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Transcriptional regulation at the level of elongation is vital
for the control of gene expression and metazoan develop-
ment. The mixed lineage leukemia (MLL) protein and
its Drosophila homolog, Trithorax, which exist within
COMPASS (complex of proteins associated with Set1)-like
complexes, are master regulators of development. They are
required for proper homeotic gene expression, in part
through methylation of histone H3 on Lys 4. In humans,
the MLL gene is involved in a large number of chromo-
somal translocations that create chimeric proteins, fusing
the N terminus of MLL to several proteins that share little
sequence similarity. Several frequent translocation part-
ners of MLL were found recently to coexist in a super
elongation complex (SEC) that includes known transcrip-
tion elongation factors such as eleven-nineteen lysine-rich
leukemia (ELL) and P-TEFb. Importantly, the SEC is re-
quired for HOX gene expression in leukemic cells, suggest-
ing that chromosomal translocations involving MLL could
lead to the overexpression of HOX and other genes through
the involvement of the SEC. Here, we review the normal
developmental roles of MLL and the SEC, and how MLL
fusion proteins can mediate leukemogenesis.

The program of developmental gene expression has long
focused on the recruitment of RNA polymerase II (Pol II)
by sequence-specific binding factors and their cofactors.
More recently, an additional level of gene expression, reg-
ulating the release of paused Pol II, was found to be widely
used during development in metazoans. Genome-wide
binding studies have found paused Pol II at genes that are
expressed later in development (Guenther et al. 2007). A
similar finding was found in Drosophila melanogaster
embryos, where it was demonstrated that 10% of the
genes have paused Pol II, and that paused Pol II were
overwhelmingly enriched for developmentally regulated
genes (Muse et al. 2007; Zeitlinger et al. 2007). Paused
RNA Pol II has been best characterized as a regulatory
point at heat-shock loci in Drosophila, where RNA Pol II
sits in an engaged state at the promoter, nonproductively

transcribing ;25 nucleotides (nt) in the nonstressed state.
Upon heat shock, Pol II is released for the production of
full-length transcripts (Gilmour and Lis 1986; Rougvie
and Lis 1988; Gerber et al. 2001, 2005; Smith et al. 2008b).
Other genes that have been long known to be regulated at
the level of transcription elongation encode the proto-
oncogenes FOS, JUN, and MYC (Saunders et al. 2006).
Retroviruses have also been known to use transcriptional
elongation as a regulatory mechanism, most notably by
the human immunodeficiency virus (HIV) in the control
of the production of full-length proviral transcripts (Kao
et al. 1987; Laspia et al. 1989).

In order to find factors involved in the control of
transcription elongation, several groups have taken a bio-
chemical approach, fractionating nuclear extracts to search
for activities that can stimulate the production of full-
length transcripts in vitro. One factor that was identified
in this manner was ELL (Shilatifard et al. 1996). Origi-
nally isolated from rat liver nuclear extracts as a factor
that could increase the Vmax of the transcription rate by
RNA Pol II, this protein was found to be related to the
human eleven-nineteen lysine-rich leukemia (ELL) pro-
tein that is fused to MLL (mixed lineage leukemia)
(MLL1, KMT2A) in a subset of MLL-rearranged leuke-
mias (Thirman et al. 1994; Shilatifard et al. 1996). MLL
is involved in a large number of chromosomal rearrange-
ments that lead to myeloid and lymphoblastic leukemia.
The Drosophila homolog of MLL is the Trithorax protein,
which shares a conserved function with MLL as a master
regulator of development, as it is required for transcription
of Hox loci (Eissenberg and Shilatifard 2010). MLL is
homologous to yeast Set1, an H3K4 methyltransferase that
forms a large macromolecular complex, COMPASS (com-
plex of proteins associated with Set1) (Miller et al. 2001).
Similar to yeast Set1, MLL exists in a COMPASS-like
complex that methylates H3K4, a modification associated
with transcriptionally active genes (Hughes et al. 2004; Wu
et al. 2008). MLL is responsible for H3K4 trimethylation at
a subset of genes that includes Hox loci as well as many
other genes that encode master regulators of development
(P Wang et al. 2009). The recent finding that several
translocation partners of MLL associate with the known
transcription elongation factors ELL and P-TEFb in the
super elongation complex (SEC) (Lin et al. 2010; Mohan
et al. 2010) suggests that a major mechanism of leukemo-
genesis could be the misregulation of the elongation stage
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of transcription—as it was originally proposed >15 years
ago (Shilatifard et al. 1996).

In this review, we discuss the normal developmental
roles of MLL and SEC, and how the intricate control of
developmental genes at the level of transcription elonga-
tion can be misregulated in leukemia.

Regulation of transcription at the level of elongation

Numerous factors that stimulate elongation by RNA Pol
II have been identified from in vitro transcription assays.
These factors can be categorized according to the stage
of transcription elongation that they regulate: promoter
clearance, promoter-proximal pausing, and productive
elongation (Sims et al. 2004; Saunders et al. 2006). TFIIF
and TFIIH are required for early promoter clearance.
TFIIH has both helicase and kinase activities. The heli-
case activity helps melt the template DNA to form the
transcription bubble, while the kinase activity phosphor-
ylates RNA Pol II at Ser 5 within the C-terminal repeat
domain (CTD) (Akoulitchev et al. 1995; Holstege et al.
1996; Dvir et al. 1997). Phosphorylation of the RNA Pol II
CTD on Ser 5 is necessary for recruitment of the mRNA
capping machinery. TFIIF is one of several factors that
helps recruit RNA Pol II to the promoter, but it is also
required for the synthesis of the first several bases of the
transcript (Yan et al. 1999). After promoter clearance, the
polymerase continues to exhibit some backtracking of
up to +30 nt from the promoter. Productive elongation
beyond this point is associated with phosphorylation of
the CTD on Ser 2, mediated by P-TEFb. Many of the genes
in metazoans are regulated at this step, characterized by
Pol II stalling at 25–40 nt from the promoter (Core et al.
2008; Nechaev et al. 2010). The mechanism underlying
the generation of these short transcripts could involve
either polymerases that terminate prematurely or poly-
merases that are held in place until an appropriate signal
is received (Krumm et al. 1992; Marshall and Price 1992;
Aida et al. 2006; Ni et al. 2008). Stalling Pol II is phosphor-
ylated on Ser 5 of the CTD and associates with the
negative elongation factor (NELF) and the DRB sensitiv-
ity-inducible factor (DSIF). DSIF is composed of Spt4 and
Spt5, which were originally identified genetically in yeast
as transcription factors and were later identified from
biochemical assays as transcription elongation factors
(Winston et al. 1984; Wada et al. 1998). DSIF acts as both
a positive and negative elongation factor. DSIF interacts
with the multisubunit NELF complex at genes with paused
Pol II, but, upon phosphorylation of NELF and DSIF by
P-TEFb, DSIF is released from NELF and travels with
Pol II during productive transcription elongation (Chen
et al. 2009).

Other factors that facilitate transcription elongation
include FACT, a histone chaperone complex that facili-
tates passage of the polymerase through nucleosomes
(Orphanides et al. 1998), and SII, which prevents arrest of
RNA Pol II during backtracking by stimulating cleavage
of the nascent transcript to generate a new 39 end that is
properly aligned with the template (Reines et al. 1996).
Elongin and ELL, like TFIIF, were identified as factors that

stimulate the rate of Pol II transcription on naked DNA
templates (Aso et al. 1995; Shilatifard et al. 1996; Shilatifard
et al. 2003). Elongin is composed of three subunits:
Elongin A, Elongin B, and Elongin C. Elongin A interacts
directly with RNA Pol II, while Elongin B and Elongin C
associate with an E3 ubiquitin ligase complex that can
mediate degradation of RNA Pol II after DNA damage
(Yasukawa et al. 2008). ELL was identified as a single
polypeptide from rat liver extracts that could stimulate
transcription elongation in vitro, and was related to the
human gene that was a frequent translocation partner of
MLL in acute myeloid leukemia (Shilatifard et al. 1996).
MLL was known to be involved in translocations with
many partners, but the elongation stimulatory activity of
ELL provided the first biological function attributable to
a translocation partner of MLL. More recently, biochem-
ical purification of several of the commonly observed
MLL chimeras identified the SEC that contains several
MLL translocation partners, including ELL, as well as the
CTD kinase P-TEFb (Lin et al. 2010).

The association of both P-TEFb and ELL—factors that
were identified independently as stimulating transcrip-
tion elongation in vitro—in a complex with other MLL
chimeras supports the notion that transcription elonga-
tion is misregulated in these leukemias (Shilatifard et al.
1996; Lin et al. 2010). Combined with the recent demon-
strations that many developmental genes are regulated
at the level of paused Pol II, these findings suggest that
the release of paused Pol II by the SEC could mediate
the enhanced transcription of HOX and other loci in
MLL-rearranged leukemias (Lin et al. 2010; Mohan et al.
2010).

Regulation of development by MLL

In order to gain a better insight into the molecular
function of MLL, several years ago, we purified its closest
yeast homolog, Set1 (Miller et al. 2001). Yeast Set1 was
found to exist as part of an ;1-MDa complex named
COMPASS with six other proteins named for their appar-
ent molecular weight by SDS-PAGE: Cps25, Cps30, Cps35,
Cps40, Cps50, and Cps60 (Fig. 1). In mammalian cells,
homologs of Cps25 (DPY30), Cps30 (WDR5), Cps50
(RBBP5), and Cps60 (ASH2) were found in a COMPASS-
like complex with MLL (Fig. 1; Hughes et al. 2004;
Yokoyama et al. 2004; Dou et al. 2006; Steward et al.
2006; Wu et al. 2008). COMPASS and COMPASS-like
complexes can mono-, di-, or trimethylate H3K4 through
a conserved SET domain (Shilatifard 2006; Wu et al. 2008).
The Cps35 subunit of COMPASS, which is required for
proper H3K4 trimethylation via H2B monoubiquitina-
tion cross-talk (JS Lee et al. 2007; Zheng et al. 2010), is
conserved in humans as the WDR82 protein (Fig. 1; Wu
et al. 2008). However, WDR82 is only found to be as-
sociated with human Set1/COMPASS and not the MLL/
COMPASS-like complexes (Fig. 1; Wu et al. 2008; P Wang
et al. 2009).

Clues to the developmental function of MLL came with
its cloning, since it encoded a protein highly similar to
Drosophila Trithorax (Gu et al. 1992; Tkachuk et al.

Smith et al.

662 GENES & DEVELOPMENT



1992). Trithorax was identified as a homeotic mutation
in flies. trx1 mutants had homeotic transformations of
abdominal and thoracic segments to more anterior seg-
mental identities, similar to mutations in the Hox genes
from the Bithorax cluster (Ingham and Whittle 1980;
Eissenberg and Shilatifard 2010). A role for H3K4 meth-
ylation in Hox gene regulation was demonstrated by a
homeotic mutant allele (trx z11) that was a point mutation
within the SET domain, which prevents histone binding
and methylation by Trithorax (Katsani et al. 2001).

MLL, like its Drosophila ortholog, Trithorax, is a large,
;4000-amino-acid protein that is essential for embryonic
development and proper Hox gene expression (Yu et al.
1995). MLL is found in a COMPASS-like complex and,
like yeast COMPASS, is capable of methylating histone
H3K4 (Hughes et al. 2004; Shilatifard 2008). Despite being
a histone methyltransferase, MLL can also have methyl-
ation-independent functions. Mll1DSET domain mice are
viable, but there are defects in Hox expression (Terranova
et al. 2006). The myriad of potential protein and DNA
interaction motifs within the MLL N terminus may play
important roles in leukemogenesis or MLL chimeras (Fig.
2). However, cells with a MLL translocation also contain
a wild-type allele of MLL. Using a mouse model system,
the wild-type copy of MLL was shown to be required for
leukemogenesis (Thiel et al. 2010). One model to explain

the requirement for both wild-type and translocated MLL
alleles is that the wild-type copy of MLL may be required
to initially recruit or stabilize the basal transcriptional
machinery, while the translocated allele binding to the
same genes via the MLL N-terminal domain interacts
with transcription elongation factors through the trans-
location partner (Mohan et al. 2010).

Differences between COMPASS and COMPASS-like
complexes

While there is only one COMPASS in yeast, mammals
have six COMPASS-like complexes, each capable of meth-
ylating H3K4 with essential and nonredundant functions
(Fig. 1). All members of the Set1/MLL family have a highly
conserved C-terminal SET and post-SET domain (Fig. 2;
Dillon et al. 2005). Consistent with the relatively invariant
C terminus of the Set1 family members, epitope tagging
of yeast Set1 at the C terminus will kill its enzymatic
activity (Krogan et al. 2002). We also demonstrated that
tagging the C terminus of mammalian Set1 and MLL1
will also render the enzyme nonfunctional (M Wu and A
Shilatifard, unpubl.). Outside of the SET domain and
surrounding regions, the Set1/MLL proteins have substan-
tial differences in their domain structure. Set1 proteins
have one or two RNA recognition motifs (RRM), which are
found in many RNA-binding proteins (Fig. 2; Tresaugues
et al. 2006; Avramova 2009). The MLL1–4 proteins have
multiple PHD fingers and a FYRN/FYRC (phenylalanine
and tyrosine-rich N-terminal and C-terminal) domain.
FYRN and FYRC domains are found in several different
chromatin-associated factors. MLL1/2 and Trithorax pro-
teins can be easily distinguished from MLL3/4 due to
a large gap (1600 amino acids in the longest isoforms of
human MLL) that splits FYRN and FYRC (Figs. 2, 3).
Within this large gap are the Taspase cleavage sites
where MLL1/2 and Trithorax are proteolytically cleaved
in cells (Yokoyama et al. 2002; Hsieh et al. 2003; Takeda
et al. 2006). The N-terminal and C-terminal cleavage
products both participate in the same COMPASS-like
complex (Hsieh et al. 2003; Hughes et al. 2004; Yokoyama
et al. 2004; Wu et al. 2008). Based on a crystal structure of
transforming growth factor b regulator 1 (TBRG1), we
now know that the FYRN and FYRC fold together into
a single domain (Fig. 3; Garcia-Alai et al. 2010), which
may help explain why the N-terminal and C-terminal
halves of MLL stay together in the cell after cleavage by
Taspase. The MLL3/4 proteins are identified by having
a FYRN/ FYRC and an ePHD finger just before the SET
domains (Fig. 2; Avramova 2009).

Evidence for the importance of the cleavage of Trithorax
or the MLL1/2 family proteins comes from mammalian
studies, where it was shown that Taspase-deficient mice
have homeotic transformations, suggesting that cleavage
of these proteins may be necessary for their developmen-
tal functions (Takeda et al. 2006), although Taspase has
been shown to cleave other substrates as well (Zhou et al.
2006; Capotosti et al. 2007). Furthermore, genome-wide
profiling in Drosophila of N-terminal and C-terminal
Trithorax reveals that, while both halves of Trithorax

Figure 1. COMPASS and COMPASS-like complexes from
yeast to human. COMPASS was identified in yeast as a complex
of proteins associated with Set1 that can methylate H3 on Lys 4.
Subsequently, six COMPASS-like complexes were identified in
humans. All complexes share the core components Cps30 (WDR5),
Cps50 (RBBP5), Cps25 (DPY30), and Cps60 (ASH2). COMPASS in
humans also has CXXC and WDR82, which are homologous to
Cps40 and Cps35 in yeast and regulate H3K4 trimethylation by
COMPASS in vivo. Cps35 and WDR82 mediate the stimulation
of H3K4 trimethylation upon H2B monoubiquitination, a process
that occurs post-Pol II recruitment via the PAF complex. The
MLL1/2 complexes contain the tumor suppressor Menin, which
helps recruit the MLL1/2 complexes to HOX and other loci. The
MLL3/4 complexes contain NCOA6, PTIP, and PA-1, which help
target the MLL3/4 complexes to a distinct set of genes. The
MLL3/4 complexes also contain the H3K27 demethylase UTX.
The MLL1–4 COMPASS-like complexes function as coactivators
of gene transcription in contrast to the canonical COMPASS
complexes in yeast and humans. Set1s/MLLs are colored red, core
components are colored green, and subunits with complex-
specific functions are colored purple.
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colocalize at many sites, they show major differences in
their distributions (Schuettengruber et al. 2009; Schwartz
et al. 2010). While both N-terminal and C-terminal halves of
Trithorax are found to colocalize at Polycomb response
elements (PREs) and transcription start sites of a subset of
active genes, the N-terminal half of Trithorax is found
over broad domains encompassing transcriptionally ac-
tive PcG target genes (Schwartz et al. 2010). Separation of
FYRN and FYRC and cleavage by Taspase may also have
implications for the etiology of some MLL-rearranged
leukemias, where FYRN and FYRC can be found in the
reciprocal translocation that fuses the N terminus of the
fusion partner to the C terminus of MLL. In the case of
the most common translocation, MLL fuses to AFF1 (also
known as AF4), Taspase cleaves the reciprocal AFF1-MLL
fusion protein, and inhibition of this cleavage can lead to
instability of this chimera. However, there are differing
opinions on the contribution of the reciprocal AFF1-MLL
fusion compared with MLL-AFF1 in the pathogenesis of
leukemia (Bursen et al. 2010; Kumar et al. 2010).

COMPASS and COMPASS-like complexes can be char-
acterized by their unique subunit compositions, whose
identities provide insight into the different biological
functions of these complexes. The SetD1A and SetD1B
(KMT2F–G) complexes are the closest in composition
to yeast COMPASS, and are collectively referred to as
mammalian COMPASS (Fig. 1). One unique subunit of
mammalian COMPASS is WDR82, which is related to
yeast Cps35 (JH Lee et al. 2007; Lee and Skalnik 2008; Wu
et al. 2008). Cps35 and its homolog, WDR82, are required
for the observed cross-talk between histone H2B ubiq-
uitination and H3K4 methylation (JS Lee et al. 2007;
Wu et al. 2008; Zheng et al. 2010). As recruitment of the
H2B monoubiquitination machinery occurs post-Pol II
recruitment, H3K4 trimethylation by COMPASS occurs
after the establishment of the basal transcription ma-
chinery, and therefore does not act as a major activator
of transcription. This is different from the H3K4 methyl-
ation that is implemented by the MLL/COMPASS-like
complexes.

MLL1 and MLL2 (KMT2A–B) both have an N-terminal
domain that interacts with the tumor suppressor Menin.
Menin helps target MLL1/2 to the Hox loci, and, in the
absence of Menin, H3K4 trimethylation throughout the
entire Hox cluster is abolished (Hughes et al. 2004;
P Wang et al. 2009). Although MLL1 and MLL2 are found
in identical macromolecular complexes, they appear to
have both redundant and nonredundant functions at Hox
loci (P Wang et al. 2009). Mll1 and Mll2 mouse knockouts
also demonstrate that these two closely related genes are
not redundant (Yu et al. 1995; Lubitz et al. 2007). Further
evidence of nonredundancy between these two proteins is

Figure 2. Domain organization of Set1 and MLL-related
proteins. Both Set1 and MLL-related proteins have highly
conserved SET and post-SET domains. The Set1 sub-
family also has N-terminal RRM motifs. MLL-related
proteins have FYRN and FYRC regions. The MLL1–4
complexes have several PHD fingers and other do-
mains associated with chromatin-associated proteins
that contribute to targeting and activating properties of
these complexes. The FYRN and FYRC regions of MLL
and MLL2 are separated by hundreds of amino acids,
while being juxtaposed in MLL3 and MLL4.

Figure 3. Structure of the FYR domain. FYRN and FYRC motifs
have been found in several chromatin-associated transcription
factors in addition to the MLL family members. A crystal
structure of the FYRN and FYRC regions of TGFBR was reported
recently. It was found that FYRN and FYRC constitute a single
domain, termed FYR. The FYR domain consists of N-terminal
b sheets and C-terminal a helices. The N and C regions are
separated by a small loop of approximately five amino acids in
TGFBR, MLL3, and MLL4. For MLL, MLL2, and their Drosophila
ortholog, Trithorax, this region is several hundred amino acids.
MLL, MLL2, and Trithorax are proteolytically cleaved within this
region by Taspase, but they are still found to self-associate within
the same COMPASS-like complex. Recent genome-wide profiling
also suggests that the N-terminal half of Trithorax has more
binding sites in addition to those bound by the COMPASS-like
complex.
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that Mll2 cannot substitute for Mll1 in mouse models of
leukemogenesis (Bach et al. 2009).

MLL3 and MLL4 (KMT2C–D), which are orthologous
to Trithorax-related in Drosophila, contain subunits
important for targeting by nuclear receptors (Cho et al.
2007). One key subunit of these complexes may be UTX
(KDM6A), an enzyme that can demethylate H3K27 (Hong
et al. 2007; Lan et al. 2007; MG Lee et al. 2007; Smith
et al. 2008a). H3K4 and H3K27 methylations are thought
to be antagonistic. Indeed, Drosophila genetic studies
originally identified Trithorax and Polycomb group (PcG)
proteins as having opposing roles in the regulation of
Hox genes, long before their roles in implementing
H3K4 and H3K27 methylations were known (Eissenberg
and Shilatifard 2010). Although MLL1/2 and Trithorax
proteins are thought to be primary regulators of the Hox
genes, MLL3/4 and Trithorax-related proteins, or their
complexes, may also have a role in regulating Hox loci
(Agger et al. 2007; De Santa et al. 2007; Lan et al. 2007; MG
Lee et al. 2007). However, loss of Menin, which is a com-
ponent of the MLL1/2 complexes and not the MLL3/4
complexes (Fig. 1), leaves little H3K4 methylation at Hox
loci and almost no transcription of Hox genes (P Wang et al.
2009). Furthermore, mouse embryonic fibroblasts (MEFs)
lacking Ptip, a component of the MLL3/4 complexes, show
little change in H3K4 methylation or Hox transcription
(P Wang et al. 2009).

In Drosophila, a presumptive null allele of trithorax-
related (MLL3/4 ortholog) showed no homeotic mutations,
nor did this allele act as a dominant modifier of Polycomb
and trithorax alleles, further supporting that Trithorax-
related is not a major regulator of Hox loci in Drosophila
(Eissenberg and Shilatifard 2010). Interestingly, the nema-
tode Caenorhabditis elegans has only one MLL-related
protein, which is most similar to MLL3/4 in mammals and
Trithorax-related in Drosophila (Fig. 4). C. elegans also has
a markedly reduced Hox gene cluster, and its development
is determined more by cell lineage than position within the
embryo, which is regulated by the Hox genes and deter-
mines development in other animals such as flies and
vertebrates (Aboobaker and Blaxter 2003).

One way in which H3K4 methylation by MLL/
COMPASS-like complexes could help activate genes is
through recruitment of trimethylated H3K4 (H3K4me3)-
binding proteins (Yap and Zhou 2010). For example,
H3K4me3 can directly recruit the basal transcription
factors via the TAF3 subunit’s PHD finger (Vermeulen
et al. 2007). This enhanced affinity for TFIID at the pro-
moters could be particularly important for genes with
TATA-less promoters, a class of genes that includes many
of the Hox loci in flies and mammals (Juven-Gershon and
Kadonaga 2010). Thus, MLL1–4 recruitment to chromatin
and methylation of H3K4 are likely to be independent of
H2B monoubiquitination and generally precede transcrip-
tion activation, in contrast to Set1/COMPASS. Sequence
comparisons suggest that the ciliate Tetrahymena ther-
mophila may have only a MLL-like protein, and not a Set1-
like H3K4 methylase enzyme (Fig. 4). Interestingly, it was
reported recently that H3K4me3 levels were not affected
by loss of H2B monoubiquitination in Tetrahymena

(Z Wang et al. 2009a). In support of Tetrahymena having
only a MLL-type H3K4 methylase, loss of the ability to
methylate H3K4 results in the loss of transcription of
several hundred genes in Tetrahymena (Z Wang et al.
2009a). This differs from the situation in budding and fission
yeast, where loss of H3K4 methylation by Set1/COMPASS
has little effect on gene expression (Miller et al. 2001;
Tanny et al. 2007). Tetrahymena, unlike Saccharomyces
cerevisiae, has silencing programs associated with H3K27
methylation and Polycomb group proteins (Liu et al.
2007). Thus, Trithorax and Polycomb antagonism/regu-
lation appears to be an ancient process.

Several subunits of COMPASS are shared components
of other macromolecular complexes

Some components of Set1/COMPASS and MLL/COMPASS-
like complexes have also been found in additional
complexes. For example, Cps35/WDR82, a unique com-
ponent of Set1/COMPASS, also participates in a complex
with protein phosphatase 1 (PP1) in yeast and mammals
(Nedea et al. 2008; JH Lee et al. 2010). LEDGF, which to-
gether with Menin is required for proper targeting of the
MLL1/2 complexes, also participates in the HIV integrase
complex (Yokoyama and Cleary 2008). PTIP and PA-1,
components of the MLL3/4 complexes, also exist in a
complex implicated in DNA repair (Gong et al. 2009).

One of the shared components of all COMPASS and
COMPASS-like complexes is Cps30/WDR5. In yeast
and mammals, Cps30/WDR5 is critical for assembly of
COMPASS and COMPASS-like complexes (Krogan et al.
2002; Steward et al. 2006). Based on this information,
WDR5 is sometimes tagged to isolate H3K4 methyltrans-
ferase complexes or targeted to eliminate H3K4 methyl-
ation in cells (Dou et al. 2005; Z Wang et al. 2009b).
However, WDR5 is also a component of at least two dif-
ferent histone acetyltransferase complexes: the NSL/
MSL1v complex, which acetylates histone H4 and p53
(Li et al. 2009; Cai et al. 2010), and the ATAC complex,
which contains the H3K9 and K14 acetyltransferase
GCN5 (KAT2) (Suganuma et al. 2008; Wang et al. 2008).
Therefore, tagging Wdr5 will pull down both the H3K4
methylase complexes and the histone acetyltransferase
complexes. Furthermore, the association of WDR5 with
so many transcription-associated complexes makes it a
poor choice for targeting by RNAi for the purpose of
looking for effects due to only H3K4 methylation (JS Lee
et al. 2010).

Is there a common function for WDR5 in these distinct
chromatin-modifying complexes? One proposal has been
that WDR5 helps target complexes to chromatin through
the interaction with H3 tails. This is based on the ob-
servation that a dimethylated H3 tail peptide could pull
WDR5 out of cell extracts (Wysocka et al. 2005). It was
later shown that WDR5 could interact with the H3 tails
independently of the methylation status of the lysine
(Couture et al. 2006; Ruthenburg et al. 2006). One of the
major determinants of WDR5 binding to the H3 tail is Arg
2 (Trievel and Shilatifard 2009). Another arginine-bearing
sequence was found in Set1 and MLL-related proteins;
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interaction of WDR5 with this motif (Win) is required for
the assembly and activity of COMPASS and COMPASS-
like complexes (Patel et al. 2008; Song and Kingston
2008). Since WDR5 cannot interact simultaneously with
COMPASS and the H3 tail, this rules out a role for WDR5
in presenting the H3 tail for COMPASS to methylate
(Trievel and Shilatifard 2009). The presence of WDR5 in
multiple complexes (many of which do not use H3K4 as
a substrate) could reflect a common role as a scaffold in
complex assembly, rather than in substrate recognition.
Clearly, WDR5 is not the component of the MLL com-
plexes required for gene target specificity, but rather func-
tions in the assembly of both the Set1/COMPASS and
MLL/COMPASS-like complexes. However, the MLL tar-
get genes play an essential role in MLL translocation-
based leukemic pathogenesis. Therefore, identification of
such target genes is central for a better molecular under-
standing and the treatment of MLL translocation-based
leukemia.

Misregulation of MLL target genes via the SEC

MLL has >60 different molecularly characterized trans-
location partners, which share no single common feature
or cellular role (Meyer et al. 2009). However, the most
common translocation partners are nuclear. In order to
determine how MLL translocations lead to leukemia, we
purified several MLL fusion proteins: MLL-AFF1, MLL-
ENL, MLL-AF9, and MLL-ELL (Lin et al. 2010). Our puri-
fication of these MLL chimeras led to the identification of
SEC that contains ELL1–3, ELL-associated factor (EAF1/
2), several of the MLL translocation partners, and the Pol
II CTD kinase P-TEFb (Lin et al. 2010).

The ELL gene on chromosome 19p13.1 was identified
as one of the translocation partners of MLL found in he-
matological malignancies (Thirman et al. 1994; Rowley
1998). Human ELL was demonstrated to be a Pol II elon-
gation factor capable of increasing the catalytic rate of
transcription elongation by reducing transient pausing
(Shilatifard et al. 1996; Shilatifard 1998). To date, ELL is the
best functionally characterized MLL partner (Shilatifard
1998). In humans, there are three family members of ELL;
namely, ELL (or ELL1), ELL2, and ELL3 (Miller et al. 2000).
In Drosophila, there is only one ELL family member (dELL)
also capable of functioning as a Pol II elongation factor
both in vitro and in vivo (Gerber et al. 2001; Eissenberg
et al. 2002; Smith et al. 2008b).

P-TEFb, like ELL, was identified through in vitro tran-
scription assays (Marshall and Price 1995). P-TEFb is com-
prised of two subunits: the kinase Cdk9 and its regulatory
subunit, Cyclin T1 or Cyclin T2. P-TEFb stimulates tran-
scription elongation through the phosphorylation of the
RNA Pol II CTD as well as through the phosphorylation
of NELF and DSIF (Yamaguchi et al. 1999; Peterlin and
Price 2006). DSIF/NELF plays a role in the pausing of Pol
II at genes, and phosphorylation of DSIF/NELF by P-TEFb
is thought to be a regulatory step in the release of Pol II.

Size fractionation of nuclear extracts demonstrated
that only a small fraction of P-TEFb is in the SEC (Fig.
5), but this fraction is highly active as a CTD kinase (Lin
et al. 2010). P-TEFb had been isolated previously in two
different complexes. The HEXIM1/7SK complex is a small
nuclear RNA protein complex that inhibits P-TEFb activ-
ity (Zhou and Yik 2006). The double bromodomain protein
BRD4 has also been found to associate with P-TEFb (Jang
et al. 2005; Yang et al. 2005). BRD4/P-TEFb, unlike the

Figure 4. Ciliates contain a single Set1-
related protein that most closely resem-
bles the MLL1–4 proteins. (A) Dendogram
of Set1/MLL family members from the cili-
ated protozoans T. thermophila and Parame-

cium tetraurelia, the nematodes C. elegans

and Brugia malayi, and the fruit fly D.
melanogaster, as well as humans. For MLL
family members, the region from the ePHD
through the post-Set domain was used for
alignment with the full-length Set1 proteins
from worms, flies, and humans. ClustalW
and QuickTree (http://www.ngbw.org) were
used to generate the phylogenetic tree (which
was further processed at http://iTOL.embl.
de). Branch distances were ignored for clarity
of presentation. (B) Domain organization
of MLL-related proteins in C. elegans and
T. thermophila. Protein domain representa-
tions are the same as in Figure 2. Domains
were identified by SMART (http://smart.
embl-heidelberg.de), except for the FYR do-
main in Tetrahymena, which we predicted
based on similarities with the FYR domain of
Drosophila Trithorax-related and C. elegans
set-16, as detected by HHpred (http://toolkit.
tuebingen.mpg.de/hhpred).
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HEXIM1 complex, is active as a CTD kinase, although it
was shown not to be required for P-TEFb-dependent en-
hancement of HIV transcription (Jang et al. 2005; Yang
et al. 2005).

AFF4 is required for SEC integrity, and its knockdown
in MLL translocation-carrying leukemic cells led to the
loss of HOXA9 expression, a key target of MLL fusion
proteins (Lin et al. 2010). The fact that so many MLL
fusion proteins associate with the SEC suggests that
regulation of transcription elongation is disrupted in the
MLL-rearranged leukemias. These translocations, which
lead to the fusion of MLL’s N terminus with a C-terminal
portion of another protein, can result in the recruitment
of these chimera complexes to MLL’s normal target genes,
leading to premature activation of transcription elonga-
tion. It is also possible that genes that normally recruit
the SEC could gain altered activity by corecruiting MLL’s
N-terminal domain, the associated Menin, and other pro-
teins to give aberrant transcription. Gene expression
studies have identified genes within the HOX clusters
as the most frequently up-regulated in MLL-rearranged
leukemias, and these are thought to be among the most
important MLL target genes because their misexpression
is required for leukemogenesis (Yu et al. 1995; Ferrando
et al. 2003). Since the SEC forms an active P-TEFb com-
plex, and since some HOX genes in undifferentiated cells

have paused Pol II at their promoters, HOX genes may
also be regulated by the SEC during normal development.
The misexpression of the HOX genes in the MLL-rear-
ranged leukemias could result from the stabilized re-
cruitment of SEC and the concomitant release of Pol II in
an unregulated manner (Mohan et al. 2010).

The SEC is required for HIV pathogenesis

The SEC was also found to play a critical role in HIV
replication (He et al. 2010; Sobhian et al. 2010). Tran-
scription of the provirus has long been known to be
regulated at one of the steps of transcription elongation
(Peterlin and Price 2006). The HIV-encoded Tat protein is
an RNA-binding protein that binds a stem–loop structure
Tat response element (TAR) early in transcription from
the long terminal repeat (LTR). At early stages of HIV
transcription, not enough Tat protein has accumulated
and full-length HIV transcripts are not made. When
enough Tat is present, Tat interacts with TAR and stim-
ulates Pol II to transcribe through the recruitment of
P-TEFb. Purifications of Tat and CDK9 identified the
same set of components found in the SEC (He et al. 2010;
Sobhian et al. 2010). Unlike the BRD4-containing P-TEFb
complex, the SEC is required for Tat-mediated trans-
activation (He et al. 2010; Sobhian et al. 2010).

Tat competes with BRD4 for binding to P-TEFb (Yang
et al. 2005). Indeed, a peptide of BRD4 that corresponds to
its P-TEFb interaction domain can inhibit HIV transcrip-
tion (Bisgrove et al. 2007). By disrupting Tat’s interaction
with P-TEFb, this peptide would also prevent recruitment
of other SEC components to the HIV LTR. It will be in-
teresting to determine if this peptide disrupts SEC com-
ponents such as AFF1 and AFF4 from interacting with
P-TEFb. The ability of Tat to interact with the SEC, but
not with the BRD4/P-TEFb complexes, suggests that the
BRD4 peptide might not interfere with normal SEC func-
tion, making it an attractive therapeutic strategy, since
inhibiting normal SEC function might interfere with es-
sential cellular functions.

Are there different versions of the SEC in cells
on chromatin?

AFF1 is the most frequent translocation partner of MLL.
AFF4, a related protein, is a less frequent partner, and AFF3
has been found in one translocation with MLL. AFF2 is
silenced by triplet repeat expansion and transcriptional
silencing in FRAXE mental retardation (Gecz et al. 1996;
Gu et al. 1996). Thus, all members of this family are
linked to human disease. Altogether, four AFF proteins
and three ELL proteins, together with the ENL/AF9
paralogs, give enormous regulatory potential for SEC com-
plexes in mammals. In contrast, Drosophila has one ELL,
one ENL/AF9, and a single AFF protein. The Drosophila
homolog of the AFF1–4 proteins is encoded by the lilliputian
(lilli) gene. Lilli is essential for development, with loss-of-
function alleles being embryonic-lethal (Su et al. 2001;
Tang et al. 2001; Wittwer et al. 2001). Lilli is required for
some of the earliest transcription in Drosophila embryos,

Figure 5. Multiple P-TEFb complexes. P-TEFb, consisting of
CDK9 and Cyclin T, is found in multiple complexes, which can
be separated by gel filtration chromatography. CDK9-containing
complexes from 293 cells were isolated by Flag affinity purifica-
tion and subjected to size exclusion analysis. The resulting frac-
tions were analyzed by silver staining and Western blotting. The
inactive HEXIM1-containing P-TEFb complex, represented by
HEXIM1, was enriched in fractions 15–19. The BRD4/P-TEFb
complex peaked at fractions 13–15. SEC complexes are the largest
P-TEFb complexes and are found in fractions 10–14, as described
previously (Lin et al. 2010).
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regulating ftz and Sxl genes (Vanderzwan-Butler et al.
2007). Lilli has been identified genetically as a dosage-
sensitive modulator of many signaling pathways (Su et al.
2001; Tang et al. 2001; Wittwer et al. 2001). Importantly,
alleles of dELL and lilli were frequently identified in
genetic screens looking for modifiers of Ras signaling
in the Drosophila eye (Neufeld et al. 1998; Rebay et al.
2000; Su et al. 2001; Tang et al. 2001; Wittwer et al. 2001;
Eissenberg et al. 2002). Drosophila ELL, like Lilli, is
essential for development, with loss-of-function alleles
leading to embryonic lethality with defects in patterning
of the embryo (Eissenberg et al. 2002). Consistent with
Drosophila ELL interacting in a fly version of the SEC,
the knockdown of ELL protein levels in larvae leads to
reductions in Ser 2 phosphorylation (Smith et al. 2008b).
Our biochemical analysis indicates that a Drosophila
SEC consists of ELL, Lilli, Cdk9, Cyclin T, and Ear, the
Drosophila homolog of ENL and AF9 (E Smith and A
Shilatifard, unpubl.). Drosophila SEC components localize
to Hsp70 upon heat shock, a well-characterized model for
the regulation of transcription by the controlled release of
Pol II (Lin et al. 2010). This raises the question of whether,
and to what extent, the Drosophila SEC regulates the large
number of developmental genes with poised Pol II identi-
fied in Drosophila embryos (Muse et al. 2007; Zeitlinger
et al. 2007; Boettiger and Levine 2009). Since Drosophila

has only one ELL, one AFF4-related protein, and one ENL,
it is an attractive model system for studying the role of
these factors during development. However, due to their
role in human diseases, determining the specificity of
function of the four AFF proteins in mammals will also
be required (Fig. 6).

Summary and future directions

Despite years of studying the activities that stimulate
transcription elongation in vitro, an understanding of the
in vivo role of these factors has been very limited. Recent
work, however, has begun to provide new insight into
some of these factors. For example, NELF, identified as
an inhibitor of transcription elongation in vitro, is now
known to be required for the proper expression, and not
just the repression, of many genes (Gilchrist et al. 2008).
NELF may help set up the transcriptionally poised state
until it is phosphorylated by P-TEFb (Gilchrist et al.
2008). The purification of common translocation partners
of MLL led to the identification of the SEC, containing
ELL and P-TEFb, each previously identified indepen-
dently by in vitro studies (Lin et al. 2010). We now know
that the SEC is required for the overexpression of HOX
genes by MLL chimeras (Lin et al. 2010). Determining the
way in which the SEC, NELF, and other transcription
elongation factors interact with each other to regulate
specific target genes is an exciting avenue for future
investigation. The growing evidence that transcriptional
elongation is a major regulatory step during early de-
velopment, along with the interactions between MLL and
the SEC in the expression of the HOX genes in leukemia,
demonstrates that transcription elongation and histone
methylation are just two parts of a complex chromatin
signaling pathway in development. Understanding more
of these links will provide additional potential therapeu-
tic targets for MLL-rearranged leukemias as well as other
diseases.
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