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Abstract

Stimulation efficiency is an important consideration in the stimulation parameters of implantable
neural stimulators. The objective of this study was to analyze the effects of waveform shape and
duration on the charge, power, and energy efficiency of neural stimulation. Using a population
model of mammalian axons and in vivo experiments on cat sciatic nerve, we analyzed the
stimulation efficiency of four waveform shapes: square, rising exponential, decaying exponential,
and rising ramp. No waveform was simultaneously energy-, charge-, and power-optimal, and
differences in efficiency among waveform shapes varied with pulse width (PW) For short PWs (<
0.1 ms), square waveforms were no less energy-efficient than exponential waveforms, and the
most charge-efficient shape was the ramp. For long PWs (=0.5 ms), the square was the least
energy-efficient and charge-efficient shape, but across most PWs, the square was the most power-
efficient shape. Rising exponentials provided no practical gains in efficiency over the other
shapes, and our results refute previous claims that the rising exponential is the energy-optimal
shape. An improved understanding of how stimulation parameters affect stimulation efficiency
will help improve the design and programming of implantable stimulators to minimize tissue
damage and extend battery life.
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[. Introduction

Ivweantasie Neural stimulators assist thousands of individuals with neurological disorders. The
stimulation parameters of these devices are selected and programmed by physicians to treat
the target condition and to minimize side effects. However, it is also important to consider
the impact of stimulus parameter selection on the efficiency of stimulation. The charge
delivered during a stimulus pulse (charge efficiency) contributes to the risk of tissue damage
[1], [2]; the instantaneous power of a stimulus pulse (power efficiency) is important since
the maximum power that can be delivered is directly proportional to the size of the battery;
and the energy consumed per stimulus pulse (energy efficiency) determines the lifetime of
battery-powered implanted pulse generators, which, when depleted, must be replaced
through an expensive and invasive procedure. We analyzed the effects of waveform shape
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and duration on the charge, power, and energy efficiency of neural stimulation using
computational modeling and in vivo measurements.

Stimulation efficiency is dependent on the duration (pulse width; PW) and shape of the
stimulus waveform. Analysis of the strength-duration relationship for rectangular
waveforms as defined by Lapicque [3] or Weiss [4] shows that shorter PWSs result in greater
charge efficiency, longer PWSs result in greater power efficiency, and PW equal to chronaxie
optimizes energy efficiency [5]. Similar conclusions regarding the relationships between PW
and efficiency have been reached experimentally [6], [7]. The effects of waveform shape on
stimulation efficiency have also been examined previously. In computational models of an
unmyelinated Hodgkin—Huxley fiber, a rectangular waveform was more charge-efficient
than waveforms that resembled postsynaptic potentials, and the energy-duration curves
varied with waveform shape [8]. A recent study using a computational model of a
myelinated mammalian axon concluded that each waveform shape produced unique energy-
duration and charge-duration curves, demonstrating that waveform shape greatly influences
stimulation efficiency [9].

One waveform shape in particular—the rising exponential—has been found to be energy-
optimal. Offner [10] determined analytically that to reach threshold during neural
stimulation, the waveform shape that generated the least amount of heat, i.e., required the
least amount of energy, was the rising exponential. Using analytical and numerical
optimization techniques, Kajimoto et al. [11], [12] also concluded that a rising exponential
was the energy-optimal waveform shape, and Fishler [13] and Jezernik and Morari [14]
reached the same conclusion. However, the rising exponential may not be energy-optimal
because optimality was determined using a linear (passive) model of the membrane. The
passive model is useful for estimating subthreshold behavior, but ignores many important
traits of excitable cells, including accommodation—the increase in the threshold voltage
during extended subthreshold stimulation. When models with nonlinear (active) membrane
conductances are considered, the rising exponential may not be energy-optimal and may be
inefficient in terms of power and charge. Therefore, we reanalyzed the efficiency of the
rising exponential using nonlinear models and in vivo measurements.

There were two goals for this study: 1) to test the hypothesis that the rising exponential
waveform is energy-optimal for electrical stimulation of nerve fibers, and 2) to improve the
understanding of the effects of waveform shape and duration on stimulation efficiency.
Using computational models of mammalian myelinated axons as well as experiments on cat
sciatic nerve, we measured the energy efficiency, charge efficiency, and power efficiency
for rising exponential, decaying exponential, linearly rising (ramp), and rectangular (square)
waveforms. The results refute the hypothesis that the rising exponential waveform is energy-
optimal. As well, no single waveform was simultaneously energy-, charge-, and power-
optimal. These results will help guide the design and programming of stimulators that can
deliver more efficient stimulation.

[l. Methods

A. Stimulation Waveforms

Four different waveform shapes were analyzed: rectangular (square), rising ramp, rising
exponential, and decaying exponential. For all shapes, stimulation was applied at t = 0 and
turned off at t = pulse width (PW). The equation for the stimulus current with the square
waveform was

Lt () =K * [u(t) —u(t — PW)] (1)
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where Kg is the current amplitude, t is time, and u(t) is the unit step function [Fig. 1(a)]. The
equation for the stimulus current of the ramp was

Lim (0 =K, = t = [u(t) — u(t — PW)] (2

where K, is the slope of the ramp [Fig. 1(b)]. The equation for the rising exponential
waveform, as described by Fishler [13] and Jezernik and Morari [14], was

1% w ,
Ly, (1) :ﬂe%, s [u(®) —u(t— PW)]
sinh (g,,.m )

cm

(3)

where V1R is the transmembrane voltage threshold, gy, is the specific membrane
conductance, ¢y, is the specific membrane capacitance, and the time constant z is equal to ¢,/
Om- Equation (3) assumes that Vg and g, are constants, and Jezernik and Morari [14] used
Cm = 2 uFlcm? and gy, = 30.4 mS/cm? [15], resulting in 7 = 65.8 us. However, these
assumptions are inaccurate because g, (and thereby z) depends strongly on the dynamics of
the ion channels, which vary with time and transmembrane voltage (Vy,), and V1yr depends
strongly on pulse duration [16]. Since and Vg and g, could not be determined a priori at
every instant in the present computational simulations or experiments, (3) could not be
applied, and the variables were lumped together into constants to produce a new equation

Lim (1) =Kce'"™ 5 [u () — u(t = PW)]. )
The constant K, in the equation was the amplitude of the stimulus current at t = 0 [Fig. 1(c)].
To examine the sensitivity of the stimulation efficiency to z, we tested five different values
of —32.9 us, 65.8 us, 132 us, 263 us, and 526 us.

Decaying exponential waveforms are delivered by thousands of currently-used implanted
stimulators [17]. These waveforms are described by

Lt () =K TV ™" s [u (1) — u (1 — PW)] )

where the constant Kq was the amplitude of the stimulus current at t = PW, and we tested
decaying exponential waveforms with 7 = 132 us, 263 us, and 526 us [Fig. 1(d)].

B. Measures of Efficiency

The different waveform shapes were compared using three measures of efficiency:
maximum instantaneous power required (power efficiency), charge delivered (charge
efficiency), and energy consumed (energy efficiency) to reach threshold. The instantaneous
power across any electrical component, P(t), is

PO)=I()* V(0 ®6)

where | is the current through the component and V is the voltage across the component. In
the computational models, we used the quasi-static approximation [18], and peak power
(Ppeak) Was reached when the current amplitude was at its peak. In the in vivo experiments,
Ppeak Was determined for each stimulus pulse by measuring the current through and the
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voltage across the working and return electrodes, multiplying the two waveforms, and
determining the maximum of the product.

In the computational models and in vivo, the amount of charge delivered during a stimulus
pulse was determined by integrating the current waveform over time

PW .
0=/, Lim (1) dt. @

The energy in a stimulus pulse was determined by integrating the power of the stimulus
waveform over time

PW PW
E=[7 P(t)ydi=[3 1)« V(D). o

In the computational models, the power was proportional to 12(t)

PW o
I-

E stimdt' 9)

In the in vivo experiments, E was determined by measuring both and I(t) and V(t) during
stimulation and integrating their product.

C. Computational Models

We conducted computational simulations of extracellular stimulation of a population of
myelinated axons. All simulations were run in NEURON [19] with a time step of 0.001 ms
using Backward-Euler integration. The axons were modeled with the MRG model, which
represented a myelinated mammalian peripheral axon as a double cable model with a finite
impedance myelin sheath and explicit representation of the nodes of Ranvier, paranodal
sections, and internodal segments [20]. Axons (diameter = 11.5 zm) were randomly and
uniformly distributed within a 3-mm-diameter cylinder and were aligned parallel to the
cylinder's axis. Monophasic cathodic stimulation was delivered through a point current
source located at the center of the cylinder with extracellular conductivity of 300 Q —cm
[15]. To simulate extracellular stimulation, the potentials generated by the source along the
length of each axon were calculated and were applied to the outside of the axon.

The input-output properties generated by each of the waveform shapes were compared
across a wide range of PWs (0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, and 5 ms) through the
following procedure. First, for each PW that was tested, 10 individual populations of 100
axons with varying nodal positions were generated. Next, for each waveform shape,
recruitment (input—output) curves were constructed for each of the 10 populations by
stimulating with increasing amplitude [i.e., incrementing K in (1), (2), (4), and (5)] until all
100 axons in the population were activated. At each increment, E, Q, and Ppeai Were
calculated, and the number of activated axons was recorded. These data were used to
construct three recruitment curves: an E recruitment curve (i.e., number of axons activated
versus E), a Q recruitment curve, and a Ppeai recruitment curve. From these recruitment
curves, the values of E, Q, and Ppeai required to activate 25%, 50%, and 75% of each
population were calculated, and the means and standard errors of these values across the 10
populations were computed.

A single fiber model (MRG axon, 11.5-um diameter) was used to analyze the effects of
waveform shape on membrane gating parameters. The electrode was positioned 1 mm
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directly above the center node of Ranvier, and extracellular stimulation was delivered using
each waveform shape across a wide range of PWs at threshold amplitude. Parameters were
analyzed at the node beneath the electrode and included Vp, , the gating variables of the
sodium channel (m, h, and m3 h), and the sodium current density (ina)-

D. In Vivo Experiments

Surgical Preparation—All animal care and experimental procedures were approved by
the Institutional Animal Care and Use Committees of Duke University and were followed
according to The Guide to the Care and Use of Laboratory Animals, 1996 Edition, National
Research Council. Experiments were performed on adult cats (n = 6). Sedation was induced
with acepromazine (Vedco Inc., 0.3 mg/kg; S.Q.), and anesthesia was induced with
ketamine HCI (Ketaset 35 mg/kg; 1.M.) and maintained during the experiment with a-
chloralose (Sigma-Aldrich, Inc., initial 65 mg/kg supplemented at 15 mg/kg; 1.V.). The cat
was intubated, and respiration was controlled to maintain end tidal CO, at 3%—-4%. Core
temperature was monitored and maintained at ~ 39°C. Fluid levels were maintained with
saline solution and lactated ringers delivered through the cephalic vein (15 ml/kg/h, 1.V.).
Blood pressure was monitored using a catheter inserted into the carotid artery.

The sciatic nerve was accessed via an incision on the medial surface of the upper hindlimb.
A monopolar cuff electrode, composed of a platinum contact embedded in a silicone
substrate, was placed around the nerve and secured with a suture around the outside of the
electrode. The return electrode was a subcutaneous needle. Two stainless steel wire
electrodes were inserted into the medial gastrocnemius muscle to measure the
electromyogram (EMG) evoked by stimulation of the sciatic nerve. The evoked EMG signal
was amplified, filtered (1-3000 Hz), recorded at 500 kHz, rectified, and integrated to
quantify the response (EMG integral) (Fig. 2).

Stimulation and recording were controlled using Labview (DAQ: PCI-MIO-16E-1)
(National Instruments, Austin, TX). Voltage-regulated stimulation was delivered at a rate of
1 Msamples/s to a linear voltage-to-current converter (bp isolator, FHC, Bowdoin, ME or
2200 Analog Stimulus Isolator, A-M Systems, Inc., Sequim, WA) and delivered through the
cuff electrode. The voltage across and current through the cuff electrode and return electrode
were amplified (SR560, Stanford Research Systems, Sunnyvale, CA) and recorded (fsample =
500 kHz).

Input—Output Curves—Recruitment curves of the EMG integral as a function of
stimulation amplitude were measured for every combination of waveform shape and PW in
two sets of experiments. In the first set (n = 3), the square, rising ramp, and rising
exponential waveforms (z = 32.9, 65.8, 132, and 263 us) were tested for PW = 0.01-2 ms. In
the second set (n = 3) the square, rising exponential (z = 132, 263, and 526 xs), and decaying
exponential waveforms (z = 132, 263, and 526 us) were tested for PW = 0.02-1 ms. In both
sets, stimulation was delivered as single (stimulation frequency <1.4 Hz) monophasic
cathodic pulses, and the order in which the combinations were presented was randomized. E,
Q, and Ppeqi recruitment curves were generated using a similar method as in the
computational models: stimulus amplitude was incremented, three stimulation pulses were
delivered at each increment, and the average values of E, Q, Ppeak, and EMG integral were
recorded. Periodically during each experiment, we stimulated with the square waveform at a
fixed PW to monitor shifts in threshold, and the values of E, Q, and Ppeax Were scaled to
account for these shifts. Changes in threshold over the course of an experiment were never
greater than 37% of the initial threshold. From each recruitment curve, the values of E, Q,
and Ppeak required to generate 50% of the maximal EMG were calculated (Fig. 2), and the
minima of these values across PWs for the square waveform were set as baseline values.
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Subsequently, all values of E, Q, and Ppeak from within an experiment were normalized to
their respective baseline value, and the means and standard errors across the experiments
were calculated.

After log-transformation of the data, the effects of waveform shape on each measure of
efficiency were analyzed. The two sets of experiments were compared to one another by
examining the results for stimulation with parameters that were used in both sets: square and
rising exponential waveforms (z = 132 and 263 us) for PWs = 0.02-1 ms. We performed an
ANOVA for each measure of efficiency with E, Q, or Ppea as the dependent variable and
waveform shape, PW, and experimental set as the independent variables. The outcome of the
ANOVAS revealed that experimental set had no significant effect on the results, and the
interactions between experimental set and the other independent variables were not
significant (p > 0.29). Therefore, data from both sets were combined for plots of in vivo
measurements, but each set was analyzed separately to permit analysis using repeated
measures ANOVA. A two-way repeated measures ANOVA was performed for each
measure of efficiency; the dependent variable was E, Q, or Ppeak, and the independent
variables were waveform shape, PW (within-subjects factors), and cat (subject). Where
interactions between waveform shape and PW were found to be significant (p < 0.05), the
data were subdivided by PW for one-way repeated measures ANOVA. Again, the dependent
variable was E, Q, or Ppeak, and the independent variables were waveform shape (within-
subjects facgtor) and cat (subject). For tests which revealed significant differences among
waveforms (p < 0.05), post hoc analyses were performed using Fisher's protected least
significant difference (FPLSD). Although data were log-transformed for analysis, data were
plotted as average percent difference with respect to the square waveform.

[1l. Results

A. Computational Simulations

In the model of excitation of a population of myelinated nerve fibers, trends in the
relationships between the measures of efficiency and the duration (PW) and shape of the
waveform were consistent for activation of 25%, 50%, and 75% of the axons in the
population, and results for 50%-activation are presented. Also, the same trends were
observed for activation of a single axon with the electrode positioned 1 mm above the center
node. In addition, the energy-, charge-, and power-efficiencies of the decaying exponential
waveforms differed from those of the rising exponentials with corresponding 7 (132, 263,
and 526 us) by less than 5.4%. Accordingly, the differences in stimulation efficiency with
the square and ramp waveforms were approximately the same for both the rising and
decaying waveforms.

No waveform shape was energy-optimal across all PWs, but rather, the differences in energy
efficiency among waveform shapes varied with PW. In contrast to previous predictions that
the rising exponential waveform was energy-optimal across all PWs, the square waveform
was at least as energy-efficient as the rising exponential waveforms for PW < 0.2 ms [Fig.
3(a) and (b)]. However, the rising exponential waveforms were more energy-efficient than
the square waveform for all but one combination of PW and 7 for PW > 0.5 ms. At long
PWs, while E increased with PW for the square and ramp waveforms, the energy-duration
curve for the exponential waveforms leveled off [Fig. 3(a)], and the exponential waveforms
were substantially more energy-efficient than the square and ramp waveforms for PW > 2
ms. Even though the energy-duration curves of both the square and ramp waveforms were
concave up, the two waveform shapes were not equally energy-efficient. For PW < 0.1 ms
the square waveform was more energy-efficient than the ramp waveform, but for PW < 0.5
ms the ramp waveform was more energy-efficient [Fig. 3(b)].
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As with energy efficiency, the differences in charge efficiency among waveform shapes
were dependent on PW, and no waveform shape was charge-optimal across all PWs. For PW
< 0.05 ms, the rising and decaying exponential waveforms were about as charge-efficient as
the square waveform [Fig. 3(d)]. However, as PW increased the exponential waveforms
became increasingly more charge-efficient than the square and ramp waveforms. While the
charge-duration curves of both the square and ramp waveforms increased monotonically, the
charge-duration curves of the exponential waveforms leveled off at long PWs; both the Q
and the PW at which the charge-duration curves leveled off were directly proportional to =
[Fig. 3(c)]. Further, the ramp waveform was more charge-efficient than the square waveform
for all PWs, and for PW < 0.02 ms, ramp waveform was the most charge-efficient waveform
shape.

Although none of the waveform shapes was energy-optimal or charge-optimal across all
PWs, the square waveform was power-optimal. The power-duration curves for all waveform
shapes resembled typical strength-duration curves: Ppeak decreased monotonically as PW
increased for short PWs and leveled off at long PWs [Fig. 3(e)]. However, the power-
duration curves of the rising and decaying exponential waveforms leveled off at shorter PWs
than those of the square and ramp waveforms. As a result, although the differences in power
efficiency between square and the exponential waveforms were small at short PWs, the
differences increased as PW increased [Fig. 3(f)]. On the log-scale, the power-duration
curves of the square and ramp waveforms were approximately parallel, i.e., the percent-
difference in power efficiency between the square and ramp waveforms was roughly
constant across PWs.

B. In Vivo Measurements

Trends in the relationships between the measures of efficiency and PW/waveform shape
were consistent for generation of 25%, 50%, and 75% of the maximum EMG responses, and
only the results for generation of 50% of the maximum EMG are presented. Two-way
repeated measures ANOVA for each measure of efficiency revealed significant interactions
between PW and waveform shape (p < 0.0001). Thus, in each set the data were subdivided
by PW and analyzed using one-way repeated measures ANOVA for each PW.

As in the computational simulations, energy efficiency varied with waveform shape and did
not vary monotonically with PW. The energy-duration curves were similar to those
generated in the computational model: for the square and ramp waveforms, the energy-
duration curves were concave up, whereas for the exponential waveforms, E decreased with
PW for short PW and did not change substatially for long PW [Fig. 4(a)]. For PW > 0.1 ms,
none of the waveform shapes were significantly more energy-efficient than the square
waveform (repeated measures ANOVA, p > 0.05; or FPLSD, p > 0.07) [Fig. 4(b)].
However, for PW > 0.5 ms the square waveform was significantly less energy-efficient than
all other waveforms shapes (FPLSD; p < 0.05) for all but one combination of waveform
shape and PW. One noticeable difference between the computational simulations and the
experimental measurements was the difference in energy efficiency between the rising and
decaying exponential waveforms with the same z. Whereas in the simulations these
differences were not substantial, the experimental results showed that the decaying
exponentials were significantly more energy-efficient (<35%; FPLSD; p < 0.05) for PW >
0.1 ms for most combinations of z and PW.

As in the computational simulations, charge-duration curves increased monotonically with
PW for the square and ramp waveforms, as well as for the exponential waveforms for short
PWs [Fig. 4(c)]. For PW > 0.01 ms, the square waveform was generally less charge-efficient
than the other waveform shapes [Fig. 4(d)]. For PW < 0.02 ms, the ramp waveform was
more charge-efficient than the square waveform (FPLSD; p < 0.05), but as PW increased,
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the exponential waveforms were generally the most charge-efficient waveform shapes. As
for energy efficiency, the measurements of charge efficiency showed significant differences
between the rising and decaying exponential waveforms. Specifically, for PW > 0.1 ms the
decaying exponential was significantly more charge-efficient (< 18%; FPLSD; p < 0.05) for
most combinations of r and PW. Thus, just as in the computational model, no waveform
shape was charge-optimal across PWs.

For all waveform shapes, Ppeak decreased monotonically with PW for short PWs and leveled
off for long PWs [Fig. 4(e)], as was observed in the computational simulations. For PW <
0.5 ms, the ramp waveform was significantly less power-efficient than the square (FPLSD; p
< 0.05), but for PW > 1 ms there were no significant differences between the two waveforms
(FPLSD; p > 0.01) [Fig. 4(f)]. The square waveform was generally more power-efficient
than the other waveform shapes across all PWs. However, the decaying exponential with z =
526 us was never significantly less power-efficient than the square waveform (FPLSD; p >
0.46), and in contrast to the computational simulations the decaying exponential was more
power-efficient than the square waveform for PW = 1 ms (FPLSD; p < 0.04). Also
contradicting the computational simulations, the decaying exponential waveforms were
significantly more power-efficient than the rising exponential waveforms (< 59%; FPLSD; p
< 0.05) across all PWs for all but one combination of PW and z.

C. Exponential Waveforms at Long PWs

Both the computational models and in vivo results indicated that for long PWs the
exponential waveforms—aboth rising and decaying—were much more energy- and charge-
efficient and much less power-efficient than the square and ramp waveforms. However, at
long PWs the efficiencies of the exponential waveforms had plateaued. To determine the
cause of this behavior, rising exponential waveforms were plotted with PW between 0.02
and 2 ms and amplitude equal to threshold in the single axon model [Fig. 5(a)]. For short
PWs, the shape of the exponential waveforms varied with PW, but for longer PWs, the
shapes of the waveforms were insensitive to PW. While the length of the initial segment
increased with PW, because of its very low amplitude this had no effect on excitation, and
the main part of the exponential waveform remained the same as PW increased, thus
eliciting the same neuronal response. The shape of the decaying exponentials behaved
similarly as PW increased, with the length of the final segment increasing with no effect on
the neuronal response.

We approximated the PW at which rising exponential waveforms ceased to change by
calculating the time required to deliver the last 95% (i.e., all but the first 5%) of the charge

[Fig. 5(b)]

T (PW,7)=PW — 7In (O‘OSePW/T+O.95) . (10)

For a given PW and z, T also calculated the time required to deliver the first 95% of the
charge for decaying exponentials. After a certain PW (PWg) T leveled off, indicating that the
exponential waveforms delivered almost all of their charge within the same amount of time,
and beyond PWE the shapes of the exponential waveforms were no longer unique. PWg was
directly proportional to z, and exponential waveforms with shorter 7 had a shorter range of
PW over which they were unique in shape.

V. Discussion

Computational simulations and in vivo experiments were used to quantify the energy,
charge, and power efficiencies of square, ramp, rising exponential, and decaying exponential
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waveforms for extracellular stimulation. Contrary to previous studies that used passive
membrane models, our results showed that rising exponential waveforms were not always
more energy-efficient than the square waveform. For stimulation with short PWs (< 0.05
ms), there was little difference in efficiency between the square and the exponential
waveforms, while the ramp was the least energy-efficient (computational model only), most
charge-efficient, and least power-efficient waveform. For long PWs (=0.5 ms), the square
waveform was more power-efficient than most waveform shapes but was less charge- and
energy-efficient. No waveform was simultaneously energy-, charge-, and power-optimal.
Consistent with previous studies, the measures of efficiency were dependent on PW: all
waveform shapes were charge-optimal at short PWs, power-optimal at long PWs, and
energy-optimal at intermediate PWSs.

A. Comparison of Waveform Shapes

Rising exponential waveforms did not provide any practical gains in efficiency over the
other waveform shapes. Previously with a passive model of the membrane, rising
exponential waveforms at any PW were predicted to be more energy-efficient than any other
waveform shape with equivalent PW, and the difference in energy efficiency with the square
waveform was predicted to increase with PW [14]. In contrast, the current results show that
for short PWs the energy efficiency of the rising exponential was less than or not
significantly different from the energy efficiency of the square, and for long PWs the
difference in energy efficiency (<100%) was less than previously predicted (300%-1400%).
In addition, for short PWs the charge and power efficiencies of the rising exponential
waveforms were less than or not significantly different from those of the square waveform.
For long PWs the rising exponential waveforms appeared to be much more energy- and
charge-efficient than the square and ramp waveforms. However, these results were
misleading because for long PWs the rising exponential waveforms did not change as PW
increased (Fig. 5). Further, in the experimental measurements the decaying exponential
waveforms were generally more energy-, charge-, and power-efficient when compared to
rising exponentials with the same z. Although only five values of = were tested in this study,
the results give no indication that there would be any values 7 of that would substantially
improve the energy, charge, or power efficiencies of the rising exponential waveforms.

The energy required by the circuitry of the stimulator should be considered to assess
accurately the energy efficiency in an implantable device. Certain waveform shapes may
require additional circuitry for their generation, which would consume additional energy. As
a result, the most energy-efficient waveform shapes may turn out to be those that can be
generated with the simplest circuits. For example, certain stimulators and pacemakers
deliver stimulation using a discharging capacitor, a very energy-efficient process, and the
stimulation waveforms resemble decaying exponentials. Therefore, the decaying
exponentials may be highly energy-efficient in actual implantable devices, despite exhibiting
the same limited range of unique PWs as the rising exponentials.

The charge and energy efficiencies of many different stimulation waveform shapes,
including the shapes analyzed in the present study, were determined previously [9] in a
computational model of a single mammalian axon [21]. The present study extended this
approach to a population model composed of mammalian myelinated axons that more
accurately reproduced the excitation properties of mammalian axons [20] than the previous
model. As well, we measured stimulation waveform efficiencies in vivo. Both the previous
and current results showed that Q increased monotonically with PW for short to intermediate
PWs for all waveforms, the square waveform was the least charge-efficient waveform of the
waveforms tested, and energy-duration curves for the ramp and square waveforms were
concave up.
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Unlike in the population model, the diameters of peripheral nerves and nerve fibers are
nonuniform, and the conductivity of the extracellular medium is inhomogeneous and
anisotropic [22]. To determine the sensitivity of the results to these parameters, we
conducted additional simulations in the population model and varied the fiber diameter (5.7
4, and 16 xm) and the diameter of the cylinder (6 mm). As well, we also modeled
anisotropic extracellular conductivity (aparallel to fibers = 10 * dperpendicular to fibers) USing a
coordinate transformation [23]. Thresholds were sensitive to changes in these model
parameters, and as a result, the absolute values of energy, charge, and power efficiencies
varied. Although there were slight changes in the relative differences in efficiency among
waveform shapes, which may explain the disparities between the computational and
experimental models, the overall conclusions were unchanged. These alterations to the
population model primarily influenced the spatial effects of stimulation: the positions of the
nodes of Ranvier relative to the electrode, the dimensions of the fibers, and the spatial
distribution of extracellular potential. On the other hand, waveform shape varied the
temporal effects of stimulation, i.e., the dynamics of membrane ion channels. Thus, it was
not surprising that varying the geometric properties had little effect on the influence of
waveform shape on stimulation efficiency.

Even though stimulus waveforms are traditionally characterized by PW, PW, may not be the
most appropriate parameter by which to group waveforms of different shapes for
comparison. For example, the exponential waveforms were only unique over a limited range
of PW, and comparing the square and ramp waveforms to exponentials at long PWs
produced misleading results. An alternative method of comparing the stimulation efficiency
of waveform shapes is to use the measures of efficiency as the bases of comparison. Fig. 6
shows plots of E versus Q, E versus P, and Q versus P from the population model, and this
presentation provides a clearer perspective on the efficiencies across waveforms. While
charge efficiency and energy efficiency varied greatly with waveform shape when compared
across PW, the curves of E versus Q for all shapes overlapped substantially. The data from
the rising exponentials at long PWs are represented by overlapping points, illustrating that
these stimuli have the same stimulation effect. Regardless of whether a square, ramp, or
exponential waveform was used, for a given amount of charge, the energy delivered was
equivalent. Although the curves of E versus Q for different waveform shapes overlapped,
the curves of E versus P and Q versus P did not. Thus, the analysis of stimulation efficiency
of waveform shapes is dependent on the method of comparison.

B. Different Paths to Activation

Previous claims that the rising exponential was the energy-optimal waveform shape were
based upon models with fixed threshold voltages (Vtygr). The assumption of a fixed VyR is
inaccurate because it fails to account for the dynamics of the ion channels, which are
dependent on the stimulus waveform. For example, subthreshold stimulation for an extended
duration will inactivate the sodium channels and increase V1yr [24]. We measured
membrane parameters (Vp,, sodium current density [Ina], and sodium gating parameters [m,
h]) in the single fiber model during stimulation with different waveforms. The rates at which
the membrane parameters changed varied with both PW and waveform shape, as did the
threshold (i.e., at the end of the pulse) values of these parameters (Fig. 7). Instead of a fixed
threshold voltage, there was a wide range of threshold states, which were defined by varying
levels of V,, m, and h.

The activity of the membrane parameters during stimulation did not explain what made one
waveform shape more energy-, charge-, or power-efficient than another. Different stimulus
waveforms change the values of the membrane parameters at different rates, taking different
paths to reach a threshold state (Fig. 7). Further, two different waveforms can have much
different effects on the membrane parameters and still have similar stimulation efficiencies.
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For example, the rising and decaying exponentials changed the membrane parameters at
much different rates for both PW = 0.2 and 1 ms (Fig. 7). Yet, their energy, charge, and
power efficiencies differed by less than 5.4%. Thus, it does not appear that the stimulation
efficiency of a stimulating waveform can be predicted by its effects on the membrane
parameters.

C. Clinical Implications

Although the current study examined stimulation efficiency in peripheral nerves, the results
may also be applicable to the stimulation of other parts of the nervous system. During spinal
cord stimulation, the targets of stimulation are long axons, and the current findings would
likely be relevant. As well, our results would be valid for muscular stimulation, where the
targets of stimulation are motor nerve axons, not the muscle itself. The current results may
also be relevant for stimulation of the brain because in both cortical stimulation [25] and
deep brain stimulation [26], the targets of stimulation are thought to be axons.

Clinical stimulation typically uses biphasic waveforms, and in an efficiency-analysis of
biphasic waveforms E, Q, and Ppeak 0f both pulses would have to be calculated. In addition,
the threshold of the primary pulse can be affected by the charge recovery pulse [27], and it is
unclear if changes in threshold are dependent on the waveform shape of the primary pulse.
Further study is needed to analyze how waveform shape affects the stimulation efficiency of
biphasic waveforms. Nonetheless, the current results are still important for understanding
the effects of and waveform shape on stimulation efficiency.

Stimulation efficiency should be a major consideration in the design and programming of
implantable stimulators. Energy efficiency is important to minimize the costs and risks
associated with battery replacement surgery; charge efficiency is important to minimize
tissue damage and electrode corrosion; and power efficiency is important to limit battery
size. Most often, implantable stimulators deliver square waveforms or decaying exponential
waveforms [17]. Alternative waveform shapes should also be considered since they may be
more energy-, charge-, or power-efficient. When programming the stimulation parameters,
clinicians should consider the stimulation efficiency alongside clinical efficacy. Although
clinicians have no control over waveform shape, they still program the amplitude, PW, and
frequency of stimulation. Most clinicians choose stimulation parameters based only on how
well symptoms are alleviated and side effects are controlled. However, physicians may not
be wise simply to set stimulation parameters based on these two criteria if only minimal
benefit is gained at the cost of large increases in energy consumption or charge delivery.
Unfortunately, the optimal stimulation parameters may not be obvious since no waveform
was simultaneously energy-, charge-, and power-optimal, and there was no overall optimal
PW. As suggested by Dean and Lawrence [28], the selection of stimulation parameters could
be guided by a cost function. Expanding upon their idea, we suggest that a cost function
could be used that considers the measures of efficiency, therapeutic benefit of stimulation,
and side effects.
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Tl
Fig. 1.
Stimulation waveform shapes. (a) Square waveform. (b) Rising ramp waveform. (c) Rising
exponential waveform. (d) Decaying exponential waveform. Values of K were varied to

adjust amplitude of stimulation, and values of  were varied to alter the shape of exponential
waveforms.

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2011 April 6.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuey JoyIny vd-HIN

Wongsarnpigoon et al. Page 15

Sciatic nerve
1L cuff EMG Integral

@ Electrode 100%

Medial

: 75%
gastrocnemius

50%/ — ———==~—{

Stilm
J\/-Evoked EMG 259

. I'E/Q/P to generate
__‘/\/\EMG imegal : 50% of maximal
EMG
j |[EMG| dt -~
Energy/Charge/Power

Fig. 2.

In vivo stimulation of cat sciatic nerve. Stimulation was delivered to the sciatic nerve, and
evoked electromyogram (EMG) was recorded from the medial gastrocnemius. EMG was
rectified and integrated (EMG integral) to quantify the evoked response. Recruitment curves
were generated for each waveform shape at each PW and were generated by measuring the
EMG integral over a wide range of stimulation amplitudes. For each recruitment curve the
energy, charge, and peak power required to activate 50% of the maximal EMG integral was
recorded.
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Fig. 3.

Energy, charge, and power efficiency in computational model of a population of 100
myelinated axons. (a) Energy-duration curves, (c) charge-duration curves, and (e) power-
duration curves for activation of 50% of the axons in populations of randomly-positioned
axons (mean +/- SE;n = 10). (b), (d), (f) Percent difference in E, Q, and Ppeak, respectively,
between square waveform and other waveform shapes (mean; SEs were negligible). Rising
exponentials with z = 32.9 and 526 us followed the same trends as exponential waveforms
shown in these plots. Decaying exponential waveforms had approximately the same
stimulation efficiency as rising exponentials with equivalent 7 (AE < 5.4%, AQ < 3.7%,
APpeak < 5.4%).
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Fig. 4.

Energy, charge, and power efficiency of stimulation of cat sciatic nerve. (a) Energy-duration
curves, (c) charge-duration curves, and (e) power-duration curves for generation of 50% of
the maximal EMG (mean +/- SE) for ramp (n = 3), square (n = 6), and rising exponential
waveforms (n = 6). (b), (d), (f) Percent difference in E, Q, and Ppeak, respectively, between
square waveform and other waveform shapes (mean + SE). Bars for rising and decaying
exponentials with the same are superposed. Rising exponentials with z = 32.9 and 65.8 us
followed the same trends as exponential waveforms shown in these plots. Data were
analyzed as logarithmic differences using repeated measures ANOVA and post hoc Fisher's
protected least significant difference test for each PW when appropriate (* p < 0.05
difference with square waveform; # p < 0.05 difference between rising and decaying
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exponentials with the same when 7). Decaying exponentials were significantly more power-

efficient than rising exponentials with the same PWs (p < 0.05) except for z = 263 us at PW
=0.2 ms.
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Fig. 5.

Exponential waveforms were not unique at long PWs.(a) Rising exponential waveforms at
threshold amplitude in single axon model. (b) Time from end of pulse required to deliver the
last 95% of charge (T) for rising exponential waveforms and square waveform.
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Fig. 6.

Comparison of waveform shapes by efficiency rather than PW. (a) E versus Q. (b) E versus
Ppeak- () Q versus Ppeak. Data represent means across 10 trials for activation of 50% of
axons in a computational model of a population of 100 myelinated axons. Decaying
exponential waveforms had approximately the same stimulation efficiency as rising
exponentials with equivalent 7 (difference <5.4%).
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Comparison of membrane parameters during stimulation in single axon model. 7 = 263 us
for exponential waveforms.
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