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Dengue is an emerging and reemerging

arboviral disease of great global public

health importance. Increased trans-

mission and disease outbreaks are being

driven by population growth, urbaniza-

tion, international travel, and unchecked

vector populations [1]. Southeast Asia,

Central and South America, and parts of

the Caribbean experience endemic and

hyperendemic dengue virus (DENV)

transmission while indigenous trans-

mission is being increasingly recognized

in areas of Africa, the Middle East and

South Asia [2–5]. Reports indicate that

southern US border-states and Hawaii

can support episodic DENV trans-

mission [6–12]. Dengue poses a risk to

traveler and military populations, espe-

cially those originating from non-

dengue endemic regions [13–18].

Millions of DENV infections, hun-

dreds of thousands of hospitalizations,

and tens of thousands of deaths related

to dengue occur annually [19]. There is

no specific, licensed anti-DENV thera-

peutic or preventative vaccine. The

financial, social and individual cost of

dengue is significant, underestimated,

and underappreciated [20–25]. The

strategic administration of a safe and

efficacious dengue vaccine, in co-

ordination with efforts to educate about

personal protective measures and sus-

tained vector control, is the best hope to

reduce the global dengue burden.

There are numerous dengue vaccine

candidates in clinical development. Early

efforts to develop a dengue vaccine date

back more than 70 years, with attempts

to prevent virus transmission using in-

fectious human plasma treated with ox

bile or virus grown in live mosquitoes

and inactivated with formalin [26].

Schelsinger and Sabin undertook the

first attempts to immunize using mouse-

passaged live-attenuated DENV-1 and -2

viruses [27–29]. Halstead and colleagues

discovered DENVs were attenuated fol-

lowing passage in primary dog kidney

(PDK) cell culture [30]. Mahidol Uni-

versity and Sanofi Pasteur attempted to

codevelop live attenuated virus dengue

vaccine candidates using PDK cell pas-

sage; the Walter Reed Army Institute of

Research and GlaxoSmithKline Bio-

logicals also used PDK passage to at-

tenuate vaccine virus strain candidates

[31–40]. The US National Institutes

of Allergy and Infectious Diseases

attenuate DENV strains by targeted

mutagenesis; the resulting attenuated

DENV strains may constitute stand-

alone vaccine candidates or serve as

chimeric backbones [41–45]. The US

Naval Medical Research Center has

completed a phase 1 trial testing

a DENV-1 pre-Membrane/Envelope

DNA vaccine; explorations of different

vector and/or adjuvant combinations

continue [46–50]. Hawaii Biotech/

Merck & Company is completing a

phase 1 trial testing a DENV-1 re-

combinant Envelope protein candidate

[51–53]. Sanofi Pasteur is in advanced

clinical development (phase 3) of a -

chimeric-Yellow fever-dengue (CYD)

vaccine candidate using a construct cre-

ated at the St. Louis University Health

Sciences Center and Acambis Inc.

[54–59]. The CYD candidate is the first

candidate to enter clinical endpoint trials.

Efforts to develop a dengue vaccine

have been plagued by numerous chal-

lenges and quandaries, some established

and others hypothetical. The most ob-

vious quandary for the dengue vacci-

nologist is the existence of 4 DENV

types, each capable of causing severe

dengue and death. The global epidemi-

ology of dengue and cocirculation of

multiple DENV types within tight geo-

graphic areas mandates the need for

a vaccine capable of protecting against

disease caused by any DENV type,

a tetravalent vaccine (ie, containing
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DENV-1-4 antigens) [2, 60]. The im-

plication of this requirement extends

well beyond the need to produce 4

DENV monovalent vaccines and then

successfully combine into a single tet-

ravalent formulation. Human and

non-human primate studies have

demonstrated the existence of DENV

type-specific immune dominance/in-

terference when administering tetrava-

lent vaccine candidates, with the result

being an imbalanced immune response,

a very undesirable outcome (discussed

below) [61, 62]. Whether this is

a phenomenon and challenge only for

live virus replicating vaccines or all

tetravalent dengue vaccines is unknown.

The absence of a validated animal

model of dengue disease is also a chal-

lenge to the vaccine development effort.

Research in this area continues but at

this time vaccine developers are without

a reproducible and relevant disease

model to initially test vaccine candi-

dates, down-select promising for-

mulations, and understand, early on, the

potential for clinical benefit [63–67]. As

a result, numerous, small-scale phase 1

and 2 human trials are required to ad-

vance candidates.

In addition to the absence of an ani-

mal model, there is no validated human

challenge model. Timelines for de-

veloping and down-selecting malaria

vaccine candidates have benefitted

greatly from the Plasmodium falciparum

human challenge model developed at the

WRAIR [68]. Experimental human in-

fection with DENV has been reproduced

in hundreds over the last century with-

out untoward effects [26–28, 69–73].

During the past decade the WRAIR

has attempted to validate minimally

attenuated DENV-1–4 vaccine candi-

dates as human challenge strains with

limited success [74]. The requirement

for cGMP manufacture and complex

regulatory and human subjects’ pro-

tection requirements make this pursuit

very resource intensive. It is unclear how

a dengue human challenge model would

need to perform (ie, reproduce dengue

fever versus reproduce viremia with or

without symptoms) to support dengue

vaccine development plans.

The incomplete understanding of

what ‘‘immune profile’’ will lead to

a protective or pathogenic response fol-

lowing a DENV infection poses another

challenge to developers. Although anti-

DENV neutralizing antibodies are likely

required for protection from dengue

disease, it is well established certain an-

tibody characteristics (ie, non-neutral-

izing, cross-reactive, low affinity) may

contribute to a poor clinical outcome

[75–80]. Additionally, cellular immunity

plays a role in both protective and

pathogenic outcomes following expo-

sure [81–85]. Dengue vaccine candidates

would, ideally, induce immune re-

sponses corresponding to protective,

rather than pathogenic, profiles. The

spectrum of immune profiles induced by

dengue vaccine candidates using differ-

ent approaches (eg, live virus, chimeras,

DNA) is unclear, but vaccine developers

are devoting resources to broadly char-

acterize responses [86–92].

There is no established dengue im-

mune correlate of protection. An

immune correlate would support (1)

understanding how vaccine immunoge-

nicity relates to protection from disease;

(2) generalizing efficacy across different

populations; (3) facilitating bridging

between clinical studies; and (4) defining

the relevant parameter to establish

vaccine potency tests [93]. Without

a validated human challenge model,

attempts to define an immune correlate

will need to be made in the context of

clinical endpoint trials.

The dengue vaccine field is also chal-

lenged by the biologic assays currently

available to measure immunogenicity.

The measurement of neutralizing

antibody is the most relevant endpoint

to the vaccine development effort from

a scientific and regulatory perspective;

neutralizing antibody is believed to

be protective and is consistently mea-

surable. Variations on the plaque re-

duction neutralization test (PRNT) or

microneutralization assay platforms are

currently used to measure neutralizing

antibody [94, 95]. Unfortunately, assay

results can be variable and, in the face of

multiple antigen exposure (ie, secondary

infection or vaccination with tetravalent

dengue vaccines), difficult to interpret

whether homotypic, high-quality anti-

body (ie, neutralizing and protective) or

cross-reactive antibody is being mea-

sured [96]. Furthermore, each developer

utilizes methods and reagents specific for

their vaccine candidate, making inter-

developer immunogenicity comparisons

nearly impossible [97]. The Pediatric

Dengue Vaccine Initiative and World

Health Organization have attempted

to facilitate standardization and harmo-

nization of the PRNT across laborato-

ries [95]. Dengue vaccine efficacy

trials and associations between neu-

tralizing antibody measurements and

various clinical outcomes will improve

our understanding of immunogenicity

endpoints.

A major theoretical concern is that

poorly immunizing vaccines (ie, low

antibody titer, no induction of T or B

cell memory), imbalanced responses

(ie, variable antibody responses to each

DENV type), or waning immunity (ie,

decline in antibody titer over time) may

increase vaccine recipient risk of an

immunopathologic response (ie, en-

hanced disease) following subsequent

natural infection or re-immunization

[60]. Limited, long-term studies of

dengue vaccine recipients residing in

dengue-endemic areas and being ex-

posed to natural infections have not re-

vealed an increased risk of severe disease

[98]. In this issue of the Journal, Durbin

and colleagues [99] describe the results

of experiments exposing recipients of

attenuated monovalent dengue vaccines

to heterotypic monovalent vaccines 0.6–

7.4 years later. There were no overt

safety signals observed compared with

control (dengue vaccination in naı̈ve

volunteers), and neutralizing antibody

profiles in the heterotypic group were

broad, qualitatively mimicking what
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is seen in natural secondary dengue

virus infections. There are limitations

in equating these experiments with

natural secondary DENV infections (ie,

higher risk for severe disease) or ex-

trapolating results to potential dengue

vaccine recipients who are primed with

a natural DENV or another flavivirus

(ie, Yellow fever virus or Japanese en-

cephalitis virus), but the investigators

provide an important step in assessing

the safety of vaccinating DENV im-

mune subjects. Early dengue vaccine

efficacy trials will require long-term

subject follow-up or phase 4 studies to

better define the risks of immunizing

populations in dengue endemic areas

and areas where other flaviviruses

circulate [60].

The global burden of dengue is sig-

nificant and the world needs a dengue

vaccine. The recent infusion of financial

resources into dengue research greatly

expanded what was once a narrow field

of dengue scientists and funding entities.

There are many dengue vaccine de-

velopment initiatives underway, with

numerous candidates in preclinical and

clinical development. Data from the first

dengue vaccine efficacy trial are greatly

anticipated. Challenges to the vaccine

development effort exist and there is

much to learn. The worsening financial

and societal burden of dengue calls

for increased funding to facilitate the

study, and improved understanding of

dengue epidemiology, immunology, and

the development and advancement of

vaccine candidates with the potential to

provide clinical benefit.
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