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Abstract
When has the world changed enough to warrant a new approach? The answer depends upon
current needs, behavioral flexibility, and prior knowledge about the environment. Formal
approaches solve the problem by integrating the recent history of rewards, errors, uncertainty, and
context via Bayesian inference to detect changes in the world and alter behavioral policy.
Neuronal activity in posterior cingulate cortex (CGp)—a key node in the default network—is
known to vary with learning, memory, reward, and task engagement. We propose that these
modulations reflect the underlying process of change detection and motivate subsequent shifts in
behavior.

Learning in a changing world
Most days, you drive home along a familiar route. But today, something unexpected
happens. The city has opened a new street, offering the possibility of a shortcut. Another
day, a new intersection sends you down a road you didn’t intend. Often a traffic jam
severely alters the time it takes you to reach your destination. Whether you are a human
driving home, a monkey foraging for food, or a rat navigating a maze, unexpected changes
in the world necessitate a shift in behavioral policy—rules that guide decisions based on
prior knowledge—and potentially promote learning. Changes force agents to engage
learning systems, switch mental states, and shift attention, among other adjustments, and
recent work has examined their physiological substrates [1,2]. Yet the loci of change
detection within the brain remain unidentified. Here we propose that the posterior cingulate
cortex (CGp) plays a key role in altering behavior in response to unexpected change. It may
be that this region, which consumes more energy than any other cortical area [3], must do so
just to keep pace with a dynamically changing world.
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Learning, Change Detection, and Policy Switching
Since the discovery that dopaminergic neurons respond to rewarding events by signaling the
difference between expected and received rewards—the so-called “reward prediction error”
(RPE)—theories of reinforcement learning (RL) have come to dominate discussions of
learning and conditioning [4,5]. In typical RL algorithms, learning is incremental and only
slowly converges on stable behavior [5]. In an environment rapidly alternating among
several fixed but distinct reward contingencies, crude RL agents might find themselves
forever playing catch-up, unable to do more than gradually adjust in response to abrupt
transitions. At present, we know little about the neural processes underlying rapid change
detection, both those that switch between and those that initiate the learning of behavioral
policies. Such processes should accommodate changes in the contingency structure of the
environment (state space, Markov structure) and in its distribution of returns (volatility,
outcomes, outliers). In the driving example above, the new or diverted streets correspond to
changes in environmental structure, while the traffic jam corresponds to a change in the
distribution of returns.

Standard reinforcement learning fails to capture the ability of animals to implement a wide
array of strategies, each learned independently, with minimal switching costs. For example,
drivers stuck in unexpected traffic do not gradually modify the typical route home, but re-
select from among multiple alternatives based on expected delays, time of day, etc. While
several classical theories of conditioning [6] posit surprise (formalized as the absolute value
of RPE) or similar violations of expectation to dynamically adjust behavior and learning
rate, such models are still based on the idea of a single policy subject to gradual updates. By
contrast, a change detection framework allows for multiple behavioral policies by using
statistical inference to distinguish expected variation from underlying environmental shifts
[7–11], allowing only the behaviorally relevant policy to be deployed and learned. As a
result, agents capable of change detection, rather than forever reshaping a single policy in
the face of a dynamic environment, can instead adapt rapidly by switching between
behavioral policies.

This idea accords well with the rapid adjustment of behavior to sudden changes in reward
contingencies [12,13], and operates similarly to theories of conditioning that invoke
Bayesian mechanisms to dynamically adjust learning rates [7,14](Box 2). In such scenarios,
outcome tracking not only adjusts the current strategy (and learning rate), but also
determines whether or not environmental change warrants a switch to a different strategy
entirely. Reinforcement learning then operates as a sub-process within the change detection
system, utilizing Bayesian inference along with a suite of inborn or learned models of the
world [7,11,15].

Box 2

Bayesian Learning

Recent studies have provided evidence that both humans and non-human animals often
employ sophisticated, model-based assumptions when learning about their environments
[7,11,15]. That is, agents first determine an appropriate set of constructs by which to
model the world, and then update the parameters of these models via Bayesian inference.

The Bayesian approach to learning proves particularly useful when modeling behavior in
environments where the underlying parameters are subject to change. The underlying link
between stimuli and outcomes may either change gradually in time [7,10] or shift
suddenly [11–13,74]. Because such models include full predictive distributions for
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observed quantities, they are able to incorporate both prediction error and surprise,
thereby uniting aspects of both reinforcement learning and attentional learning [6].

While we remain agnostic regarding specific implementations of Bayesian learning,
several key features are common to all models [7]: First, updates to the means of model
parameters are proportional to the prediction error--the difference between observed and
expected outcomes. Second, these updates are scaled by the learning rate, which depends
on uncertainty—the width of the distribution of parameter estimates (Figure I). This
uncertainty itself depends upon the current estimate of environmental rate of change,
allowing agents to learn more slowly in stable worlds and incorporate new information
more readily in frequently changing contexts. Finally, agents are expected to incorporate
prior information through Bayes’ rule, forcing them to fall back on model-based
assumptions in the presence of limited information or recent change.

Yet full Bayesian approaches require intensive nonlinear computation, highlighting the
need for simple, online update rules that approximate the full solution. Though models
such as probabilistic population codes solve the Bayesian inference problem via neurons
tuned to specific outcome variables [75], in regions without such well-characterized
tuning curves, memory and processing constraints argue for trial-to-trial inference. In
many cases, techniques such as the Kalman filter offer optimal solutions [8], while in
others maximum likelihood estimates serve as useful approximations [11,74]. We believe
that the brain uses a multitude of such approaches, which can be matched to
environmental dynamics to produce “good enough” Bayesian behavior.

Past hypotheses regarding Posterior Cingulate Cortex function
Despite extensive interconnections with memory, attentional, and decision areas (see Box
1), the primary function of the posterior cingulate cortex (CGp) remains mysterious. Indeed,
no commonly recognized unified theory for its role exists (Table 1). Clinical evidence
demonstrates that early hypometabolism and neural degeneration in CGp predict cognitive
decline in Alzheimer’s disease [16,17], and CGp hyperactivity predicts cognitive
dysfunction in schizophrenia [18]. While a host of experiments have identified the anterior
cingulate cortex (ACC) as critical for processing feedback from individual choices and
subsequent alterations in behavior [9,19–27], the functional role of CGp remains relatively
obscure.

Box 1

Posterior Cingulate Cortex Anatomy & Physiology

Cingulate cortex as a whole has long been recognized as an important site integrating
sensory, motor, visceral, motivational, emotional, and mnemonic information [73].
Posterior cingulate (CGp) is the portion of cingulate cortex caudal to the central sulcus.
Though poorly understood, this brain structure nevertheless consumes large amounts of
energy, making it one of the most metabolically expensive regions of the brain [3]. CGp
is reciprocally connected with areas involved in attention—areas 7a, LIP, and 7, or PGm
—as well as with brain areas involved in learning and motivation, including the anterior
and lateral thalamic nuclei, the caudate nucleus, orbitofrontal cortex, and anterior
cingulate cortex (ACC) (Figure I). CGp also forms strong, reciprocal connections with
the medial temporal lobe, especially the parahippocampal gyrus, long known to be
crucial for associative learning and episodic memory (for a thorough review of
neuroanatomical connections, see [73]).
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To date, disparate evidence for CGp involvement in cognitive and behavioral processes has
thwarted any simple functional characterization. Anatomical connections to medial temporal
lobe areas necessary for learning and memory, as well as to neocortical areas responsible for
movement planning, suggest that CGp links these areas in order to store spatial and temporal
information about the consequences of action [76,77]. The involvement of CGp in learning
and memory, however, seems to extend far beyond the scope of movements and spatial
orientation. Neuroimaging experiments have shown that CGp is activated by emotional
stimuli, particularly when they have personal significance [28,29]. Neurons in CGp signal
reward size, and some studies have suggested that they encode the subjective value of a
chosen option [30–32]. The bulk of recent CGp studies, however, have focused on its role in
the so-called “default mode network”, a set of interconnected brain regions showing
elevated BOLD signal at rest and suppression during active task engagement [3].

Yet none of these proposed functional roles—mnemonic, attentional, spatial, default—
successfully captures the full range of phenomena shown to modulate activity in CGp.
Taking a broader view based on both electrophysiological and functional imaging evidence
(summarized below), we conjecture that many of these observed modulations reflect the
contribution of CGp to signaling environmental change and, when necessary, relevant shifts
in behavioral policy. In our scheme, suppressed CGp activity favors operation within the
current cognitive set, whereas increased activity reflects a change in either environmental
structure or internal state and promotes flexibility, exploration, and renewed learning. This
proposed role for CGp is consistent with converging evidence from imaging studies that
default network regions play an active role in cognition when tasks require mental
simulation and strategic planning [33,34], and lesion studies demonstrating deficits in multi-
tasking and set-shifting [35,36]. While this hypothesis pertains primarily to the contributions
of CGp to learning and decision-making, we also provide evidence to suggest that such an
approach offers clues to the broader role of the default network in cognition.

Change Detection and Policy Control in Posterior Cingulate Cortex
CGp neurons not only respond in graded fashion to the magnitude of liquid reward
associated with orienting, but also respond to the unpredicted omission of these same
rewards [37]. In a choice task with one “safe” option delivering a fixed liquid reward and
one “risky” option randomly delivering larger and smaller rewards with equal probability
[32,38], CGp neurons encoded not only reward size but also reward variance [32]. Thus
CGp neurons track policy-relevant variables like reward value as well as estimates of
variability within the current environment.

In this probabilistically rewarded choice task, monkeys’ behavior followed a win-stay lose-
shift (WSLS) heuristic [38]. After choosing the risky option, monkeys were more likely to
choose it again if they received a larger reward but more likely to switch to the safe option if
they received the smaller reward. Firing rates of CGp neurons were correspondingly higher
following smaller rewards than large rewards, and variability in responses predicted the
likelihood the monkey would switch his choice on the next trial. Brief microstimulation in
CGp increased the likelihood monkeys would switch to the safe option after receiving a
large reward—as if they had erroneously detected a bad outcome [38]. Just as reward
outcomes occurring several trials in the past weakly influenced monkeys’ choices, tonic
firing rates in CGp maintained information about previous rewards for several trials, and
these modulations predicted future choices (Figure 1) [32,38]. Taken together, these findings
suggest CGP neurons encode environmental outcomes (rewards and variance), maintain this
information online (in a leaky fashion), and contribute to adjusting subsequent behavior.
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A follow-up study probed whether representation of the need to switch applied beyond
simple option switching to policy changes more generally [39]. Monkeys performed a
variant of the k-armed bandit task in which reward amounts for four targets varied
independently on each trial and slowly changed over time (Figure 2A–B)[8]. Behavior was
characterized as following two distinct policies—explore and exploit—which depended on
the recent history of rewards experienced for choosing each target [8]. Firing rates of CGp
neurons not only signaled single-trial reward outcomes, but also predicted the probability of
shifting between policies in graded fashion (Figure 2C–E). These observations endorse the
idea that CGp participates in a circuit that monitors environmental outcomes for purposes of
change detection and subsequent policy switching [39]. Thus, even in a more complex
environment where changes in returns are gradual rather than sudden, the activity of CGp
neurons both tracks and maintains strategically relevant information used to implement a
change in behavioral policy.

A Model of Change Detection and Policy Switching in Cingulate Cortex
In order for agents to learn and switch between distinct strategies in response to
environmental change, they must detect the change through inference over behavioral
outcomes and adjust parameters within a given strategy. Figure 3 depicts a schematic of one
such change detection and learning process.

In the model, outcome data from single events are passed to the change detection system,
which recombines these variables into strategy-specific measures of Bayesian evidence that
the environment has changed. As in other models of information accumulation [40,41], this
signal, representing the log posterior odds favoring a given hypothesis (in this case,
environmental change) increases until reaching a threshold, after which a “change” signal is
broadcast, learning rates increase, and the agent switches strategy. In contrast with standard
models of sensory evidence accumulation, these decision signals are maintained across
multiple outcomes, and possess only a single threshold, as is appropriate for an all-or-none
switching process that allows full Bayesian inference to be reduced to a simple update
model [11]. Equally important, the decision variables accumulated by the change detector
may vary between strategies, depending upon the expected distribution of outcomes from
the environment. That is, the correct statistical test for agents to perform in change detection
depends not only on the environment, but also on current and alternative strategies. Thus in
an environment where the appropriate strategy depends heavily on the relative frequency of
outliers, the correct tracking statistic may be neither the mean nor the variance of outcomes,
but a simple proportion of occurrence above a threshold. In such a framework, the best
statistic is the one that maximizes the area under the receiver operating characteristic (ROC)
curve for the strategy switching problem, balancing false positives against false negatives in
accord with the cost-benefit analysis that obtains in the current environment.

Physiologically, we tentatively identify areas such as ACC, amygdala, and basal ganglia as
encoding individual event-related outcomes necessary for altering behavior within a given
strategy. These variables function as inputs to both the gradual within-strategy (RL) learning
system and the change-detection system, the latter of which may include key default
network areas like CGp and the ventromedial prefrontal cortex (vmPFC). These
identifications are suggested by the demonstrated sufficiency of midbrain dopaminergic
signals for classical conditioning [42], as well as the role played by cortical targets of these
signals in associative learning. For instance, the orbitofrontal (OFC) and anterior cingulate
cortices (ACC), which maintain strong reciprocal connections with the basal ganglia
[43,44], are necessary for representing links between outcomes, actions, and predictive cues
[26,45–48] as well as facilitating changes in action [19,24]. Furthermore, we hypothesize
that individual policies and policy selection are most likely computed in dorsolateral
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prefrontal cortex (DLPFC), already implicated in strategic decision-making and action
planning [49,50], while long-term associative learning is implemented via the hippocampus
and surrounding structures. Clearly, however, much work remains to validate both the model
and the identification of its individual functions with specific anatomical areas.

Evidence for such a process is depicted in Figure 2F–G. There, we present a suggestive
reanalysis of behavioral and neural data from the above-mentioned bandit task [39] using an
expanded Kalman filter model (see Online Supplementary Material). This Kalman filter
improved our behavioral fits in all cases, and firing in CGp neurons significantly tracked
variability in the chosen targets (equivalent to uncertainty; n=8/83, 9/83), reward prediction
error (RPE; n=15/83, 17/83) and learning rate (n=10/83, 10/83). These correlations
(variability: R=0.10 chosen option, RPE: R=0.10, learning rate: R=0.10; mean absolute
value of partial correlation for significant cells), proved both stronger and, in some cases,
more numerous than those signaling the difference between explore and exploit policies
[39]. Indeed, such results are surprising, since the task itself contained no underlying noise
to learn (apart from the random walk). Additionally, cells that coded RPE maintained this
information for the duration of the trial, suggesting that single-trial outcome variables
encoded in ACC [51, 52] are buffered for purposes of uncertainty estimation and within-
policy adjustment. These data not only reaffirm that CGp encodes variability in options [32,
37, 38], but also situate these signals within a broader online learning framework. And while
we note that such results (both effect size and frequency) are strongly model-dependent,
they bolster the hypothesis that CGp encodes and maintains online variables related to the
statistical structure of dynamic environments. Nevertheless, direct tests are needed in tasks
where abrupt contingency changes occur, and in which change detection is necessary for
optimal behavior.

Change Detection: An Active Role for the Default Mode Network?
Functionally, CGp in humans belongs to the “default network” of cortical areas, which
includes ventromedial prefrontal cortex and temporo-parietal junction (TPJ). These areas
show high metabolic and hemodynamic activity at rest that is suppressed during task
engagement [53]. Activation in the default network is typically anti-correlated with
activation in the dorsal fronto-parietal network, a set of brain areas implicated in selective
attention and its concomitant benefits in accuracy and task performance [54–56]. Monkeys
show strikingly similar patterns of spontaneous BOLD activity [57] and single unit activity
[58,59] within this network.

What has often gone missing in the discussion, however, is an active role for the default
network in cognition. One suggestion for this role is retrieval of information – especially
personally-relevant information – from long-term memory [60], a function that CGp, with
its strong connections to parahippocampal areas, is well situated to perform. Another is that
default network may be associated with divergent thinking patterns that lead to insight and
creative problem solving – a process that may interfere with performance on many simple
standard laboratory tasks [61]. This possibility is closely linked with the idea that default
network activity is more associated with an “exploratory” mode of cognition, and that
default suppression is associated with an “exploitative” mode [8,39]. This accords well with
a view in which changing between world models and task sets requires withdrawal from task
performance and a re-deployment of internally directed cognition for purposes of strategy
retrieval and selection.

The centrality of CGp within the default network invites the possibility that change detection
may be a key sub-function of default mode processing. Indeed, large-scale environmental
changes are likely to signal the need for exploratory behavior. We recently reported that
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baseline activity of CGp neurons is suppressed during task performance, and that
spontaneous firing rates predict subsequent task engagement on a trial-by-trial basis [59].
Specifically, higher firing rates predicted poorer performance on simple orienting and
memory tasks [59], while cued rest periods, in which monkeys were temporarily liberated
from exteroceptive vigilance, evoked the highest firing rates. Importantly, local field
potentials in the gamma band, which has been closely linked to synaptic activity (and by
extension, the fMRI BOLD signal), were also suppressed by task engagement. These results
fit BOLD signal measurements showing lower CGp activity during task engagement
[53,62,63,64 ]. Firing rates of CGp neurons were likewise suppressed when monkeys were
explicitly cued to switch tasks, but activity gradually increased on subsequent trials,
suggesting relaxation of cognitive control [58]. The fact that CGp neurons track task
engagement suggests that the characteristic functions of default network, including
monitoring, are suppressed when operating within a stable, well-learned environment. By
contrast, periods of rest may be accompanied by more generalized exploratory behavior
requiring reduced focus and maximum flexibility. Even brief pauses in task performance
liberate agents—monkey or human—from the need for focused task engagement, thus
permitting self-directed cognition, cognitive housekeeping, and mind-wandering [59,65].

Thus CGp and the default network may play a broader role in basic cognitive processes
typically suppressed during performance of well-learned tasks, including memory retrieval,
internal monitoring, and the global balance of internal versus external information
processing. As a result, we predict CGp would respond most strongly during the initial
phases of learning, in response to sudden environmental changes, and during self-initiated
switches between behavioral policies. Conversely, we predict greatest deactivations during
performance of outwardly directed effortful tasks that demand attention and engagement,
and a return to baseline during breaks between trials [59], and even on repetitions of trials of
the same type, which presumably demand less attention [58]. These responses are quite
distinct from those seen in other cortical areas, especially the frontoparietal attention
network.

The prevalence of increased default network activity outside task conditions in most studies
would appear, on its surface, to militate against our model, as does the observation that
firing in CGp neurons decreases following changes in the task at hand [58]. In fact, these
responses further bolster the common view that default activation is simply the complement
of activity in the frontoparietal attention network [56]. Yet more recent studies have shown
that in tasks requiring goal-directed introspection, default network activity shows strong
positive correlation with activity in frontoparietal networks [33,34], suggesting that
repetitive performance in well-learned tasks may underrepresent the role of default areas in
active cognition. CGp lesions in both humans [35] and rodents [36] result in deficits in tasks
requiring implementation of new strategies in multitasking scenarios and changes of
cognitive set. Indeed, in richer environments where altering strategy requires periodically
withdrawing from the current cognitive set in order to evaluate and decide, we expect to see
higher co-activation of default and attentional networks. In the same way, we hypothesize
that the deactivation observed in animals switching between two well-learned tasks [58]
results from the fact that changes in task demands were explicitly cued by the environment
—no evaluation of evidence or internal query was required. In a task where behavioral
change requires first inferring the presence of a switch, we predict increased activity in CGp.

Extending the Model
We have proposed that CGp is a key node in the network responsible for environmental
change detection and subsequent alterations in behavioral policy. This proposed network sits
atop the reinforcement learning module in the cognitive hierarchy, enabling organisms to
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learn and implement a variety of behavioral responses to diverse environmental demands,
refining each independently and employing them adaptively in response to change.

This model makes several key predictions. First, CGp activity should show pronounced
enhancement in scenarios that demand endogenously-driven, as opposed to exogenously-
cued, changes in behavior. That is, when statistical inference becomes necessary to detect
environmental change and alter behavior, CGp should show a concomitant rise in firing rate
as evidence mounts, followed by a gradual fall-off as behavior crystallizes into a single
policy. Naturally, this behavior requires that information be maintained and integrated
across trials, and thus that firing rates in the present exhibit correlations with outcomes in
the past. Likewise, set shifts resulting from inferred change points should elicit stronger
modulations in CGp activity than cued change points, since the latter require no integration
of evidence. Consistent with this prediction, in a task-switching paradigm with random,
explicitly cued switches [58], suppression of CGp firing reflected both task engagement and
task switching, presumably because change detection could not rely on statistical inference.

Second, the process of learning entirely new associations should enhance CGp activity. This
follows not only from anatomical connections between CGp and parahippocampal gyrus,
which is necessary for long-term memory formation [66,67], but also from conditioning
experiments showing enhanced CGp activity during learning [68]. We predict that CGp
activity will be more strongly modulated by new cues that predict environmental changes
that require a cognitive set switch than by new cues that are irrelevant to set shifts.

Finally, the change detection hypothesis opens up new avenues for probing default network
function. If the modulations in BOLD activity in fMRI studies merely represent, as we
predict, one end on a continuum of resource allocation, the idea of changes in cognitive set
may offer a new perspective on default mode activation. In this framework, default network
areas may be crucial for initiating transitions between basic modes of behavior, or even
overriding them. This may be particularly relevant in schizophrenia, in which patients
exhibit hyper-vigilance to behaviorally salient events in the environment, but simultaneously
show a diminished ability to “turn down” the internal milieu [69,70]. Likewise, early
degeneration in CGp in Alzheimer’s disease may cripple a key node in the interface between
cognitive set and memory networks, resulting in disorientation and impaired memory access
[71,72]. Together, these observations indicate a healthy CGp is necessary for organizing
flexible behavior in response to an ever-changing environment, by mediating learning,
memory, control, and reward systems to promote adaptive behavior.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Glossary

Reinforcement
learning (RL)

a computational learning model in which organisms adapt to an
environment by incrementally altering behavior in response to
rewards and punishments
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Classical or
Pavlovian
conditioning

the process by which environmental stimuli become associated, via
learning, with the prediction of reward

State space the collection of distinct possible conditions for an agent-
environment system in formal models of learning. States may be
distinguished by, among other factors: the number and type of
available choices, the information available to the agent, and the
response properties of the environment

Markov property the mathematical assumption that transitions between states depend
only upon the current state, not a decision agent’s entire history:
p(si|si−1, si−2, …) = p(si|si−1), where si is a state and p(si) is the
probability of transitioning to that state

Markov structure the set of transition probabilities p(si|sj) that defines the
relationship between states in a space with the Markov property

World model or
model

a set of states of the world, their transition relations, and the
distributions of outcomes from those states

Bayes’ Rule a rule of statistical inference used for updating uncertainty about
statistical parameters (θ) based on prior information ( p(θ) ) and
new observations (xi)

Bayesian learning a set of learning models in which agents maintain knowledge as
probability distributions updated by Bayes’ Rule

Policy a mapping (potentially probabilistic) between environmental
variables like states and values, and actions. Policies implicitly
depend on world models, since not all world models share the
same sets of variables

Cognitive set or set the combination of world model, policy, and attentional factors that
govern performance in a task
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Figure 1.
CGp encodes reward outcomes over multiple trials and predicts changes in strategy. (a)
PSTH for example neuron following reward delivery when monkeys choose between
variably rewarded outcomes and deterministically rewarded outcomes with the same mean
reward rate. Firing rates were significantly greater following small or medium rewards than
following large rewards. (b) Bar graph showing the average firing of all neurons in the
population following delivery of large, medium, and small rewards. Firing rates are
averaged over a 1s epoch beginning at the time of reward offset (t=0). Tick marks indicate
one standard error. (c) Average effect of reward outcome on neuronal activity up to five
trials in the future. Bars indicate one standard error. (d–f) Average neuronal firing rates as a
function of coefficient of variation (CV) in reward size plotted for 3 trial epochs in the
probabilistic reward task. Firing increased for saccades into the neuronal response field
(RF), and was positively correlated with reward CV (standard deviation/mean). Bars
represent s.e.m. Adapted from [38] and [32].
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Figure 2.
CGp neurons encode variance/learning rate and change probability in a volatile
environment. (a) Schematic of the four-armed bandit task. Four targets appear each trial,
each baited with an independently varying juice reward. (b) Sample payouts and choices for
the four options over a single block. Reward values for each target independently follow a
random walk process. Black diamonds indicate the monkey’s choices during the given
block. (c) PSTH for example neuron in the 4-armed bandit task, showing significant
differences in firing for exploratory and exploitative strategies in both the decision and
evaluation epochs. Exploit trials are in red, explore trials in black. The task begins at time 0.
Onset of the “go” cue (dashed green line), reward delivery (solid red line), beginning of
intertrial interval (dashed gray line), and end of trial (rightmost dashed black line) are mean
times. Dashed red lines indicate ± one standard deviation in reward onset. Shaded areas
represent s.e.m. of firing rates. (d,e) Neurons in CGp encode probability of exploring on the
next trial. Points are probabilities of exploring next trial as a function of percent maximal
firing rate in the decision epoch, averaged separately over negatively- and positively-tuned
populations of neurons (d and e, respectively). (f) Numbers of neurons encoding relevant
variables in a Kalman filter learning model of behavior [8,39]. Bars indicate numbers of
significant partial correlation coefficients for each variable with mean firing rate in each
epoch when controlling for others. The decision epoch (blue) lasted from trial onset to target
selection; the post-reward epoch (red) lasted from the end of reward delivery to the end of
the inter-trial interval. Dotted line indicates a statistically significant population of neurons,
assuming a p=0.05 false positive rate. Variance chosen indicates the estimated variance in
the value of the chosen option. Mean variance indicates the mean of this quantity across all
options. (g) Mean absolute partial correlation coefficients for significant cells. Colors are as
in (f). Adapted from [39].
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Figure 3.
A simplified schematic of change detection and policy selection. Sensory feedback from
reward outcomes is divided into task-specific variables and passed on to both a
reinforcement learning module and a change detector. The learning module computes an
update rule based on the difference between expectations and outcomes in the current world
model, and updates the policy accordingly. The change detector calculates an integrated log
probability that the environment has undergone a change to a new state. If this variable
exceeds a threshold, the policy selection mechanism substitutes a new behavioral policy,
which will be updated according to subsequent reward outcomes.
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Box 1, Figure I.
Figure shows medial (top) and lateral (bottom) views of the macaque brain. Significant
neuroanatomical connections to and from CGp are shown. Note that the figure does not
represent a thorough diagramming of innervations, as CGp connects to a large number of
brain regions. Generally, CGp neuroanatomy is similar in humans and macaques [73].
Abbreviations: VTA=ventral tegmental area; SNc=Substantia nigra pars compacta;
NAC=nucleus accumbens; PFC=prefrontal cortex; FEF=frontal eye field; LIP=lateral
intraparietal area; CGp=posterior cingulate cortex; ACC=anterior cingulate cortex;
RSC=retrosplenial cortex; PHG=parahippocampal gyrus; OFC=orbitofrontal cortex;
AMYG=amygdala
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Box 2, Figure I.
Bayesian update rules for learning. Model parameters are initially estimated as prior
distributions (black). When outcomes are observed, distribution means are shifted by the
product of learning rate, α, and prediction error, δ, while variances change based on the
estimated rate of environmental change (left). When the estimated rate of environmental
change is low (red), both mean updates and uncertainty (proportional to variance) are
likewise small. When change is rapid (blue), means are updated rapidly, but uncertainty
remains high.
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Table 1

Proposed functions of CGp, with selected references.

Functional claims Refs.

Evaluating sensory events and behavior to guide movement and memory [76]

Spatial learning and navigation [77,78]

Late stages of reinforcement learning [79]

Orientation in time and space [80]

Autobiographical memory retrieval [28]

Emotional stimulus processing [29]

Reward outcome monitoring [37]

Representation of subjective value [30–32]

Problem-solving via insight [61]

Mind-wandering [65]

Action evaluation and behavioral modification [38]

Goal-directed cognition [33]

Problem-solving via insight [61]

Mind-wandering [65]
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