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ABSTRACT

Identification of transcription factor binding sites is necessary for deciphering gene regulatory networks.
Several new methods provide extensive data about the specificity of transcription factors but most methods
for analyzing these data to obtain specificity models are limited in scope by, for example, assuming additive
interactions or are inefficient in their exploration of more complex models. This article describes an
approach—encoding of DNA sequences as the vertices of a regular simplex—that allows simultaneous direct
comparison of simple and complex models, with higher-order parameters fit to the residuals of lower-order
models. In addition to providing an efficient assessment of all model parameters, this approach can yield
valuable insight into the mechanism of binding by highlighting features that are critical to accurate models.

THE regulation of gene expression depends on DNA-
binding transcription factors (TFs) that recognize

specific DNA sequences and control the transcription
rate of nearby genes. These TFs can distinguish their
regulatory binding sites from the vast majority of other
DNA sequences through specific contacts with the base
pairs that provide differences in binding energies to
different sequences. Modeling of the specificity of
individual TFs is an important component of under-
standing regulatory networks and allows for the pre-
diction of uncharacterized regulatory interactions, the
effects of genetic variations on regulatory networks, and
the design of promoters and TFs with novel character-
istics. A critical issue in modeling DNA-binding specific-
ity is the complexity of the model. Simple models, such as
position weight matrices (PWMs) often perform reason-
ably well, but many times more complex models are
needed. Determining an optimal model is essential but
current methods are usually inefficient even when
extensive, accurate quantitative binding data are avail-
able. This article describes an encoding of DNA binding
sites that is maximally efficient at all levels of complexity
and allows for the rapid determination of the optimal
model based on the available data.

COMMON ENCODINGS OF DNA SITES
AND THEIR LIMITATIONS

This article describes the use of a scoring vector, W~ ,
that assigns a quantitative value to any sequence Si via a

dot product, W~ � S~i (the notation Si is a DNA sequence;
S~i is a vector encoding that sequence). The most com-
monly used encoding is ‘‘dummy encoding’’ in which a
1 represents the occurrence of a particular base at a
particular position and 0 represents its absence, for
example,

A ¼ 1000
C ¼ 0100
G ¼ 0010
T ¼ 0001:

Sequences of any length, say L, can be made by
concatenating those together in 4L-long binary strings
that encode the entire sequence. This approach is used,
often implicitly, whenever a weight matrix (Figure 1; also
referred to as PWM or position-specific scoring matrix,
PSSM) is used to score sequences for specific functions
(Stormo et al. 1982; Stormo 2000). (The matrix repre-
sentation is used for convenience, to separate the ele-
ments that correspond to each position in the sequence,
but the vector W~ is just the concatenation of the col-
umns.) Such a weight matrix is not a unique solution as
the same scores can be assigned to every sequence with
different parameters, for instance, by adding any constant
to every element of one column and subtracting the same
constant from every element of another column. This
issue is especially important when one has quantitative
data, such as free energies of binding to several different
sequences, and wishes to obtain the weight matrix that
provides the best fit for that data (Stormo et al. 1986;
Foat et al. 2006). Multiple linear regression provides the
best-fit solution to such data but requires that there are
only 3L 1 1 parameters. A simple solution is to assign one
reference base to be all 0’s,
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A ¼ 100
C ¼ 010
G ¼ 001
T ¼ 000;

so that the intercept of the regression (the ‘‘11’’
parameter) corresponds to the binding energy of the
sequence of all T’s, and the remaining parameters are
the differences in binding energy to each other base
(Stormo et al. 1986) (Figure 1). This is the method used
by Berg and Von Hippel (1987) except that they as-
signed 0’s to the preferred base at each position (Figure
1) so that all of the other energy parameters are positive.
Other constraints on each position are also possible, such
as setting the mean to 0 or setting the sum of the ex-
ponentiated parameters to 1, which corresponds to a
probabilistic model. In the commonly used log-odds
method the sum of exponentiated parameters times the
priors for each base is set to 1 (Stormo 2000). In those
methods there appear to be four parameters per posi-
tion, but because of the imposed constraint only three
are independent, and this complicates their use in re-
gression methods.

While the 3-bit encoding provides the minimum num-
ber of parameters, it causes the vectors of different se-
quences to be different lengths. For many discriminant
learning approaches the complexity of the problem is
reduced by using the minimum number of parameters and
with sequence vectors of all the same length. For example,
in a quadratic programming method (Djordjevic et al.
2003) one finds the weight vector W~ with minimum length
that satisfies

min
jw~ j

W~ � S~1
i $ 1 " S1

i ;

where S1

i
is the set of known binding sites (the ‘‘training

set’’). If jS~1
i j is a constant, this reduces to minimizing the

angle, u, between W~ and the most distant of S~1
i because

W~ � S~i ¼ jW~kS~i jcos u. This is equivalent to placing W~

in the center of the convex hull defined by the set of S1
i

and is the result obtained by training a support vector
machine using only the positive examples (Djordjevic

et al. 2003). Other methods that learn from training
examples, including both positive and negative exam-
ples, are often easiest to implement if the training
vectors are all the same length. None of the commonly
used encoding methods both use the minimum number
of parameters and maintain equal length vectors for all
sequences.

Another important issue in modeling regulatory sites is
the complexity of the model. The standard weight matrix
method assumes that the positions of the site contribute
independently (additively) to the functional activity of
those sites. This is a reasonable approximation in some
cases but is not true in general. One can easily extend the
idea of the weight matrix to encode combinations of

bases, such as dinucleotides, trinucleotides, etc. In fact
one of the issues that must be addressed for any TF is
the level of complexity required to adequately model its
specificity (where the definition of ‘‘adequately’’ may vary
depending on the purpose). Such higher-order encod-
ing can use the dummy encoding described above, for
example where the 1 represents a specific dinucleotide
occurring at a position (Stormo et al. 1986; Zhang and
Marr 1993; Lee et al. 2002; Zhou and Liu 2004).
However, this approach suffers from the same limitations
of either extra parameters (16 for dinucleotides where
only 15 are independent) or unequal vector lengths.
That idea can be extended to any higher order, but the
same limitations apply. In addition, while one can com-
pare the overall fitness of the higher-order models to that
of the lower-order ones and determine which is more
significant given the extra parameters, this does directly
specify how well the simpler models fit the data and what
is gained by each additional level of complexity. That
information can be obtained by rerunning the regression
multiple times using different models and comparing
their fit to the data, such as by R2 values, but it is more
efficient to define an overall model with parameters
defining different submodels and determining the si-
gnificance assigned to each parameter.

Figure 1.—Each of these PWMs would assign the same
score to every three-long sequence. (A) The parameters are
all within the matrix, but the matrix is not unique; adding
a constant to any column and subtracting that same constant
from another column would give the same scores. (B) The T
row is set to 0, and the external parameter 13 is added, which
is the score for the sequence TTT. This matrix is unique
given the constraint of 0’s in the T row. (C) The preferred
(lowest scoring) base in each column is set to 0, and the ex-
ternal parameter is �6, which is the score of that preferred
sequence. This matrix is unique given that constraint and is
the matrix obtained by the method of Berg and Von Hippel

(1987).
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SIMPLEX ENCODING

An alternative encoding that solves all of the limita-
tions listed above is to use simplex encoding, where
sequences are encoded as the vertices of a regular
0-centered simplex. This encoding is most easily de-
scribed using low-level examples and then generalizing
to higher orders. For single-base models, such as the
weight matrix, this corresponds to encoding each base as
one of the four tetrahedral vertices of the cube centered
at the origin, as has been described previously as a
graphical method for displaying the distribution of bases
in DNA sequences (Zhang and Zhang 1991) (Figure 2):

A ¼ 1 -1 -1
C ¼ -1 -1
G ¼ -1 -1 1
T ¼ 1 1 1:

This has the minimum number of three required param-
eters, all vectors are of equal length, and all vectors are
equidistant from each other. For any weight vector the
mean score over all possible sequences is 0, so the in-
tercept from regression corresponds to that mean value,
and each independent parameter corresponds to the
difference from the mean. We refer to this as wyk
encoding for the standard two-base degenerate code:

w ¼ 1 for A jT; w ¼ -1 for C jG ðsÞ

y ¼ 1 for C jT; y ¼ -1 for A jG ðr Þ

k ¼ 1 for G jT; k ¼ -1 for A jC ðmÞ

HIGHER-ORDER BINDING MODELS

Higher-order models encode sequences as the vertices
of a regular simplex, the equivalent of tetrahedral

encoding in higher dimensions. These encodings can
be constructed by the use of a Hadamard matrix, H,
which is an n 3 n matrix with each element being 1
or -1 and with the property that

HnHT
n ¼ nIn:

Hadamard matrices are conjectured to exist for all
values of n that are a multiple of 4, and for n that are
a power of 2 there is a very simple method of construc-
tion, shown in Figure 3. Important properties of Hada-
mard matrices are that all of the rows (and columns) are
normal to one another (have a dot product of 0) and
therefore represent a basis set for the n-dimensional
space. Rows (and columns) can be exchanged without
affecting any of the properties. A Hadamard matrix is
said to be ‘‘normalized’’ if it has the top row and left
column as all 1’s, as in H4 of Figure 3. Note that if the
first column of H4 is removed, we are left with the
tetrahedral encoding described above (in row order T, C,
A, G). By removing the first column of all 1’s from any
Hadamard matrix we reduce the dimensionality of the
space by 1, but still have n points that are equidistant
from one another, with a dot product of -1. The dot
product of a row with itself is n -1. Those n points are the
vertices of a regular simplex (higher-dimensional equiv-
alent of a tetrahedron) and form the basis of the en-
coding for all higher levels.

Figure 4 shows H16 with the rows and columns
rearranged to highlight some properties of this encoding
for dinucleotides. The first column, of all 1’s, corresponds
to the intercept in regression, or the mean value of all the
sequences, and is not used in the encoding of the se-
quences. This reduces the dimensionality of the space to
15 in which the 16 dinucleotide sequences are embedded.
The next three columns correspond to the first base of the
dinucleotide, using the 3-bit encoding described above.
The next three columns are the same for the second base
of the dinucleotide. The remaining nine columns are
obtained as the outer product of the two bases. This con-
struction maintains all of the desired features: it uses the
minimum number of independent parameters, 15; each

Figure 2.—The tetrahedral encoding of the bases, with the
origin at 0 (central dot) and each vertex of the cube being at
position 1 or �1 in each dimension. The coordinates (dashed
arrows) are labeled by the degenerate nucleotide code: W ¼
(A or T), Y ¼ (C or T), and K ¼ (G or T). The coordinates
for each base, in WYK space, are as follows: A ¼ (1, -1, -1);
C ¼ (-1, 1, -1); G ¼ (-1, -1, 1); T ¼ (1, 1, 1).

Figure 3.—Hadamard matrices. (A) Hadamard matrix for
n ¼ 1. (B) Rule for constructing Hadamard matrices for any
power of 2, given H1. (C) H4 obtained by this method. This
form is ‘‘normalized’’ with the top row and left column as all 1’s.
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dinucleotide-encoding vector has the same length; and
all vectors are equidistant from one another. Further-
more, regression to quantitative data determines the
significance of each parameter independently and in
combination they specify the fit to the data provided by
each submodel. Since the number of parameters is the
minimum needed, regression results in a unique solution.
And since the separate mononucleotide encodings are
included in the dinucleotide encoding (in positions 2–4
and 5–7 of H16 of Figure 4), the remaining 9 dinucleotide
parameters are fitting to the residuals left after the best
fit by the mononucleotide positions. This means that a
single regression analysis is sufficient to determine the
best mononucleotide (weight matrix) model, the fraction
of the total variance explained by that model, the con-
tribution of each dinucleotide that is not explained by the
mononucleotide model, and the increase in the total
variance explained by including higher-order parameters.
For sites of length L, for which there are 4L different
sequences, one could capture all of the mononucleotide
parameters plus all of the adjacent dinucleotide contribu-
tions with only 1 1 3L 1 9ðL � 1Þ ð¼ 12L � 8Þ parame-
ters. A binding site of length 10, which is fairly typical,
requires only 112 parameters.

Figure 5 provides an example of determining the
mono- and adjacent dinucleotide parameters for a
three-long binding site. The binding energies for all 64
trinucleotides have been assigned in this simulated
data set (see supporting information, File S1) such that
an additive binding model is modified with energetic
contributions from specific dinucleotides between
adjacent positions 1, 2 and 2, 3, but not between
positions 1, 3. A single-regression analysis provides the
best-fitting weight matrix parameters, displayed as
their energy contributions in the ‘‘regression logo’’ of
Figure 5, as well as the contributions from the adjacent
dinucleotides that are not explained by the additive
mononucleotide parameters. At the bottom of Figure 5
is the fractional variance explained by each position,
totaling 0.86 for the three independent base contribu-
tions, as well as the variance explained by the contrib-
uting dinucleotides, each contributing 0.07.

When encoding a functional site of length L, one can
choose different levels of encoding, but will often be
limited by the amount of data available. The simplest
encoding would be the mononucleotide, for the stan-
dard PWM model, that requires 3L 1 1 parameters (Fig-
ure 1). If one suspects there is nonadditivity (perhaps the
simple model does not fit the quantitative data well),
another model to test includes dinucleotides for all
adjacent bases, since that is where one most expects to
see the nonadditive effects (Stormo and Zhao 2007),
which requires 3L 1 9(L� 1) 1 1 parameters, including
the 9 dinucleotide parameters for the L � 1 adjacent
bases in the site. Another model might include all
dinucleotides, whether or not they are adjacent, which
would require 3L 1 9 L=2ð Þ1 1 parameters, including
the 9 dinucleotide parameters at the L=2ð Þ pairs of
positions. One can add trinucleotide encoding by the
same strategy of appending the 27 parameters of the
three-way outer product of b1 5 b2 5 b3 to the parame-
ters for the three mono- and three dinucleotides. The
total number of parameters for a trinucleotide encoding
(including the constant term for the overall mean) is 3 3

3 1 3 3 9 1 27 1 1 ¼ 64, which is exactly the number
needed for the 64 trinucleotides. This strategy can be
taken to any level, and from the expansion of the
binomial coefficients we see that L -long sites, for which
there are 4L different sequences, can be encoded from all
of the lower-level combinations:

4L ¼
XL

i¼0

�
L
i

�
3i :

Of course using the full encoding of all subsequence
combinations requires having functional assays for all
possible sequences. Current methods are making that
feasible for many more transcription factors (Stormo

and Zhao 2010) and in such cases one can ask why
bother building a model at all, rather than simply using
the functional data for each site? As described above, the
model building, and especially the parameter estimation,
can be useful by itself because it can provide some insight
into how the sequence determines the functional activity.

Figure 4.—The Hadamard matrix H16 ob-
tained as in Figure 3, except that the rows
and columns have been rearranged to indicate
the meaning of specific positions in the en-
coded sequences. The first column corresponds
to the mean value of all sites and is deleted
from the encoding to reduce the dimensional-
ity to 15. The next three columns are the encod-
ing of the first base of the dinucleotide, and
the next three columns are for the second base
of the dinucleotide, both based on the WYK
encoding of Figure 2, as described in the text.
The last nine columns are obtained as the
outer product of the two base encodings. The
order of those nine parameters is (w1w2,

w1y2, w1k2, y1w2, y1y2, y1k2, k1w2, k1y2, k1k2) (see File S1 for an example). The column vector on the right shows the
equivalence of each specific dinucleotide for each encoded string.
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For example, perhaps the protein binds to sites in an
essentially additive manner, in which case only the
mononucleotide parameters will be significant and none
of the combinatorial parameters will contribute much to
the overall fit. All of the data contribute to estimating
those 3L 1 1 parameters, which increases their accuracy,
and the fact that they explain most of the variance
confirms the primarily additive mechanism of interac-
tion. Alternatively, perhaps some of the combinatorial
parameters are significant but others are not. That would
also suggest how the protein recognizes the sites and
distinguishes between different sequences, informing
physical and structural models about the interaction.
The example in Figure 5 illustrates how, in a single-
regression analysis, one can get the best additive model

and determine any of the nonadditive parameters and
their relative importance in modeling the available data.
Although shown only for the dinucleotide level in this
simple example, an extended analysis can be accom-
plished for all higher levels, and all potentially important
combinations, in a single step, limited only by the
available data. Since this example used simple linear
regression to obtain the parameters of the model, there is
a unique optimal solution and other approaches could
be used to obtain it. Typically, as in (Stormo et al. 1986;
Benos et al. 2002a; Lee et al. 2002), one first obtains the
best mononucleotide model and assesses its fit to the
data. If a better fit is required, the regression can be rerun
including high-order parameters, even fitting specifically
to the residuals from the lower-order model to learn what
important features were missed. The advantage of the
simplex encoding strategy is that those steps are accom-
plished in a single run up to whatever order model is
deemed potentially appropriate (and for which sufficient
data exist). Furthermore, the parameters are inherently
independent and represent the contrasts between differ-
ent features in the data. The constant term is the overall
average and each mononucleotide parameter is the
difference from the average, the contrasts, for the three
possible pairings of bases at each position. Higher-order
parameters are the contrasts for specific combinations of
bases after the lower-order effects have already been
taken into account, and the independent contributions
to the explained variance are obtained directly.

DISCUSSION

Binding sites for transcription factors are important
components of regulatory networks. Having mathemat-
ical models to represent them allows genome searches
for new regulatory targets as well as predicting the effects
of genetic variations that occur within them. It can also
facilitate the design of promoters and factors with novel
characteristics. Current technologies expedite the high-
throughput determination of the specificity of transcrip-
tion factors, greatly expanding our knowledge of the
factors and the regulatory networks in which they par-
ticipate. But a fundamental question in modeling bind-
ing sites is the complexity of the model needed for
accurate predictions. While weight matrices have domi-
nated the field for many years, due to their increased
accuracy over simple consensus sequences and small
number of parameters, it is clear that in many cases they
do not provide the desired accuracy. It has long been
recognized that more complex models, such as including
dinucleotide parameters and even higher-order models,
can improve binding site predictions, but finding the
optimal model has usually involved iterative assessments
and comparisons. By using simplex encoding one can
assess all levels of models in one test because each level is
included in the model independently of the higher-order

Figure 5.—The ‘‘regression logo’’ (RegLogo) for the simu-
lated data shown in File S1. The vertical axis is the energy pa-
rameter (with negative values, for the preferred bases, on top)
for each mononucleotide in positions 1, 2, 3. Between them are
the energy values for the adjacent dinucleotides 1, 2 and 2, 3 on
the same scale. The energies for the dinucleotides are for the
residual values not captured by the mononucleotide energies.
So the energy for any specific three-long sequence is the sum of
all the values for that sequence, including both the mononucle-
otide energies and the dinucleotide energies. The horizontal
axis shows the variance explained by each base position and
each dinucleotide. The total variance explained by a standard
weight matrix is 0.86, with each dinucleotide contributing 0.07
to capture all of the variance in the data.
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models, and the higher-order models fit the residuals
from the lower-order models. As demonstrated in the
example in Figure 5, a single regression analysis can
obtain the best-fit weight matrix and the parameters for
all of the dinucleotide residuals along with their con-
tributions to explaining the variance.

Despite the simplicity and power of the simplex
encoding scheme, some caveats remain. The examples
described have used multiple linear regression to find
the optimal parameters, but in some cases nonlinear
regression is required to find the best model. In
particular, if one obtains binding energy data for all
possible sequences, many of those will likely be bound
nonspecifically, where the energy is independent of the
sequence (Benos et al. 2002b; Stormo and Zhao 2007).
In such a case there will be significant nonadditivity, but
in a somewhat trivial sense that can better accommo-
dated by assuming two modes of binding, one specific
and one nonspecific (Stormo and Zhao 2007; Zhao

et al. 2009). Of course simplex encoding can be utilized
for other methods of modeling binding sites besides
regression, such as many different types of machine
learning methods. After one has obtained an optimal
model, it may be possible to further simplify it, removing
parameters that contribute little or nothing to the overall
fit. In the example in Figure 5, one could use dinucle-
otide parameters solely for the combination GC in
positions 1, 2 and CA in positions 2, 3 and fit the entire
data very well with only nine total parameters. But the
simplex encoding allows one to obtain that conclusion
efficiently without extensive exploration of many differ-
ent models. It obtains all of the parameters for a given
class of models, such as mononucleotide plus adjacent
dinucleotides, in one step, and then subsequently one
may pare the model down by eliminating parameters
without significant contributions. The desired goal is to
obtain a model that captures all of the important
‘‘features’’ of the sequence that contribute to its activity,
where those may be individual bases at some positions,
combinations of bases at others, and even specific
characteristics of the sequences, such as complementar-
ity between positions as for RNA structures required by
RNA-binding proteins (Stormo 1988; Gorodkin et al.
1997; Sharon et al. 2008). Identifying the optimal set of
features to be included in the scoring vector may require
multiple assessments and comparisons, but the simplex
encoding described here can still facilitate the search.
The one characteristic of some binding sites that is not
captured by this approach is when binding sites can be of
variable length, requiring gaps when creating multiple
alignments of the sites. Models allowing gaps usually
require something like a hidden Markov model and are
not easily encoded in vectors of fixed length, although if
the variable length is quite limited they can be modeled
as alternative modes of binding with separate models
for each mode. Finally, it should be pointed out that
Hadamard matrices exist for n¼ 20 so the same methods

described here can be applied to protein motifs, and
even to amino acid–base pair combinations, of which
there are 80. Of course with so many lower-level elements
the higher-order combinations explode rapidly, but it is
still possible to employ the same modeling approach
when sufficient data are available.
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FILE S1 

SUPPORTING MATERIAL 

A simulated example (shown in Figure 5 of the main text) of using multiple linear regress on binding energy data used the 

following list of binding energies for all 64 tri-nucleotides: 

AAA 3 

AAC 5 

AAG 4 

AAT 5.5 

ACA -1.5 

ACC 4 

ACG 3 

ACT 4.5 

AGA 3 

AGC 5 

AGG 4 

AGT 5.5 

ATA 3.5 

ATC 5.5 

ATG 4.5 

ATT 6   

CAA 2 

CAC 4 

CAG 3 

CAT 4.5 

CCA -2.5 

CCC 3 

CCG 2 

CCT 3.5 

CGA 2 

CGC 4 

CGG 3 

CGT 4.5 

CTA 2.5 

CTC 4.5 

CTG 3.5 

CTT 5    

GAA 0 

GAC 2 

GAG 1 

GAT 2.5 

GCA -8 

GCC -2.5 

GCG -3.5 

GCT -2 

GGA 0 

GGC 2 

GGG 1 

GGT 2.5 

GTA 0.5 

GTC 2.5 

GTG 1.5 

GTT 3    

TAA 2 

TAC 4 

TAG 3 

TAT 4.5 

TCA -2.5 

TCC 3 

TCG 2 

TCT 3.5 

TGA 2 

TGC 4 

TGG 3 

TGT 4.5 

TTA 2.5 

TTC 4.5 

TTG 3.5 

TTT 5 

Mean energy = 2.56 
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Multiple linear regression was first performed using an additive (mono-nucleotide) model, which fits the data with an R2=0.86. 

The plot of observed vs predicted energies is shown below along with the parameters in both wyk-space and acgt-space (a 

standard weight matrix). 

Mono-nucleotide model and fit 

 

R2  = 0.86  

wyk-encoded mono-nucleotide model 

Pos: 1 2 3 

w 0.97 0.81 -0.34 

y 0.47 -0.56 1.09 

k -0.97 0.81 0.59 

 

acgt-encoded mono-nucleotide model (mean=0) 

Pos: 1 2 3 

A 1.47 0.56 -2.02 

C 0.47 -2.18 0.84 

G -2.41 0.56 -0.16 

T 0.47 1.06 1.34 
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Multiple linear regression was also performed using both the mono-nucleotide parameters (which are the same as when they are 

solved for exclusively, as above) and the di-nucleotide parameters that provide a best fit to the residuals. In this example using the 

di-nucleotides for the adjacent positions 1,2 and 2,3 is sufficient to obtain an R2=1.00; the other possible di-nucleotide between 

positions 1,3 has all parameters values being 0. Below are shown the plot of the observed vs predicted energies using all of the 

parameters, and the di-nucleotide parameters obtained in both wyk and acgt encodings. The di-nucleotide parameters fit the 

residuals that are not captured by the mono-nucleotide parameters, so the predicted energy for any 3-long sequence is the sum of 

the mono- and di-nucleotide parameters for that sequence. 

Mono-nucleotides plus adjacent di-nucleotides model and fit 

 

R2 = 1.00  

wyk di-nucleotide parameters for positions 1,2 and 2,3 

 W2 Y2 K2 

W1 -0.22 0.22 -0.22 

Y1 -0.22 0.22 -0.22 

K1 0.22 -0.22 0.22 

 

 W3 Y3 K3 

W2 0.22 -0.22 -0.22 

Y2 -0.22 0.22 0.22 

K2 0.22 -0.22 -0.22 
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acgt di-nucleotide parameters for positions 1,2 and 2,3 

Pos: 1,2 2,3 

AA -0.22 0.66 

AC 0.66 -0.22 

AG -0.22 -0.22 

AT -0.22 -0.22 

CA -0.22 -1.98 

CC 0.66 0.66 

CG -0.22 0.66 

CT -0.22 0.66 

GA 0.66 0.66 

GC -1.98 -0.22 

GG 0.66 -0.22 

GT 0.66 -0.22 

TA -0.22 0.66 

TC 0.66 -0.22 

TG -0.22 -0.22 

TT -0.22 -0.22 


