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Abstract

Objective—To identify the impact of timing of prenatal stress exposure on offspring risk for
shortened gestational age (GA), preterm birth (PTB), low birth weight (LBW), and small for
gestational age (SGA) using a population-based sample.

Methods—Swedish longitudinal population registries were linked to study all individuals born in
Sweden 1973-2004. Prenatal maternal stress exposure was defined as death of the father of the
child or first degree relative of the mother. Using linear and logistic regression, timing of stress
exposure was examined across pregnancy, by month, and by novel periods created based on month
of stress exposure findings.

Results—A total of 2,618,777 live-born, singleton infants without congenital anomalies were
included; 32,286 exposed to prenatal maternal stress. Examining associations between stress
exposure and outcome by the month revealed that risk increases mid-gestation, particularly
following months 5 and 6. Combining months 1-4, 5 and 6, and 7-9 as potential periods of
differing vulnerability, it was found that stress during period 2 (months 5 and 6) was associated
with the greatest risk for shortened GA (—0.52 days, SE=0.15, p=0.0006), PTB (OR=1.24, 99%
Cl=1.08-1.42), LBW (OR=1.38, 99% CI=1.19-1.61), and SGA (OR=1.25, 99% CI=1.05-1.49).

Conclusions—Risk for shortened GA, PTB, LBW, and SGA are greater following stress
exposure during the 51 and/or 61 month of pregnancy. It may be beneficial to refine future
analyses to these months. Possible mechanisms include alterations in the hypothalamic-pituitary-
adrenal axis and associated stress-responsive molecular regulators.

Keywords
Stress; pregnancy; timing; preterm birth; low birth weight; small for gestational age

The complexities of prenatal development are only beginning to be understood (1). It is
assumed that the fetus is particularly vulnerable to organizing and disorganizing insults
because fetal systems are undergoing significant, rapid, and sequential developmental
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changes (2). Focus has been placed on identifying and understanding potential insults, or
prenatal risks, associated with adverse pregnancy outcomes. Unfavorable birth outcomes
include preterm birth (<37 weeks of gestation; PTB), low birth weight (<2500g; LBW), and
small for gestational age (birth weight > 2 sd below the mean for GA; SGA (3)). These
outcomes are associated with increased infant mortality (4-5), lifetime physical and
psychological disadvantage (6-10), and staggering medical costs (11-12). Rates of preterm
birth and associated adverse pregnancy outcomes are increasing (13). Despite our ability to
improve the lives of at-risk infants (14), a mechanistic understanding of the etiology of
adverse birth outcomes and a knowledge of the precise window of vulnerability are of
paramount importance for prevention and intervention efforts (15).

A growing body of research has examined prenatal maternal stress as a putative risk factor
for adverse birth outcomes. Despite mixed findings, sufficient evidence exists to suggest that
prenatal maternal stress is moderately associated with adverse birth outcomes and other
negative effects across the lifespan (for review see 16). These findings are often situated in
the Developmental Origins of Disease hypothesis, also known as fetal programming. This
hypothesis asserts that prenatal maternal stress and fetal physiological adaptation influence
the health and development of the exposed fetus (17). Although the biological mechanisms
explaining such associations have yet to be confirmed, potential pathways through which
stress affects development include increased activity of the hypothalamic-pituitary-adrenal
(HPA) axis and associated stress-responsive molecular regulators, as well as disruptions in
immune and inflammatory systems (18). When a maternal stressor occurs during pregnancy,
glucocorticoids, corticotropin-releasing hormone (CRH), and adrenocorticotropic hormone
(ACTH) proximally increase in the maternal system (reviewed in 19). During normal
pregnancy, glucocorticoids, CRH, and ACTH levels all progressively increase (20),
however, the trajectory of CRH increase has been shown to differentiate pregnancies that
will be carried to term from those that will end preterm (21). While some degree of
glucocorticoid exposure is essential for the development, organization, and maturation of
fetal tissue (22), excess and/or untimely exposure may be detrimental to fetal development.
Thus, fetal HPA axis development and/or changes in the maternal/fetal system across
pregnancy, explained further in the discussion, may play a large part in associations between
prenatal insult and adverse birth outcome.

During prenatal development, there may be heightened periods of vulnerability depending
on the timetable and rapidity of brain development (23) as well as the successful
development of previously or concurrently emerging biological systems, specifically the
stress response system. Periods of vulnerability associated with different phenotypic
outcomes may vary and the potential mechanisms responsible for associations may depend
on timing of insult. For these reasons, timing of insult should be precisely considered when
examining associations between prenatal maternal stress and adverse birth outcomes.

Evidence suggesting specific periods of heightened vulnerability to stress during pregnancy
is inconsistent. For example, it was recently suggested that first trimester stress carries the
greatest risk for reduced gestational length, although the investigation did not adjust for the
reduced likelihood of shortened gestational length over advancing pregnancy (24). A
different investigation used a smaller sample but controlled for the reduced probability of
shortened gestation over time. Results suggested that first trimester exposure to prenatal
maternal stress was associated with the greatest risk for shortened gestational length.
Additionally, the investigation suggested that the dampening of the maternal stress response
system due to pregnancy-induced physiological changes provides protection to stress later in
pregnancy (25). Other research, however, has shown that second (26) and early third
trimester levels of CRH are predictive of increased risk for preterm birth (27-28).
Interestingly, elevated maternal cortisol, a stress-related endocrine signal, early in the
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second trimester predicts a precocious rise in CRH during the early third trimester (28), thus
major stressors affecting the levels of maternal cortisol early in the second trimester may
also influence gestational length through a later mechanism.

When predicting birth weight, analyses examining timing of exposure to prenatal maternal
severe life events is limited. One study using a similar population and stress exposure
indicator suggested that second trimester exposure to prenatal maternal stress is associated
with a greater reduction in birth weight as compared with first or third trimester exposure
(29). The same investigation also concluded that the largest increased risk for SGA followed
second trimester stress exposure, although differences between trimesters were small (29).

In general, a consensus regarding possible vulnerable prenatal periods has yet to be reached
for any measure of birth outcome. Previous research is limited by non-standard prenatal
maternal stress measures and small sample sizes (30). Small sample sizes often lead
researchers to group prenatal exposure periods into 3-month trimesters contributing to
relatively imprecise conclusions regarding sensitive periods of prenatal development. It may
be found that the rapidly developing fetal and maternal-fetal systems pass through periods of
relative vulnerability within the 3-month trimester period and therefore, by grouping these
months together, associations may be attenuated. With a large enough sample size and a
precise definition of stress exposure, the statistical power needed for assessing vulnerable
periods in greater detail is possible.

The current study uses a large population-based sample of all births in Sweden from 1973 to
2004 to examine sensitive periods during fetal development on the detail of months of
exposure. A database was created that includes a measure of prenatal maternal stress
exposure, defined as the death of the father of the child or a first degree relative of the
mother during pregnancy, as well as the timing of stress exposure according to the day of
death during pregnancy (31). Selection of death, a major life event, was used to maximize
the likelihood that the exposure resulted in substantial psychological stress. We
hypothesized that exposure to a major stressor during pregnancy would be associated with
higher risk for adverse birth outcome. Based on previous research (24-25), we hypothesized
that the most vulnerable period for shortened GA and PTB would be early in pregnancy. It
was also hypothesized that the risk for LBW and SGA would follow mid-gestation stress
exposure based on previous cohort research (29) and HPA axis and associated molecular
regulator changes around this time of gestation. Due to reduced maternal physiological and
psychological reaction to stressors late in pregnancy (25), it was hypothesized that no
associations would be found between late pregnancy stress exposure and adverse birth
outcome.

After Institutional Review Board approval, a large-scale, population-based sample was
constructed by linking several Swedish population registries. Information was drawn from:
(1) the Multi-Generation Registry, which links extended family members to the target child
using unique personal identification numbers, (2) the Swedish Medical Birth Registry,
which contains birth outcome and pregnancy information including over 99% of all births in
Sweden from 1973 to 2004, and (3) the Cause of Death Registry, which identifies the dates
of death for relatives of the mother. Death of the father of the child or first degree relative of
the mother (i.e. biological parent, full sibling, or already born biological child) was used as
an indicator of stress during pregnancy (31). If the mother experienced two deaths during
pregnancy, only timing of the first death was used. Table 1 presents the demographics by
stress exposure (32,286 exposed and 2,586,491 unexposed individuals).
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The sample originally contained 2,780,079 target children born between 1973 and 2004 with
identified extended family members of the mother. Multiple births (65,753), malformations
(45,317), and stillbirths (10,263) were removed from the sample in order to limit the cohort
to the most normal prenatal experiences for the current foundational investigation of timing
of stress exposure. Birth outcome information was measured at delivery and included GA at
birth, PTB, LBW, and SGA. In accordance with Swedish weight-based growth standards
(32), SGA was defined as a birth weight of 2 standard deviations below the mean. GA was
determined by early second trimester ultrasound or calculated by menstrual dating (33).
According to global induction recommendations, a GA cutoff was set at 428/7 weeks (34).
Cases with GAs greater than the cutoff or missing were removed from the sample because
timing of death was calculated using GA. Similarly, birth weights were considered
erroneous if entries were <5009 or >55009 and removed from analyses (39,932). Cases with
missing parity or other background information were not included in analyses (37). Thus,
the final cohort totaled 2,618,777 target children.

Statistical analyses

Results

Linear and logistic regression analyses were used to examine the association between timing
of stress exposure and outcome. Logistic regression was employed to predict categorical
outcomes following the recommendation that log linear binomial regression is not necessary
when predicting rare (<5%) outcomes (35), however, results were verified using this
analysis (available upon request).

Timing of stress exposure was first examined across the entire pregnancy period. Stress
exposure windows were then limited to months. Inclusion in the sample was contingent on
still being in utero during the window of stress exposure examined. For example, while
investigating risk for LBW following stress exposure during prenatal month 7, all children
born before or during prenatal month 6 were excluded from analyses. Partial adjustment
included adjusting for year of birth and target child's sex. Fully adjusted models were
adjusted for year of birth, target child's sex, maternal age, maternal education, mother's
country of origin [i.e. Nordic (Sweden, Denmark, Finland, Iceland, or Norway) or non-
Nordic], parity, paternal age, and month of last menstrual period (outlined in Table 1).
Because no associations were found between month of last menstrual period (to account for
possible seasonal influences) and birth outcomes, this variable was subsequently dropped
from all models. For analyses predicting PTB, only exposures prior to week 37 were
considered.

A total of 32,286 mothers experienced stress during pregnancy in the form of death of a
parent, sibling, already born child, or father of the child during pregnancy. Table 2 presents
the number of prenatal stress exposures per month of pregnancy as well as the average
length of gestation and number of PTB, LBW, and SGA for stress exposed and unexposed
pregnancies.

Risk for adverse birth outcome was first examined across the entire prenatal period.
Experiencing stress at any time point during pregnancy was associated with greater risk for
all outcomes although the magnitude of associations were small. Exposure to prenatal
maternal stress was associated with an unexpected increase in gestational length of 0.20
(SE=0.07, p=0.004) days. Exposure to prenatal maternal stress tended to be associated with
elevated risk of PTB (Odds ratio (OR) =1.05; 99% confidence intervals (Cl), 0.98-1.12) and
LBW (OR=1.04; 99% CI, 0.96-1.12), albeit non-significant because of relatively large
confidence intervals. The association between stress exposure and risk for outcome was
strongest for SGA (OR=1.12; 99% ClI, 1.03-1.22).
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Timing of stress exposure was next limited to month exposure periods in order to examine
possible sensitive periods with greater precision. Inclusion in analyses was contingent on
still being in utero during the month being examined. Across all outcomes, the middle
months of pregnancy appeared to be at heightened sensitivity to the detrimental effects of
prenatal maternal stress exposure. As shown in Table 3, fully adjusted linear regression
analyses revealed that .72 (SE=0.21, p=0.0007) and .77 (SE=0.22, p=0.0003) gestational
days were lost on average following stress exposure during prenatal months 4 and 5
respectively. For categorical outcomes, logistic regression was employed. Logits, the
logarithm of the odds of an event occurrence, represent an increase or decrease in risk across
pregnancy using the date of conception as reference and are listed in Table 3. For ease of
interpretation, logits have been converted [e("*da)] to OR. When predicting PTB, months 5
(OR=1.24, 99% CI=1.02-1.50) and 6 (OR=1.23, 99% CI=1.02-1.50) were significant and
robust to covariates. Similarly, when predicting LBW, months 5 (OR=1.37, 99% CI=1.11-
1.70) and 6 (OR=1.40, 99% Cl=1.13-1.73) were also significant and robust to covariates.
Associations between stress exposure and LBW were verified by predicting continuous birth
weight. For continuously measured birth weight, the same pattern emerged and risk for the
greatest decrease in birth weight followed after months 4 (b=—27.16, SE=9.25, p=0.003), 5
(b= —35.36, SE=9.43, p=0.0002) and 6 (b= —27.67, SE=9.44, p=0.003) stress exposure (full
results available upon request). When predicting SGA, month 5 (OR=1.35, 99% CI=1.07-
1.72) (b=0.30, SE=0.09, p=0.001) also emerged as significant. Figure 1 presents the
associations between month of exposure and risk for categorically measured adverse birth
outcomes. As can be observed in Figure 1, months 5 and 6 appear to be heightened periods
of vulnerability to stress due to the slightly larger associations with adverse birth outcomes
after stress exposure.

To test for differences between months 5 and 6 stress exposure to exposure during other
months, new groups (periods) were created based on our findings from months of stress
exposure. Period 1 consisted of months 1-4, period 2 consisted of months 5 and 6, and
period 3 consisted of months 7-9. Predicted rates of adverse birth outcomes from these
stress periods are presented in Table 4. Period 1 stress exposure was associated with a
decrease of 0.30 (SE=0.11, p=0.006) days of gestation, period 2 with a significant decrease
of 0.52 (SE=0.15, p=0.0006) days, and period 3 stress exposure did not significantly affect
the length of gestation. Also shown in Table 4, associations between period exposure to
prenatal maternal stress and other adverse birth outcomes (i.e. PTB, LBW, and SGA) were
generally highest following period 2 (months 5 and 6). Logits were converted to OR and are
shown in Figure 2. When predicting PTB, risk following period 2 stress exposure was the
highest (OR=1.24, 99% CI=1.08-1.42). When predicting LBW, risk following period 2 was
also highest (OR=1.38, 99% Cl=1.19-1.61). There was no significant difference in the first
and second period exposure when predicting SGA, although OR were larger following
period 2 exposure (ORPeriod1=1.14, 99% CI1=1.00-1.30; ORperigd2=1.25, 99% CI=1.05-
1.49). It can be observed that limiting the second exposure group to months 5 and 6 of
pregnancy reveals relatively strong associations between stress during this period and
adverse birth outcome as compared with stress exposure during the first or last period.
Differences can be particularly noted when predicting PTB and LBW. In the case of SGA,
grouping month 5 with month 6 may actually dampen the differential effects of stress
exposure found for month 5.

Discussion

Results suggest that exposure to prenatal maternal stress during mid-gestation, indicated by
the death of the father of the child or first degree relative of the mother, is associated with an
increased risk for adverse birth outcomes. Vulnerability depends on the timing of exposure
to stress. Months 4 and 5 showed heightened vulnerability to stress when predicting
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shortened GA. Months 5 and 6 emerged as periods of heightened vulnerability when
predicting PTB and LBW. Gestational month 5 exposure showed increased risk for SGA.
When grouped together and tested against month groups 1-4 and 7-9, months 5 and 6 were
more strongly associated with adverse birth outcomes particularly when predicting PTB and
LBW. Overall, findings suggest that the risk for adverse birth outcomes after prenatal
maternal stress exposure is highest following exposure during gestational months 5 and 6.
Future investigations using more precise vulnerability windows of months 5 and 6, rather
than the whole trimester spanning months 4 to 6, may aide in identifying the relatively
small, yet meaningful associations between stress exposure and later adverse developmental
outcomes. Identification of increased vulnerability in months 5 and 6 may also be helpful for
targeted intervention and prevention efforts.

This is the largest population-based study to date that specifically examined the impact of
death of a first degree relative or father of the child during pregnancy on adverse birth
outcomes. In addition, the present investigation examined the timing of the psychological
stress-associated exposures per month, thereby providing more detail than the typical
categorization per trimester. Indexing prenatal maternal stress with the well-defined and
objective exact date of death allowed for the testing of single-month exposure periods and
avoided potential maternal self-reporting biases that may have affected previous
investigations. Despite these advantages, there are also limitations to indexing stress in this
way. For example, hospital admissions for family members may have occurred several
months before the date of death, thereby increasing the level of stress in the mother before
the death of the family member occurred (29,36-37). Future research would be aided by
including cause of death and hospital admission dates (29) to address stress onset and
duration. Additionally, creating a composite score of stress during pregnancy that includes
other potential stressors (e.g. job loss, divorce, residential move, natural disaster) may
provide a clearer, more thorough picture of prenatal conditions for the mother and fetus (38—
39) as well as lead to stronger associations with adverse birth outcomes and greater
comparability to other studies.

Although the current positive associations between stress exposure and shortened GA and
PTB support previous research,vulnerable periods identified in the current investigation do
not agree with previous findings. Previous research has suggested that first trimester (24-25)
exposure is associated with the greatest decrease in gestational length and risk for PTB
whereas the current findings suggest that mid-gestation stress exposure, coincident with
second trimester, may be the most vulnerable period during pregnancy. These discrepancies
may be due to the use of different types of stressors (24-25) and, most importantly, smaller
sample sizes in previous literature (24-25). Although not examined in the current
investigation, previous research has also suggested that preconception exposure to severe
life events may have a detrimental impact on the length of the future gestational period (40).

Our results do support previous research showing that stress due to the death of any relative
during the prenatal period is associated with increased risk of LBW and SGA (29) and that
increased risk for these outcomes occurs after mid-gestation stress exposure. It should also
be noted, however, that preconception severe life event exposure has been associated with
increased risk for SGA in preterm infants (41), but preconception exposure was not
examined in the current study. Associations between stress exposure and LBW were verified
by examining associations between stress exposure and continuously measured birth weight.
Associations between stress and SGA were tested with a more conservative categorization
of SGA than previous research: birth weight for GA 2 standard deviations below the mean
as opposed to birth weight for GA less than the 10t percentile (29). Regardless, the
associations found between months 5 and 6 stress exposure and SGA are larger than
previous associations found following trimester 2 stress exposure. Our larger overall sample
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size, more conservative definition of SGA, and more precise treatment of timing of stress
exposure may have been responsible for the increased strength in association.

In conjunction with the Developmental Origins of Disease hypothesis (17) there are several
non-exclusive biobehavioral hypotheses of the mechanisms through which maternal stress
during mid-gestation could affect fetal development and birth outcome (42). These
hypotheses posit 1) a direct effect of stress-responsive molecular regulators of the HPA axis
on fetal development and parturition (18,43), 2) alterations in immunological functioning,
inflammation, and infection risk (18,44), and 3) indirect effects of alterations in maternal
behavior (39). Depending on the timing of stress, different mechanisms may act to produce
similar outcomes (equifinality) or similar mechanisms may produce different results
(multifinality) in part because of the dramatically changing fetal (2) and maternal stress
response system (25,45).

Due to the findings concerning mid gestation in the current study, a possible mechanism of
the associations is a change in the maternal/fetal HPA axis and associated molecular
regulators. Prenatal maternal stress may exert an effect on fetal development through
placental function modification via maternal glucocorticoid stimulation of CRH production.
This will in turn activate the fetal HPA axis. Changes in CRH levels during mid-gestation
may be particularly important for the outcomes studied (21), but particularly important for
shortened GA and PTB. CRH is the primary molecular regulator of the HPA axis and is
critical for the onset and timing of spontaneous labor and delivery. The slope of the increase
in CRH levels across pregnancy differentiates pregnancies that will end preterm, term, or
post-term (21). Similar to the months of importance identified in the current study, CRH
levels as early as prenatal months 4 and 5 differentiate preterm from term pregnancies
(21,26-28). Elevated maternal cortisol, a stress-related endocrine signal, early in the second
trimester predicts a precocious rise in CRH during the early third trimester (28), and may
also be a contributing factor. Also, CRH trajectories may differentiate between types of
PTB: spontaneous preterm labor, preterm premature rupture of membranes, or induced early
delivery on obstetric indication (43). Separating PTB into categories by obstetric precursor
could explain our findings further and begin to address HPA axis-related mechanisms. Thus,
CRH is part of an especially important candidate mechanism behind the association between
stress and gestational length and PTB. Additionally, based on similarities in vulnerability
related to stress timing found here, CRH may also play a role in other adverse birth
outcomes.

Placental 11B-hydroxysteroid dehydrogenase type 2 (11p-HSD2) inactivates glucocorticoids
until late in pregnancy thereby providing a barrier that decreases the risk of untimely action
at glucocorticoid-responsive tissues during earlier fetal development. Therefore, 113-HSD2
may also be a candidate mechanism for the current associations. Premature reduction in the
expression or activity of 113-HSD2 may lead the fetus to be at increased vulnerability to the
effects of prenatal maternal stress (46). Research has shown that acute prenatal stress can
influence 11B-HSD2 activity in rats (47) and early exponential increases in CRH
concentrations have been shown to be associated with a comparable decrease in 113-HSD2
later in pregnancy (21). Previous human and non-human animal research has shown that
reduced placental 113-HSD2 correlates with lower fetal weight (46), and intrauterine growth
restriction (48). Further, the response of 11B-HSD2 may be mediated by genetic
vulnerability (49).

Additionally, as pregnancy advances, mothers become less physiologically (45) and
emotionally (25) sensitive to the effects of stress (19) which may contribute to decreased
associations between later prenatal maternal stress and adverse birth outcomes. Other
possible mechanisms including alterations in immunological functioning, inflammation, and
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infection (18,44) as well as alterations in maternal behavior (39). An elaboration of the
definition of prenatal maternal stress exposure to include maternal immunological (e.g.
hospital visits) and behavioral changes (e.g. smoking during pregnancy) will explore these
possibilities and help to more specifically test possible mediators of the associations found.

Although novel, this study is not without limitations. First, our results may not generalize
optimally to other populations. Prenatal care is advanced in Sweden with about 95% of the
pregnant population participating in antenatal care by the 15 week of gestation (50). This
suggests, however, that identified associations between prenatal stress and poor
developmental outcome may be stronger in countries with less advanced prenatal care.
Second, abortion legislation is liberal in Sweden and neither abortions nor miscarriages were
addressed in the current study. If stress exposure were great enough, the pregnancy may
have been terminated with or without intention (51). In other words, this sample may be
slightly biased towards resilient fetuses (i.e. pregnancies that do not end in miscarriage) or
more determined mothers (i.e. mothers that, in the face of highly stressful circumstances, do
not decide to abort the fetus). Finally, it should be noted that this investigation does not
prove that stress causes poor birth outcomes. In fact, it may be that a common underlying
risk factor contributes to both the stressor and outcome. Investigations into genetic and
epigenetic factors will begin to address this issue (52-54) and our large sample size provides
the opportunity to examine possible familial confounding (55). Additionally, with further
elaboration of the maternal stress conditions, environmental or behavioral factors that may
contribute to both the risk and outcome (e.g. hospitalization of the mother) can also be
explored.

With the knowledge that months 5 and 6 may be most vulnerable to the disorganizing effects
of prenatal maternal stress associated with the death of a first-degree relative or father of the
child, future research using major life events to index prenatal maternal stress may consider
examining these months specifically. After further investigation, replication, and an
elucidation of the contributing mechanisms, intervention and prevention efforts may benefit
from targeting these months of pregnancy. Differing rates of PTB, LBW and SGA among
countries (56) suggests that improvements in care and prenatal health can be made and will
improve fetal development and ultimately save lives.
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Acronyms used in text

ACTH adrenocorticotropic hormone

CRH corticotrophin-releasing hormone

GA gestational age

HPA hypothalamic pituitary adrenal

LBW low birth weight

PAPP-A pregnancy-associated plasma protein-A
PTB preterm birth
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Figure 1.

Odds ratios predicting preterm birth (PTB), low birth weight (LBW), and small for
gestational age (SGA) outcomes after exposure to prenatal maternal stress by month of
pregnancy with reference line.
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Figure 2.

Odds ratios predicting preterm birth (PTB), low birth weight (LBW), and small for
gestational age (SGA) outcomes after exposure to prenatal maternal stress by empirically
created periods during pregnancy with reference line. Period 1 includes months 1 through 4,
period 2 includes months 5 and 6, and period 3 includes months 7-9.
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Characteristics of all Swedish, live-born, singleton pregnancies without congenital anomalies from 1973 to
2004 by prenatal maternal stress (defined as mother's exposure to death of a first degree relative or the father

of the child).

Characteristic

Stress Exposure

Yes (N=32 286)

No (N=2 586 491)

Male Offspring (n, %)
Maternal age (years, n, %)
<24
25-29
30-34
>35
Maternal education (years, n, %)
<118
212
Missing
Maternal country of birth (n, %)

16 515 (51.1)

5475 (17.0)
10 261 (31.8)
9942 (30.8)
6 608 (20.5)

16 419 (50.9)
15 106 (46.8)
761 (2.3)

1325 675 (51.3)

661 703 (25.3)
960 882 (36.7)
678 649 (25.9)
285 257 (11.0)

1202 309 (46.5)
1334 036 (51.6)
50 146 (1.9)

Nordic@ 31861(98.7) 2543324 (98.3)
Non-Nordic 419 (1.3) 42825 (1.7)
Missing 6(<0.1) 342 (<0.1)
Parity (n, %)
Nulliparous& 11 093 (34.4) 1114 403 (43.1)
Primiparous 11 908 (36.9) 953 326 (36.9)
Multiparous 9 285 (28.8) 518 762 (20.1)
Paternal age (years, n, %)
<24 2934 (9.1) 341 636 (13.2)
25-29 8330 (25.8) 841 524 (32.5)
30-34 10 404 (32.2) 817 323 (31.6)
>35 10 618 (32.9) 586 008 (22.7)
aReference.
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