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Fluctuations in sound amplitude provide important cues to the identity of many sounds including

speech. Of interest here was whether the ability to detect these fluctuations can be improved with

practice, and if so whether this learning generalizes to untrained cases. To address these issues, nor-

mal-hearing adults (n¼ 9) were trained to detect sinusoidal amplitude modulation (SAM; 80-Hz

rate, 3–4 kHz bandpass carrier) 720 trials/day for 6–7 days and were tested before and after training

on related SAM-detection and SAM-rate-discrimination conditions. Controls (n¼ 9) only partici-

pated in the pre- and post-tests. The trained listeners improved more than the controls on the trained

condition between the pre- and post-tests, but different subgroups of trained listeners required dif-

ferent amounts of practice to reach asymptotic performance, ranging from 1 (n¼ 6) to 4–6 (n¼ 3)

sessions. This training-induced learning did not generalize to detection with two untrained carrier

spectra (5 kHz low-pass and 0.5–1.5 kHz bandpass) or to rate discrimination with the trained rate

and carrier spectrum, but there was some indication that it generalized to detection with two

untrained rates (30 and 150 Hz). Thus, practice improved the ability to detect amplitude modula-

tion, but the generalization of this learning to untrained cases was somewhat limited.
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I. INTRODUCTION

The ability to adequately detect fluctuations, or modula-

tion, in sound amplitude contributes to the accurate percep-

tion of many real-world sounds, including speech (e.g.,

Steeneken and Houtgast, 1980; Plomp, 1983; Rosen, 1992;

Drullman et al., 1994a,b; Shannon et al., 1995). It would

therefore seem that enhancements in this ability might aid

overall hearing performance, particularly for certain clinical

populations known to have difficulty with amplitude-modu-

lation (AM) detection (e.g., individuals with dyslexia;

Menell et al., 1999; Lorenzi et al., 2000; Rocheron et al.,
2002; Witton et al., 2002) or to be particularly reliant on

AM cues for communication (e.g., users of cochlear

implants; Cazals et al., 1994; Fu, 2002). However, while

improvements in the capacity to detect AM have been docu-

mented during the course of development (Hall and Grose,

1994), it is not known to what extent this ability can be

improved in adulthood. To begin to address this question, we

investigated the influence of multiple-session training on

AM detection in normal-hearing adults.

We are not aware of any published investigations in

which listeners were specifically trained to detect AM, but

there is some evidence that training can affect, both posi-

tively and negatively, the perception of AM sounds. In sev-

eral previous reports, listeners were trained to discriminate

between either different values of interaural sound-localiza-

tion cues using amplitude-modulated signals (Zhang and

Wright, 2007, 2009) or different rates of AM (Grimault

et al., 2003; Fitzgerald and Wright, 2005). For both tasks,

discrimination performance on the single trained condition

improved with multiple sessions of practice. These results

indicate that the processing of modulated sounds is mallea-

ble and suggest that training also could be effective for

improving the detection of modulation. However, AM detec-

tion actually got worse in the only investigation we know of

in which AM detection was examined in a training context.

In that case, practice on AM-rate discrimination with a

trained rate that elicits a pitch percept (150 Hz) led to decre-

ments in the ability to detect AM at that rate, possibly due to

the suboptimal use of a pitch cue in the detection task (Fitz-

gerald and Wright, 2005). Thus, not only is there a lack of

direct evidence that practice can lead to improved AM detec-

tion but also the negative generalization from discrimination

to detection suggests that different cues may be used for the

best performance on these two tasks and therefore that train-

ing may affect the two tasks differently.

Here we asked whether directly training AM detection

can improve the capacity to detect AM and, if so, whether

those improvements generalize to untrained cases. To deter-

mine whether multiple-hour training could aid detection per-

formance, we trained normal-hearing adults to detect a

b)Author to whom correspondence should be addressed. Electronic mail:

matthew.fitzgerald@nyumc.org

a)Portions of this work were presented in “The influence of practice on the

detectability of auditory sinusoidal amplitude modulation,” at the 143rd

Meeting of the Acoustical Society of America.

898 J. Acoust. Soc. Am. 129 (2), February 2011 0001-4966/2011/129(2)/898/9/$30.00 VC 2011 Acoustical Society of America



single rate of AM in a fixed carrier over six to seven daily

training sessions (using the same training regimen as Fitz-

gerald and Wright, 2005). Further, because the particular

untrained conditions to which any learning generalizes or

fails to generalize supplies useful information for under-

standing the theoretical and practical implications of learn-

ing on a given task (Wright and Zhang, 2009), we also

examined whether the multiple-hour training influenced per-

formance on five untrained conditions. Four of these

untrained conditions employed a detection task, but with dif-

ferent stimuli than in the trained condition. These stimuli

included untrained modulation rates and untrained carrier

spectra. The fifth untrained condition employed an untrained

task, AM-rate discrimination with the trained rate and carrier

spectrum, and thus provided an inverse test of the negative

generalization from rate discrimination to detection.

II. METHODS

A. Listeners

Eighteen young adults (11 females and seven males;

aged 18–23 yr) with no previous experience in psychoacous-

tic experiments served as listeners. All listeners reported no

history of hearing impairment. All were paid an hourly

wage, and the trained listeners received a 20% bonus upon

completion of the experiment.

B. Experiment organization and procedure

We used the same paradigm as in our previous investi-

gation into sinusoidal amplitude modulation (SAM)-rate-

discrimination learning (Fitzgerald and Wright, 2005). Lis-

teners were randomly placed into one of two groups: a

trained group (n¼ 9) and a control group (n¼ 9). The trained

group completed a pre-test, a training phase, and a post-test.

The control group completed only the pre- and post-tests.

The pre- and post-test sessions consisted of five SAM-

detection conditions and one SAM-rate-discrimination con-

dition. We obtained five threshold estimates in each of the

six conditions (300 total trials per condition). The condition

order was randomized across listeners, but each individual

listener used the same order in the pre- and post-tests. These

�2-h test sessions were separated by an average of 8.4 days

for the trained listeners and 8.7 days for the controls. The

training phase occurred between the pre- and post-tests and

consisted of six to seven daily �1-h sessions. In each train-

ing session, listeners completed 12 threshold estimates (720

total trials per session) on a single condition (80-Hz SAM

rate, 3–4 kHz bandpass carrier). These training sessions

occurred on consecutive days, excluding weekends.

In each two-interval forced choice (2IFC) trial, a standard

sound was presented in one interval, and a target sound in the

other. Listeners indicated which interval contained the target

sound by pressing a key on a computer keyboard. In the five

SAM-detection conditions, the standard sound was an

unmodulated noise, and the target sound a SAM noise. In these

conditions, the target sound was a 3–4 kHz bandpass carrier

modulated at SAM rates of 30, 80, or 150 Hz, or a 0.5–1.5

kHz bandpass or 5 kHz low-pass carrier modulated at 80 Hz.

In the SAM-rate-discrimination condition, the standard sound

was a 3–4 kHz bandpass carrier that was SAM at 80 Hz with a

100% modulation depth, and the target sound was the same

carrier with a faster modulation rate.

In each condition, we manipulated either the modulation

depth (expressed in decibels relative to 100% modulation

depth) or SAM rate of the target sound (in hertz) to determine

the modulation detection or rate-discrimination threshold for

each listener. These thresholds were obtained by decreasing

the modulation depth or rate after three consecutive correct

responses and increasing it after each incorrect response.

When the depth or rate changed from decreasing to increasing,

or vice versa, its value, a reversal, was noted. The first three of

these reversal values in each 60-trial block were discarded,

and the mean of the largest remaining even number of reversal

values was computed to estimate the modulation depth or rate

that yielded 79.4% correct performance (Levitt, 1971). We

defined this value as threshold. To ensure accuracy, no thresh-

old was computed if there were fewer than four remaining re-

versal values; this occurred on less than 1% of blocks. For the

five SAM-detection conditions, the starting modulation depth

(m) was 1 (100% modulation). The modulation depth was var-

ied in units of 20 log(m); the step size was 4 dB until the third

reversal and 2 dB thereafter. For the SAM-rate-discrimination

condition, the starting difference between the standard and tar-

get SAM rates was typically 15 Hz, and the step size was 3 Hz

until the third reversal and 1 Hz thereafter. Listeners received

feedback after each trial in every measurement phase. Custom-

developed software was used to generate the stimuli, control

stimulus presentation, and gather the responses.

C. Stimuli

All sounds were generated digitally [Tucker Davis Tech-

nologies (TDT) APOS]. To create the SAM noises, we multi-

plied a broadband Gaussian noise by a DC-shifted sinusoid of

30, 80, or 150 Hz and filtered the waveform after modulation

(e.g., Viemeister, 1979). The Gaussian noise was generated

on an interval-by-interval basis. The starting phase of the sinu-

soid was always zero degrees. The amplitude of the SAM

noises was reduced by 1þm2/2 to control for the increase in

power resulting from AM (e.g., Viemeister, 1979). To make

the unmodulated sounds, we filtered a broadband Gaussian

noise to the desired bandwidth. All sounds were presented at a

spectrum level of 40 dB sound pressure level. The duration of

each sound was 400 ms, measured from onset to offset,

including 10-ms cosine-squared rise/fall envelopes. The inter-

stimulus interval was 600 ms for every condition.

The sounds were played through a 16-bit digital-to-analog

converter (TDT DD1) at a sampling rate of 25 kHz, followed by

an anti-aliasing filter set to low-pass at 8500 Hz (TDT FT6-2), a

programmable attenuator (TDT PA4), a sound mixer (TDT

SM3), and a headphone driver (TDT HB6). They were presented

through the left earpiece of Sennheiser HD265 headphones. Test-

ing was conducted in a double-walled sound-attenuating booth.

D. Data analysis

We assessed the influence of multiple-hour practice on

SAM detection as follows. First, for each condition
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separately, we removed the pre- and post-test data of listeners

whose pre-test thresholds were greater than two standard devi-

ations from the mean of all (n¼ 18 per condition) of the pre-

test values in that condition. This practice helped ensure that

the data that were included in the analyses were representative

of the general population. It resulted in the removal of the

data of one trained listener in the 150-Hz condition who had

an unusually low pre-test threshold and one control in the 30-

Hz condition whose pre-test threshold was aberrantly high.

Second, for each condition separately, we determined whether

multiple-hour training influenced performance by comparing

the post-test thresholds of the trained listeners and controls

using an analysis of covariance (ANCOVA) with pre-test

threshold as the covariate. If the homogeneity-of-regression

requirement for ANCOVA was violated, we instead per-

formed a two group (trained vs control)� two time (pre vs

post) analysis of variance (ANOVA) with repeated measures

on the time factor. In this case, a significant group� time

interaction indicated that the multiple-hour training affected

performance. Third, to gain insight into the effect of training

at the individual level, we determined the relationship

between pre- and post-test performance across individual lis-

teners by computing the linear regression of the post-test

threshold on the pre-test threshold for the trained listeners and

controls and comparing the regression-line slopes between

groups. We also examined the learning curves on the trained

condition of the individual trained listeners using both

ANOVA and linear regression.

III. RESULTS

A. Learning on the trained condition

On the trained condition (80-Hz SAM rate, 3–4 kHz car-

rier; Fig. 1, first column), the trained listeners (squares) as a

group learned significantly more than the controls (trian-

gles), indicating that multiple-hour practice facilitated the

ability to detect AM (ANOVA: group� time interaction,

F1,16¼ 12.16; p¼ 0.003; ANCOVA precluded due to a sig-

nificant heterogeneity of regression-line slopes: F1,14¼ 6.87;

p¼ 0.02). This training-induced learning was also evident at

the individual level. Figure 2(A) depicts the relationship

between the pre- and post-test thresholds of the individual

listeners. For the trained listeners (filled squares), the points

all fell below the positive diagonal (solid black no-improve-

ment line), indicating improvement between the pre- and

post-tests. The slope of the regression line fitted to these data

did not significantly differ from zero (slope: 0.16; r2¼ 0.11;

F1,7¼ 0.90; p¼ 0.37)1 and was quite shallow, suggesting

that the trained listeners all finished with similar post-test

performance, despite the variation in their pre-test thresh-

olds. Thus, the trained listeners with the highest pre-test

thresholds tended to show the largest amount of improve-

ment. The data points of all but two of the controls (open tri-

angles) also fell below the diagonal line, indicating

improvement. Unlike for the trained listeners, the regression

line fitted to these data was significantly different from zero

(slope: 0.86; r2¼ 0.80; F1,7¼ 28.14; p¼ 0.001) and had a

slope approaching 1, suggesting that there was a strong rela-

tionship between the pre- and post-test thresholds of these

FIG. 1. Mean pre-test (open symbols) and post-test (filled symbols) thresh-

olds of the trained listeners (n¼ 9; squares) and controls (n¼ 9; triangles)

for each of the six conditions. Threshold refers to the modulation depth

needed to distinguish an amplitude-modulated from an unmodulated noise

(SAM-detection) or to the difference in modulation rate needed to distin-

guish a faster from a slower rate (rate discrimination) on 79% of trials. Error

bars reflect 6 one standard error of the mean.

FIG. 2. For each of the six conditions (panels), pre-test (x axis) and post-

test (y axis) thresholds are shown for the trained listeners (filled squares)

and controls (open triangles). The linear regression of the post-test thresh-

olds on the pre-test thresholds was determined for each data set. Separate

lines were estimated for trained listeners (long dashes) and controls (short

dashes). The solid diagonal line in each panel indicates a regression-line

slope of 1; points below this solid line reflect improvement between the pre-

and post-tests.
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listeners. Thus, the controls improved, but by a relatively

constant amount regardless of pre-test threshold. Finally, the

regression-line slopes differed significantly between the

trained listeners and controls, further substantiating the dif-

ferences in behavior between these groups (heterogeneity of

regression, F1,14¼ 6.87; p¼ 0.02).

While the trained listeners learned significantly more

than the controls between the pre- and post-tests, some trained

listeners took markedly longer than others to reach asymptotic

performance during the training phase. All nine trained listen-

ers finished with thresholds similar to those previously

reported for highly trained listeners tested with similar stimuli

(Eddins, 1993). However, of these listeners, only three met

our previous criteria for having learned during the training

phase itself (L1–L3; Fig. 3, left column) in that (1) their

thresholds changed significantly across the training sessions

as determined by a one-way ANOVA on the training-phase

data (p< 0.05 in all cases), and (2) a regression line fitted to

their data had a significant negative slope (p< 0.05 in all

cases; see also Wright et al., 1997; Wright and Fitzgerald,

2001; Fitzgerald and Wright, 2005). These three listeners had

among the highest pre-test thresholds for SAM detection on

the trained condition as well as on the two untrained rates,

and on the SAM-rate-discrimination condition. However, a

high pre-test threshold did not guarantee that learning would

extend over multiple training sessions, as two trained listeners

who reached asymptotic performance at the end of the first

training session (see below) also had high pre-test thresholds.

The six listeners (L4–L9; Fig. 3, middle and right col-

umns) who did not meet our previous criteria for having

learned during the training phase nevertheless showed

improvement attributable to the training phase. On average,

these listeners learned significantly and reached asymptotic

performance within the first training session. Figure 4 depicts

the thresholds from the pre-test, each training session, and

the post-test for the three trained listeners who met our previ-

ous criteria for training-phase learning (squares), the six

FIG. 3. Thresholds on the trained condition

from the pre- and post-tests (filled squares) and

during the training phase (open squares) are

shown for all nine trained listeners (panels).

Error bars indicate 6 one standard error of the

mean within a given listener. Three listeners

improved across the six training sessions (left

column; asterisks next to the listener label). The

remaining six listeners also improved between

the pre- and post-tests, but not across the six

training sessions (middle and right columns).

FIG. 4. Mean thresholds on the trained condition from the pre- and post-

tests (filled symbols) as well as from the first and second halves of each

training session (open symbols). Data are shown separately for the trained

listeners who improved significantly across the six training sessions (across-

session learners, n¼ 3; squares), for the trained listeners who improved

between the pre- and post-tests, but not across the six training sessions

(within-session learners, n¼ 6; circles), and for controls (triangles, n¼ 9;

triangles). Error bars indicate 6 one standard error of the mean across listen-

ers. Thresholds that differed significantly between the first and second

halves of a training session are enclosed by a dashed rectangle.
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trained listeners who did not (circles), and the controls (tri-

angles). For the two subgroups of trained listeners, mean

thresholds are shown for the first six (first half) and for the

last six (second half) estimates from each training session to

facilitate the examination of within-session learning. Such

learning was assessed in the six trained listeners who did not

meet our criteria for across-session learning. A two time

(first vs second half of each training session)� six session

ANOVA with repeated measures on both factors conducted

on these data yielded a significant time� session interaction

(F5,40¼ 3.48; p¼ 0.01). Post-hoc analyses indicated that the

thresholds of these listeners differed within a session only on

the first of the six sessions [t(5)¼ 3.27; p¼ 0.02]. Notably,

their thresholds in the first half of that session tended to be

lower than in the pre-test [t(5)¼ 2.19; p¼ 0.08] and did not

differ from the post-test thresholds of the controls

[t(5)¼ 0.26; p¼ 0.80]. This result, in combination with the

significant improvement shown by the controls between the

pre- and post-tests [t(8)¼ 2.94; p¼ 0.019], suggests that pre-

test exposure alone yielded learning that could be maintained

without additional training (see also Mossbridge et al., 2006,

2008). However, by the second half of the first training ses-

sion, the thresholds of these six trained listeners were lower

than their own first-half thresholds [t(5)¼ 3.27; p¼ 0.022]

and did not differ from their post-test thresholds [t(5)¼ 0.15;

p¼ 0.89]. Thereafter, there were no additional within- or

across-session improvements. Thus, after completing the

pre-test, it appears that the majority of listeners required

more than 360, but fewer than 720 practice trials (20–45

min) to reach asymptotic performance for the detection of

80-Hz modulation. The apparent retention of learning

induced only by pre-test exposure raises the possibility that

these six trained listeners would have maintained their

improvement even had they received no training beyond the

first �720 training trials. The small size of the subgroup of

listeners who met our criteria for significant training-phase

learning (n¼ 3) precludes statistical analysis of whether

these listeners also showed within-session learning in addi-

tion to their across-session improvements.

B. Generalization to untrained conditions

The training-induced learning did not generalize to either

of the two untrained carrier spectra [5 kHz low-pass:

(F1,13¼ 0.005; p¼ 0.95); 0.5–1.5 kHz bandpass: (F1,13¼ 0.19;

p¼ 0.67)] or to the untrained SAM-rate-discrimination task

which shared the same trained rate and carrier spectrum

(F1,13¼ 0.59; p¼ 0.45) (Fig. 1, three right-most column). For

the 5 kHz low-pass noise [Fig. 2(E)], the data points depicting

the relationship between the pre- and post-test performance of

the individual listeners were intermixed between trained listen-

ers and controls and mostly fell below the diagonal, implying

learning for both groups. The slopes of the regression lines fit-

ted to these data were significantly different from zero and

steep for the trained listeners (slope: 1.07; r2¼ 0.81;

F1,8¼ 30.06; p< 0.001) as well as for the controls (slope:

0.80; r2¼ 0.70; F1,8¼ 16.12; p¼ 0.005). Moreover, neither

the slopes (heterogeneity of regression, F1,14¼ 0.91; p¼ 0.36)

nor the y-intercepts (ANCOVA, see above) of these lines dif-

fered significantly between the two groups. The individual

data and regression-line analyses for the rate-discrimination

condition [Fig. 2(F)] followed a similar pattern (trained: slope:

0.63; r2¼ 0.53; F1,8¼ 7.91; p¼ 0.033; control: slope: 0.89;

r2¼ 0.66; F1,8¼ 13.78; p¼ 0.008; heterogeneity of regression,

F1,14¼ 0.62; p¼ 0.44; ANCOVA, see above). These results

suggest that for these two conditions, both the trained listeners

and controls improved, but by similar amounts, and that the

magnitude of this improvement was relatively constant regard-

less of the pre-test threshold. For the 0.5–1.5 kHz bandpass

condition [Fig. 2(D)], the data points of the two groups and

corresponding regression lines were essentially superimposed

on the diagonal line, indicating no improvement by either

group and no difference between the two (trained: slope: 0.78;

r2¼ 0.72; F1,8¼ 18.18; p¼ 0.004; control: slope: 1.03;

r2¼ 0.56; F1,8¼ 8.90; p¼ 0.02; heterogeneity of regression,

F1,14 ¼ 0.45; p¼ 0.513; ANCOVA: see above).

Though the results are less clear, there are some indica-

tions that learning generalized to the two untrained modula-

tion rates. For the untrained 30-Hz rate, there was only a

trend for the post-test thresholds of the trained listeners to be

lower than those of the controls when the pre-test threshold

was a covariate (F1,14¼ 3.23; p¼ 0.094) (Fig. 1, second col-

umn). However, this trend in combination with other aspects

of the data provides moderate evidence that training-induced

learning generalized to this condition. Specifically, at the

group level, while the pre-test thresholds did not differ

between the groups [t(15)¼�1.07; p¼ 0.300], the improve-

ment between the pre- and post-test thresholds was signifi-

cantly greater in the trained listeners than the controls

(ANOVA time� group interaction, F1,15¼ 4.81; p¼ 0.044).

At the individual level, the data points depicting the relation-

ship between the pre- and post-test performance fell below

the diagonal for all but one of the individual listeners, denot-

ing learning in both groups [Fig. 2(B)]. Yet, for similar pre-

test values, the points of the trained listeners were generally

lower than those of the controls. The slopes of the regression

lines fitted to the data of each group did not differ signifi-

cantly between the groups (F1,13¼ 0.16; p¼ 0.699), but the

y-intercept for the trained listeners was nearly significantly

different from, and less than, zero [t(7)¼ 2.29; p¼ 0.056],

while that for the controls was not [t(7)¼ 0.87; p¼ 0.419],

again suggesting that the trained listeners may have

improved more than the controls.

For the 150-Hz condition, the difficulty in determining

whether learning generalized arises because the pre-test

thresholds of the trained listeners were significantly higher

than those of the controls [t(15)¼ 3.03; p¼ 0.008], while the

post-test thresholds did not differ significantly between the

two groups [t(14)¼ 0.30; p¼ 0.771; ANOVA group� time

interaction, F1,15¼ 8.64; p¼ 0.011, ANCOVA not con-

ducted due to the group differences in the pre-test thresh-

olds] (Fig. 1, third column). Thus, these group-level analyses

cannot rule out the possibility that the controls started at a

performance floor and that the trained listeners, who by

chance started more poorly,2 reached that same floor simply

through exposure to the pre-test rather than through the

generalization of training-phase learning. However, the indi-

vidual data points depicting the relationship between the
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pre- and post-test performance provide some support for the

idea that multiple-hour training contributed to performance

on this condition [Fig. 2(C)]. The points of all of the trained

listeners fell below the diagonal, indicating learning between

the pre- and post-tests, while those of the controls were dis-

tributed around the diagonal, indicating a lack of learning.

Further, for similar pre-test values, the points of the trained

listeners were generally lower than those of the controls. The

regression lines fitted to the data of each group did not differ

significantly in slope (F1,13¼ 0.002; p¼ 0.961), but the

y-intercept differed significantly from, and was less than,

zero for the trained listeners [t(7)¼ 2.45; p¼ 0.050], but not

for the controls [t(7)¼ 0.73; p¼ 0.489]. This configuration of

results suggests that multiple-hour training may have gener-

alized to the untrained 150-Hz rate.

Finally, it is notable that for each of the two untrained

modulation rates, the slopes of the regression lines fitted to

the data were almost significantly different from zero and

relatively steep for both the trained listeners (30 Hz, slope:

0.6; r2¼ 0.41; F1,7¼ 4.95; p¼ 0.061; 150 Hz, slope: 0.70;

r2¼ 0.41; F1,7¼ 4.23; p¼ 0.086) and controls (30 Hz, slope:

0.78; r2¼ 0.43; F1,7¼ 4.44; p¼ 0.08; 150 Hz, slope: 0.72;

r2¼ 0.36; F1,7¼ 3.98; p¼ 0.086) and, as mentioned above,

did not differ between those groups (heterogeneity of regres-

sion, 30 Hz: F1,13¼ 0.16; p¼ 0.699; 150 Hz, F1,13¼ 0.002;

p¼ 0.961). Thus, for both the trained listeners and controls,

the magnitude of any improvement appeared to be relatively

independent of the pre-test threshold in these conditions.

This pattern differs from that on the trained condition, in

which the regression-line slope of the trained listeners was

quite shallow and differed significantly from the steeper

slope of the controls. Summarized another way, for the con-

trols, the regression lines had similar slopes (steep) for all of

these conditions, but for the trained listeners, the slopes dif-

fered between the trained condition (quite shallow) and the

two untrained rates (steep). The difference in the slopes for

the trained listeners between the trained and untrained rates

may be an indication that the generalization to the untrained

rates, to the extent that it occurred, was not complete. This

possibility arises from the assumption that the slopes for the

untrained rates would have been shallow had those condi-

tions been the trained ones, and therefore, could have been,

but just were not, shallow following practice on the current

trained condition. However, it is also possible that the slopes

for the untrained rates would have remained steep even with

direct training, in which case, the generalization could be

considered complete, at least by this measure (see Wright

and Zhang, 2009, for a review of generalization).

IV. DISCUSSION

The present data demonstrate that training can help nor-

mal-hearing adults to better detect SAM. Exposure to the

pre-test alone led to improved performance over a week later

at the post-test in controls who did not receive any interven-

ing training. Additional training between those two tests led

to even greater improvements. Listeners who received six to

seven daily sessions of training on a single modulation-

detection condition (80-Hz rate, 3–4 kHz carrier spectrum)

improved significantly more on that condition than did con-

trols. However, different listeners required different amounts

of training to reach their best performance. Most needed

only �1 h of additional practice after the �2-h pre-test, but

others required 4–6 h of training. The learning of the trained

listeners did not generalize to untrained carrier spectra (0.5–

1.5 kHz, 5 kHz low-pass noise) or to a modulation-rate-

discrimination task that shared the trained rate and carrier

spectrum, but there was some indication that it aided per-

formance on untrained modulation rates (30 and 150 Hz).

It appears that at least two different types of learning—

stimulus and task learning—contributed to the improved per-

formance on SAM detection shown by the trained listeners.

We define stimulus learning as learning associated with spe-

cific feature values of the stimulus used during training and

task learning as learning associated with the particular per-

ceptual judgment to be made. The inference that each of

these types of learning contributed to the overall improve-

ments observed is based on the pattern of conditions to

which learning on the trained SAM-detection condition did

and did not generalize (for a review of definitions of learning

type and this general approach, see Ortiz and Wright, 2009).

Stimulus learning is inferred from a lack of generalization to

untrained stimulus features on the trained task. The trained

listeners showed evidence of this type of learning at the end

of training because their learning on the trained SAM-detec-

tion task did not generalize to untrained carrier spectra. Task

learning is inferred instead from a lack of generalization to

untrained tasks that utilize the trained stimulus. It is impli-

cated in the current investigation because the learning on

SAM detection did not generalize to SAM discrimination

even though the modulation rate and carrier spectrum were

the same in both cases.

It is not clear what types of learning contributed to the

improvements shown by the controls. The controls learned

between the pre- and post-tests on four of six conditions, and

on one of the conditions on which they did not learn, they

may have already been at or near a performance floor (150-

Hz rate). Unfortunately, the current experimental paradigm

precludes the use of generalization patterns to determine

what type(s) of learning played a role in their improvements.

This is because the controls were exposed to each condition

on the pre-test. Thus, we cannot determine whether their

learning on any particular condition was specific to that con-

dition, or whether it resulted from generalization from

another condition. Rapid improvements that were observed

in the controls sometimes have been attributed to procedural

learning (e.g., Recanzone et al., 1993; Wright and Fitzger-

ald, 2001), which we define as learning associated with any

components of the training experience outside of the trained

stimulus and task (such as the experimental setting, testing

method, and response demands). However, by our defini-

tions, they can also arise from stimulus (e.g., Demany, 1985;

Amitay et al., 2006) and task (e.g., Hawkey et al., 2004)

learning (for a review, see Ortiz and Wright, 2009). Because

the trained listeners took part in the same pre-test as the con-

trols, whatever types of learning contributed to the improve-

ments of the controls also affected the performance of the

trained listeners.
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In addition to providing insight into the types of learning

that contributed to the improvements, the pattern of general-

ization can also be used to make more detailed inferences

about the processes that were modified by training. Improve-

ments in performance on perceptual tasks have been attrib-

uted to refinements in one or more processing stages,

ranging from the initial sensory representation (e.g., Karni

and Sagi, 1991; Poggio et al., 1992; Ahissar and Hochstein,

2004; Fahle, 2004) to the weighting and interpretation of

that sensory information (e.g., Mollon and Danilova, 1996;

Dosher and Lu, 1998; Petrov et al., 2005). Depending on the

view adopted, the pattern of generalization is attributed ei-

ther to the tuning characteristics of the particular circuitry

that was modified or to the distribution of weights given to

particular aspects of the stimulus, task, and procedure used

during training. Whichever of these possibilities ultimately

proves to be the case for learning on SAM detection, the ba-

sic assumption regarding generalization is the same:

Improvements on a trained condition result from refinements

somewhere along the processing pathway and these

improvements spread to untrained conditions only if per-

formance on those conditions is mediated by the processing

that was refined by the training (e.g., Ahissar and Hochstein,

1996; Wright and Fitzgerald, 2001; Demany and Semal,

2002; for review, see Wright and Zhang, 2009).

Based on this assumption, the apparent generalization of

learning to untrained SAM rates, but not to untrained carrier

spectra suggests that training modified processes in which

different modulation rates are treated similarly, but different

carrier spectra differently. Processes with these characteris-

tics have been proposed as components of two psychophysi-

cal models of the detection of AM. Versions of both the low-

pass filter model (Viemeister, 1979) and the modulation-fil-

terbank model (e.g., Dau et al., 1997a,b) include a low-pass

filter, which is a mechanism that could account for common

processing of multiple modulation rates [low-pass cutoff:

�64 Hz (Viemeister, 1979), �150 Hz (Ewert and Dau,

2000; Kohlrausch et al., 2000; Jepsen et al., 2008)]. Both

models also assume some degree of carrier specificity,

whether via a pre-detection filter (Viemeister, 1979) or by

only considering information within a particular carrier (Dau

et al., 1997a,b). There is also physiological evidence of these

characteristics in numerous reports of single AM-sensitive

neurons that phase lock to many different modulation rates

and that are sharply tuned for carrier frequency (see Joris

et al., 2004, for a review). However, given the tentative na-

ture of the conclusion that learning generalized to untrained

rates, it remains possible that the learning modified processes

that were specific to both rate and carrier. Such processes

have been implicated at the behavioral (e.g., modulation-

masking; Houtgast, 1989; Bacon and Grantham, 1989; Yost

et al., 1989) and physiological (see Joris et al., 2004, for a

review) levels and incorporated in the modulation-filterbank

model (e.g., Dau et al., 1997a,b).

Using the same assumption, the lack of generalization

from SAM detection to SAM-rate-discrimination suggests

that training on detection modified different processes from

those used for optimal rate discrimination. This result echoes

the previous observation that training on rate discrimination

actually led to decrements in the ability to detect modulation

(Fitzgerald and Wright, 2005) and thus shows that the lack

of generalization of improvement between these two tasks is

bidirectional. The finding that training on neither task aided

performance on the other suggests that the processes govern-

ing optimal performance on SAM detection and SAM dis-

crimination tasks are separable, regardless of whether they

are instantiated by different neural substrates or the differen-

tial weighting of cues in a common decision process. In this

context, it is interesting to note that there were differences in

the rate of learning and the generalization patterns between

SAM detection (80-Hz rate; here) and SAM-rate discrimina-

tion (150-Hz rate; Fitzgerald and Wright, 2005), despite the

use of the same training regimen for both. In terms of learn-

ing rate, only three of nine listeners required more than a sin-

gle training session beyond the pre-test to reach asymptotic

performance on modulation detection with an 80-Hz rate,

while nine of nine listeners required multiple training ses-

sions on rate discrimination with a 150-Hz rate. Similarly,

exposure to the pre-test alone yielded considerable improve-

ments in detection, such that the post-test thresholds

approached those of highly trained listeners, but this did not

occur for rate discrimination. With regard to generalization

patterns, SAM-detection training with an 80-Hz rate yielded

learning that appears to have generalized to rates of 30 and

150 Hz, while SAM-discrimination training at 150 Hz gener-

alized only partially to a 300-Hz rate and not at all to a

30-Hz rate. While these differences could be a consequence

of the different modulation rates used in the two investiga-

tions, they also could have resulted, at least in part, from the

different tasks.

The proposed separation of the processes underlying

optimal modulation detection and rate discrimination is con-

sistent with the lack of a direct relationship between modula-

tion rate-discrimination thresholds with a 100% modulation

depth and modulation detection thresholds in individual lis-

teners (Grant et al., 1998). We note however that this separa-

tion does not indicate that the processes underlying

performance on these two tasks are entirely independent. For

example, there are several reports showing that one factor

that limits modulation-rate-discrimination performance is

the ability to detect modulation. Reductions in modulation

depth can lead to poorer rate-discrimination thresholds

(Burns and Viemeister, 1976; Patterson and Johnson-Davies,

1978), and the ability to detect modulation and to discrimi-

nate modulation rate appear to deteriorate in parallel with

increasing modulation rate (Patterson and Johnson-Davies,

1978). Conversely, once a certain modulation depth is

reached, further increases in modulation depth do not aid

rate discrimination, which is in accord with the current lack

of generalization between detection and rate discrimination.

The idea that separable processes subserve modulation

detection and rate discrimination, coupled with the known

influence of modulation depth on rate discrimination, sug-

gests the following potential explanations for the mutual

lack of benefit received from training on the other task. The

negative generalization from discrimination to detection

could be accounted for if the discrimination-trained listeners

used the processes that typically underlie discrimination
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performance suboptimally for detection (see also Fitzgerald

and Wright, 2005). They may have done so because multi-

ple-hour training on discrimination taught them to focus on

the discrimination processes and those processes provided a

suboptimal cue for detection (most likely a pitch cue,

because the modulation rate was 150 Hz; Fitzgerald and

Wright, 2005). This listening strategy would result in poorer

modulation detection thresholds because deeper modulation

depths are required to detect the presence of pitch than to

detect the modulation itself (Burns and Viemeister, 1976;

Patterson and Johnson-Davies, 1978). In turn, the lack of

generalization from detection to discrimination could be

accounted for by assuming that listeners monitored the proc-

esses typically underlying detection performance during

their training on detection but accessed those processes that

typically underlie discrimination performance during their

post-testing on discrimination. They may have used this

strategy because the detection processes offered no cue for

discrimination. In this scenario, detection training did not

aid discrimination performance because the 100% modula-

tion depth used in the discrimination task far exceeded the

depth needed to obtain the best possible rate-discrimination

threshold (e.g., Patterson and Johnson-Davies, 1978). Thus,

the increases in sensitivity to the presence of much shallower

modulation depths induced by modulation detection training

would have no further effect on modulation rate-discrimina-

tion ability.

Finally, it is interesting to note that the AM detection

and rate-discrimination tasks may have placed different

demands on short-term memory. The modulation detection

task potentially could have been performed by monitoring

the percept elicited by a single interval to see if the cue used

for detection was present (potentially a change in stimulus

level or quality). In contrast, discrimination of modulation

rate more likely required that the percept elicited by the first

interval be held in short-term memory and compared to the

percept elicited by the second interval so that the cue moni-

tored in each interval (potentially a pitch cue) could be com-

pared. Such apparent differences in the short-term memory

demands for these two tasks may have contributed to the

lack of generalization between them as well as to the other

differences in the influence of training on AM detection and

discrimination.

V. SUMMARY

In summary, practice led to significant improvements in

the ability to detect AM. These improvements did not gener-

alize to modulation detection with two untrained carriers or

to modulation-rate discrimination, but there was some indi-

cation that they did generalize to the detection of two

untrained modulation rates. This learning may have arisen

from modifications in circuitry specialized for modulation

encoding or from the reweighting of different cues in a deci-

sion process. In either event, it appears that the present train-

ing on modulation detection modified processes in which

different carrier spectra are treated differently, but different

modulation rates seem to be treated similarly. It also appears

that these processes are separate from those used for optimal

rate discrimination. These conclusions are consistent with

some previous data regarding the processing of AM and the

relationship between modulation detection and rate

discrimination.
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