edge proposals
are made, making iterations more laborious. A disad-
vantage of the QTLnet approach is the potential for
more than one variable in a close genomic region (e.g.,
small regions on the same chromosome) to be repre-
sented in the network. Genotypes in close regions are
not necessarily independent and their inclusion can
affect the inferred topology. In our QTLnet-derived
RAS networks, there are several instances of this; e.g., in
the reduced RAS network there are two SNPs on
chromosome 2 that are represented at 73 and 88 cM
(Figure S11). The optimal way to include genotypes to
safeguard against errors in inference due to linkage
between variables in the causal network remains an
open question.

We have adopted a structural prior in the form of
a Gaussian belief network that has the potential to en-
code biological knowledge and sparsity. The sparsity
prior that we applied can safeguard against overfitting,

which is often an issue in a high-dimensional model
space. Growing resources of publicly available data
together with annotations from the literature can offer
support for relationships between variables. However,
methods for encoding this information into a prior
belief network remain to be developed.

The interaction between genotype and pheno-
type has been shown to play an important role in the
causal inference of network interactions (Kulp and
Jagalur 2006). We have modeled the local relation-
ships between continuous children with mixed parents
using hierarchical regression models. These models
can be extended to investigate the interaction between
variables, i.e., phenotype–genotype, genotype–genotype,
and phenotype–phenotype. However, the addition of
interaction terms will substantially increase the search
space. Such models may be feasible for small-scale
networks.

In summary, we have proposed a Bayesian statistical
framework for estimation of causal phenotype–genotype
networks. Our method utilizes precomputed Bayesian
scores of local models, structural priors, which can
convey sparsity and biological knowledge, and an
efficient MCMC search strategy. The resulting sample
of highly probable networks can be mined for the
discovery of novel phenotype relationships and pre-
dictions. Future developments need to address the
preselection of variables and efficient search strategies;
these issues are challenging and possibly insurmount-
able. There are growing resources of data that can
provide knowledge about the expected interactions.
Summarizing these data as a biologically informative
prior distribution is not straightforward, but has the
potential to substantially improve network inference.

Figure 6.—An illustration of the parameteri-
zation of local models for the purpose of making
forward prediction. The parameterization is
given by the least-squares estimates of the regres-
sion coefficients for the local models; they pro-
vide insight into the relationships between
network variables. We selected a highly probable
region of the graph, which suggests a feedback
mechanism in the canonical pathway.
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Computational methods for network inference are
valuable tools for generating and validating hypothe-
ses, which can drive new experiments.
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