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Allelic mutations in putative glycosyltransferase genes, fukutin and fukutin-related protein (fkrp), lead to a
wide range of muscular dystrophies associated with hypoglycosylation of a-dystroglycan, commonly
referred to as dystroglycanopathies. Defective glycosylation affecting dystroglycan-ligand interactions is
considered to underlie the disease pathogenesis. We have modelled dystroglycanopathies in zebrafish
using a novel loss-of-function dystroglycan allele and by inhibition of Fukutin family protein activities. We
show that muscle pathology in embryos lacking Fukutin or FKRP is different from loss of dystroglycan. In
addition to hypoglycosylated a-dystroglycan, knockdown of Fukutin or FKRP leads to a notochord defect
and a perturbation of laminin expression before muscle degeneration. These are a consequence of endoplas-
mic reticulum stress and activation of the unfolded protein response (UPR), preceding loss of dystroglycan—
ligand interactions. Together, our results suggest that Fukutin family proteins may play important roles in
protein secretion and that the UPR may contribute to the phenotypic spectrum of some dystroglycanopathies
in humans.

INTRODUCTION

Congenital muscular dystrophies (CMD) are a heterogeneous
group of autosomal recessive hereditary diseases affecting
infants and representing in some instances severe allelic var-
iants of gene defects that more commonly cause mild forms
of limb girdle muscular dystrophies (LGMD) with onset in
adolescence or adult life. Approximately 20—30% of classical
CMD cases are due to absence of laminin «2 isoform, a
subunit of laminin heterotrimers which are essential com-
ponents of the basement membrane (1-3). This condition,
also known as CMD type 1A (MDC1A; OMIM 607855), is
a severe CMD variant characterized by laminin a2 deficiency
and early onset of progressive muscle degeneration associated
with brain white matter hypodensity (4). Rare milder allelic
mutations are associated with partial laminin «2 reduction,
resembling a late onset of LGMD variant (5-38).

Several other forms of CMD are not primarily caused by
laminin a2 deficiency but by mutations in known or putative
glycosyltransferase genes, associated with hypoglycosylation

of a-dystroglycan. Interestingly, allelic mutations in each of
these genes can result in a wide spectrum of clinical severity,
ranging from the most severe congenital onset of muscle
weakness with structural brain and/or eye abnormalities,
such as Walker—Warburg syndrome (WWS; OMIM
236670), muscle—eye—brain disease (MEB; OMIM 253280),
Fukuyama-type CMD (FCMD; OMIM 253800) and
CMD-type 1D (MDCI1D; OMIM 608840), to a milder form
without brain involvement, such as CMD-type 1C (MDCIC;
OMIM 606612), and the mildest form characterized by late
onset of muscle weakness in adulthood without brain involve-
ment, such as LGMD2I (OMIM 607155) (9,10). All these
muscular dystrophy variants associated with hypoglycosyla-
tion of a-dystroglycan are commonly referred to as secondary
dystroglycanopathies.

Dystroglycan is a central component of the
dystrophin-associated glycoprotein complex (DGC), providing
a mechanical linkage between subsarcolemmal proteins and
basement membrane components through its non-covalently
connected o and (3 subunits (11,12). B-dystroglycan is a
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transmembrane  protein in  the sarcolemma  with
a-dystroglycan tightly associated at the extracellular periph-
ery. The C-terminal cytoplasmic tail of B-dystroglycan inter-
acts with dystrophin which binds to the actin cytoskeleton
(11). a-dystroglycan acts as a receptor of several extracellular
ligands, such as laminins, agrin and perlecan in muscle
(11,13—16) and neurexin and pikachurin in the brain and
retina, respectively (17,18). The molecular mass of
a-dystroglycan varies from 100 to 156 kDa in different
tissues as a result of intensive O-linked sugar modifications
in its mucin domain. It is thought that the tissue-specific
O-glycosylation within the mucin domain of a-dystroglycan
mediates the receptor-ligand binding activities (19). In
addition, hypoglycosylation of a-dystroglycan in FCMD,
MEB, WWS and MDCI1D patients has been associated with
disrupted binding activities for its ligands, such as laminins,
neurexin or agrin (20-22).

Structural analyses uncovered O-mannosyl-type oligosac-
charides on functional a-dystroglycan in mammals, including
a phosphorylated O-mannosyl glycan required for laminin
binding (23-26). To date, identified mutations associated
with dystroglycanopathies affect genes encoding known or
putative glycosyltransferases: protein O-mannosyl transferase
1 and 2 (POMT! and POMT2) (27,28), protein O-mannose
1,2-N-acetylglucosaminyltransferase 1 (POMGnT1) (29),
Fukutin (FKTN) (30), Fukutin-related protein (FKRP) (31)
and acetylglucosaminyltransferase-like protein (LARGE)
(21,32). Among these, POMT1 and POMT2 form a functional
hetero-complex to catalyse the transfer of a mannosyl residue
from dolichyl phosphate mannose (Dol-P-Man) to serine or
threonine residues of a-dystroglycan (33). Subsequently,
POMGnT1 adds an N-acetylglucosaminyl residue to the
mannose group (29). Notably, deficiency of Dol-P-Man
synthase subunit 3 affects both N-glycosylation of a number
of proteins and O-mannosylation of a-dystroglycan, bridging
two separate entities of genetic glycosylation disorders (34).
The enzymatic activities of Fukutin, FKRP and LARGE still
remain to be demonstrated, although LARGE was shown to
mediate a post-phosphoryl modification of the phosphorylated
O-linked mannose, on which the laminin-binding moiety is
present (26). While the specific modification critical for
laminin-binding remains unknown, less is clear with regard
to the wide spectrum of clinical severity in dystroglycanopa-
thies.

Here we model dystroglycanopathies in zebrafish using a
novel loss-of-function dystroglycan allele and by inhibition
of Fukutin or FKRP protein activities. We show that muscle
pathology in zebrafish embryos lacking Fukutin or FKRP is
different from the loss of dystroglycan. Apart from hypoglyco-
sylated a-dystroglycan, removing Fukutin or FKRP causes
notochord differentiation defects and perturbs expression of
laminins. Our results imply that Fukutin and FKRP may
affect protein  secretion beyond glycosylation  of
a-dystroglycan. We show that knockdown of Fukutin or
FKRP leads to endoplasmic reticulum (ER) stress and acti-
vation of the unfolded protein response (UPR), preceding dis-
ruption of dystroglycan—ligand interactions in muscle. We
discuss how the UPR may contribute to the wide spectrum
of clinical severity in some forms of dystroglycanopathies in
humans.

RESULTS

Loss of dystroglycan disrupts dystrophin but not laminin
localization

To model dystroglycanopathies in zebrafish, we characterized
a novel dystroglycan nonsense mutation allele (dagl™3°"?),
obtained from the Sanger Institute Zebrafish Mutation
Resource (35,36). This allele carries a CI568T change,
which causes a premature termination of translation
(R398 > Stop) within the mucin domain of «a-dystroglycan
(Fig. 1A and D). Genotype—phenotype analysis identifies
dagl™3%7? as a recessive allele. dagl —/— embryos consist-
ently display severe muscular dystrophy that becomes fully
penetrant by 48 h post fertilization (hpf), whereas the skeletal
muscle of siblings remains unaffected (Fig. 1B and C). To
further confirm that the mutation is associated with the dys-
trophic phenotype, we show that endogenous dystroglycan is
neither detected by western blot analysis, nor by immunostain-
ing with a- or B-dystroglycan-specific antibodies in homozy-
gous mutant embryos (Fig. 1E and L), demonstrating that
dag1"3°7? is a complete loss-of-function allele.

Both myogenesis and myofibrillogenesis appear to be unaf-
fected in dagl —/— embryos (data not shown). By labelling
filamentous-actin (F-actin), we find that the cause of the dys-
trophic phenotype in the absence of dystroglycan is due to
detachment and retraction of muscle fibres from the vertical
myosepta, first occurring in the superficial layer of slow
muscle, subsequently followed by the deeper layer of
fast muscle (Fig. 1G and H). In addition, the onset of dystrophic
muscle pathology in dag! —/— embryos may occur as early as
36 hpf, shortly after the elongation and fusion of myofibres (data
not shown). The muscle pathology of dag/ —/— embryos is
similar to that of sapje/dystrophin (sap/dmd) and candyfloss/
laminin a2 (caf/lama2) —/— embryos (37,38), which led us
to investigate sarcolemma integrity using Evans Blue Dye
(EBD) and cell death using Acridine Orange. Similar to sap/
dmd and caf/lama2 —/— embryos, detached muscle fibres even-
tually undergo cell death in dag/ —/— embryos (Supplemen-
tary Material, Fig. S4). Unlike sap/dmd embryos, we find no
evidence for muscle fibres of dag! —/— embryos infiltrated
by EBD before detachment. Nevertheless, retracted muscle
fibres of dagl embryos do uptake EBD, in contrast to what is
found in caf/lama? —/— embryos (Fig. 1F). Together, these
results suggest that muscle fibre detachment occurs before dis-
ruption of sarcolemma integrity in dag!/ —/— embryos.

To distinguish whether muscle fibre detachment occurs
within the basement membrane or at the sarcolemma in dag!
—/— embryos, we assessed the immunoreactivity of DGC com-
ponents at the vertical myoseptum, where dystroglycan extra-
cellularly interacts with laminins and intracellularly binds to
dystrophin. Here we show that the dystrophic muscle pathology
of dagl —/— embryos is highly correlated with the loss of dys-
trophin localization at the vertical myoseptum. In addition,
residual dystrophin remains at the free ends of detached
muscle fibres (arrows, Fig. 11 and J). Although hypoglycosyla-
tion of a-dystroglycan leads to reduced dystroglycan—Ilaminin-
binding activity in vitro (22), we show that a complete absence
of dystroglycan does not give rise to loss of laminin-1 (a1 1y1)
localization (Fig. 1K and L), nor morphological phenotypes
resembling shortened zebrafish laminin mutants (39) (Fig. 1B
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Figure 1. A novel dystroglycan nonsense mutation allele elicits severe muscular
dystrophy. (A) A schematic drawing indicates the position of the mutation
(R398>Stop) within the mucin domain of dystroglycan (dagl™?°7%). SP,
signal peptide. TM, transmembrane domain. (B and C) Dystrophic muscle path-
ology becomes apparent by 48 hpf, comparing sibling and homozygous mutant
embryos. (D) Lesions in the muscle are consistently associated with dagl/ —/—
embryos. (E) Western blot analysis of glycoproteins enriched by WGA shows
glycosylated a-Dagl (IIH6; 76—102 kDa) and B-Dagl (43 kDa) in the
sibling, but not dag! —/— embryos (120 hpf). Equivalent protein loading is
demonstrated by detection of tubulin. (F) Damaged muscle fibres (arrows)
and lesions in dag/ embryos are infiltrated by EBD (red). (G and H) F-actin
labelled by phalloidin showing intact and retracted muscle fibres. (I and J) A
complete absence of dystroglycan leads to dislocated dystrophin associated
with free ends of broken muscle fibres (arrows), despite residual dystrophin
detected at myoseptum. (K and L) Laminin-1 (green) localization remains
intact at the myoseptum in the dag/ —/— background, where B-Dagl (red) is
not detected and aberrant morphology of nuclei is associated with dystrophic
muscle (blue). (F—L) 48 hpf embryos. Bar, 50 pm.
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and C). Due to the onset of muscular dystrophy, however, the
shapes of vertical myosepta become distorted in dagl! —/—
embryos (Fig. 1K and L). In brief, the absence of dystroglycan
leading to dislocated dystrophin reflects the muscle pathology
of dagl —/— embryos, in which muscle fibre detachment first
occurs within the basement membrane, followed by disruption
of sarcolemma integrity.

Muscle pathology in Fukutin or FKRP morpholino
oligonucleotide-injected embryos is distinct from
dystroglycan mutants

To study the pathogenesis of dystroglycanopathies due to
knockdown of Fukutin or FKRP function, we inhibited zebra-
fish Fukutin family protein activities using low-to-high doses
of antisense morpholino oligonucleotides (MOs) (Fig. 2A
and D). The specificity of fukutin MO was demonstrated by
reverse transcription polymerase chain reaction (RT—PCR)
and sequencing of the aberrantly spliced transcript (Fig. 2B).
fkrp MO specifically inhibited the expression of the recombi-
nant FKRP-enhanced green fluorescent protein (EGFP)
protein in a concentration-dependent manner (Fig. 2E). The
phenotypic severity of fukutin or fkrp MO-injected embryos
is also dose dependant (Fig. 2C and E). Consistent with pre-
vious studies on patients’ muscle biopsies (22,31), fukutin or
fkrp MO-injected zebrafish embryos show a reduction in gly-
cosylated a-dystroglycan by western blot analysis (Fig. 3A)
and reduced immunostaining at the vertical myoseptum
(Fig. 3C and D) and notochord surrounding tissues (Fig. 4B
and C) as indicated by the IIH6 antibody, which recognizes
an unknown glyco-epitope that overlaps with the laminin-
binding site on a-dystroglycan (40).

The motility of fukutin or fkrp MO-injected embryos is
severely impaired by 48 hpf. In either case, we observed a
general reduction in muscle mass associated with myotomal
lesions. Unlike sap/dmd, caf/lama2 or dagl —/— embryos,
however, we found no evidence for muscle fibre detachment
by labelling F-actin in fukutin or fkrp MO-injected embryos
(Supplementary Material, Fig. S1). To further elucidate the
muscle pathology, we assessed the sarcolemma integrity of
Sfukutin and fkrp MO-injected embryos using EBD at 48 hpf.
In contrast to sap/dmd —/— embryos (37), we found no evi-
dence for muscle fibres infiltrated by EBD (Fig. 2F and G).
Similar to caf/lama? —/— embryos (38), we detected EBD
accumulation at the myotomal lesions, inter-fibre space and
epithelium—muscle interface (Fig. 2F and G), indicating that
sarcolemma integrity is not compromised. Together, these
results suggest a distinct pathological mechanism for fukutin
and fkrp MO-injected embryos that is not due to muscle
fibre detachment, nor disruption of sarcolemma integrity.

Knockdown of zebrafish Fukutin or FKRP leads to
notochord defects prior to muscle degeneration

Interestingly, prior to the onset of muscle degeneration,
embryos injected with high doses of fukutin (7 ng) or fkrp
(6 ng) MOs elicit complex phenotypes by 28 hpf, such as shor-
tened body axes, U-shape somites and twisted notochords
(Fig. 2C and E). Such myotome and notochord defects are
reminiscent of those seen in zebrafish laminin and coatomer


http://hmg.oxfordjournals.org/cgi/content/full/ddr059/DC1

1766 Human Molecular Genetics, 2011, Vol. 20, No. 9

28 hpf

Figure 2. fukutin and fkrp MO-injected embryos are associated with notochord differentiation defects before muscle degeneration. (A) Schematic representation
of fukutin MO targeting the 5'-UTR of the fukutin gene at the vicinity of the intron 1—exon 2 splice junction. (B) RT—PCR at 28 hpf and sequencing of aberrantly
spliced transcripts revealed skipping of the entire exon 2 and thus the loss of translation start site. (C) Phenotypic severity of fukutin MO-injected embryos is dose
dependant: (i) 4.5 ng and (ii) 7 ng at 28 hpf. (D) Schematic representation of fkrp MO targeting the translation start site of the fkrp gene. (E) Lateral view of
embryos at 24 hpf after injection of 200 pg fkrp— EGFP mRNA (i) or together with 2 ng (ii), 4 ng (iii) or 6 ng (iv) fkrp MO. The phenotypic severity of fkrp
MO-injected embryos is correlated with the concentration of fkrp MO, which inhibits FKRP—EGFP expression as shown under UV illumination (i—iv).
(F and G) High dose fukutin (7 ng) and fkrp (6 ng) MO-injected embryos at 48 hpf. Muscle fibres visualized by DIC imaging are not infiltrated by EBD
(red), which accumulates at the myotomal lesions, inter-fibre space and epithelium—muscle interface. Bar, 50 pm. (H-K) In situ hybridization of ihhb
expression in the notochord at 28 hpf. In contrast to control (H) or dag/ MO-injected embryos (K), persistent ikhb expression indicates that notochord cells
of high-dose fukutin (1, 7 ng) and fkrp (J, 6 ng) MO-injected embryos are not fully differentiated.
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Figure 3. Glycosylated a-dystroglycan and laminin-1 immunoreactivities in the zebrafish embryos. (A) Western blot analysis of microsome pellets detected by
the ITH6 antibody at 48 hpf (i) and B-Dagl antibody at 28 hpf (ii). Glycosylation of a-Dag]l is reduced in fikutin and fkrp MO-injected embryos. Equal loading is
shown by Ponceau S staining. (B—E) Glycosylated a-Dagl detected by IIH6 antibody and laminin-1 immunoreactivity in control (B), fukutin (C), fkrp (D) and
dagl (E) MO-injected embryos at 28 hpf. Glycosylated a-Dagl is reduced in fukutin (C) and fkrp (D) MO-injected embryos and not detected in dag!
MO-injected embryos (E). Laminin-1 immunoreactivity is strongly reduced in the posterior myoseptum of fkrp MO-injected embryos (D), but not affected
in fikutin (C) or dagl (E) MO-injected embryos. Bar, 50 pm.

mutant embryos, two classes of mutants in which notochord
cells fail to differentiate (39,41).

To test whether the abnormal notochord morphology in
Sfukutin or fkrp MO-injected embryos is associated with a
failure of notochord cell differentiation, we examined dagl,
Sfukutin and fkrp MO-injected embryos using a molecular

marker, indian hedgehog homologue b (ihhb), the expression
of which is extinguished in fully differentiated notochords
(39,41). We found that dagl/ MO-injected embryos show a
slightly broader ihhb expression than control embryos at the
tail, yet the rest of the notochord is fully differentiated
(Fig. 2H and K). In contrast, the expression of ihhb persists
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fkrp MO

Figure 4. Glycosylated a-dystroglycan and laminin-1 immunoreactivities in the posterior notochord surrounding tissues. (A—D) Glycosylated a-dystroglycan
detected by IIH6 antibody and laminin-1 immunoreactivity in control (A), fukutin (B), fkrp (C) and dag! (D) MO-injected embryos at 28 hpf. Glycosylated
a-dystroglycan is almost absent in the NT, FP and HC in fukutin (B) and fkrp (C) MO-injected embryos and not detected in dag!/ (D) MO-injected
embryos. Note that accumulation of the IIH6 epitopes was detected within the notochord cells of fukutin MO-injected embryos (B). Laminin-1 immunoreactivity
is almost absent in the posterior FP and HC of fkrp MO-injected embryos (C), but not affected in fukutin (B) and dagl (D) MO-injected embryos. NT, neural

tube; FP, floor plate; NC, notochord; HC, hypochord. Bar, 50 pm.

within the entire notochord in fukutin MO-injected embryos at
28 hpf, indicating that notochord cells fail to differentiate
(Fig. 2I). Similarly, ihhb expression also persists in fkrp
MO-injected embryos, although the expression level is stron-
ger at the posterior than the anterior notochord (Fig. 2J). In
addition, mid-anterior myotomes of fkrp MO-injected
embryos tend to recover at 48 hpf, suggesting that the differ-
entiation of anterior notochord cells may be delayed or not
fully differentiated.

Laminin immunoreactivity is severely reduced in the
posterior myoseptum of fkrp MO-injected embryos

Laminins play an essential role in notochord development.
Loss of laminin-1 heterotrimer (a1@1vyl) prevents differen-
tiation of notochord cells in zebrafish mutants, sleepy (sly)
/lamcl and grumpy (gup)/lamb1 (39). Following the notochord
differentiation defects, we then asked whether laminin-1
immunoreactivity is affected in fukutin and fkrp MO-injected
embryos. In control embryos, laminin-1 immunoreactivity is
enriched at the vertical myoseptum and peri-notochord base-
ment membrane (PBM) by 28 hpf (Figs 3B and 4A). Although
Sfukutin MO-injected embryos possess shortened body axes and
abnormal somite morphology, we find that laminin-1 immu-
noreactivity is not affected (Figs 3C and 4B). In contrast, we
show that removal of FKRP causes a strong reduction in
laminin-1 immunoreactivity in the posterior myoseptum
(Fig. 3D) and PBM (Fig. 4C), correlated with the persistent
ihhb expression (Fig. 2J). Consistent with dagl —/—
embryos, laminin-1 immunoreactivity appears to be unaf-
fected in dag! MO-injected embryos at 28 hpf (Figs 3E and
4D). Taken together, these results suggest that (i) FKRP
may affect laminin-1 function, at least in the posterior myo-
septum and (ii) knockdown of Fukutin affects notochord cell

differentiation via a mechanism independent of laminin-1
function.

Knockdown of Fukutin or FKRP perturbs the expression
of laminin mRNA

To investigate the loss of laminin-1 (a1 1y]l) immunoreactiv-
ity in the posterior myoseptum of fkrp MO-injected embryos,
we examined whether knockdown of FKRP may affect
expression of laminin al, B1 and vyl isoforms, encoded by
lamal, lambl and lamcl, respectively. To test this, we quan-
tified gene expression levels of lamal, lambl and lamcl in

fkrp MO-injected embryos, compared with control embryos

in addition to fukutin and dagl MO-injected embryos, as
well as sly/lamcl —/— embryos at 28 hpf.

Compared with control embryos, we find that gene
expression levels of lamal, lambl and lamcl in dagl
MO-injected embryos are not significantly up-regulated
(Fig. 5A-C). In contrast, lamcl expression is significantly
down-regulated (~2.7-fold) in sly/lamcl —/— embryos,
suggesting non-sense-mediated mRNA decay (Fig. 5C). In
addition, expression of lamal and lamb1 is significantly down-
regulated in sly/lamcl —/— embryos (Fig. 5SA and B). Surpris-
ingly, despite a strong reduction in laminin-1 immunoreactivity
in the posterior myoseptum, we find a significant up-regulation
of lamal (~3.8-fold), lambl (~3.2-fold) and Ilamcl
(~3.6-fold) in fkrp MO-injected embryos, compared with
control embryos (Fig. 5A—C). Similarly, fukutin MO-injected
embryos show a significant up-regulation of lamal
(~2.3-fold), lambl (~2.1-fold) and lamcl (~1.5-fold) in
relation to control embryos (Fig. SA—C).

Statistical analyses indicate that up-regulated lamal, lambl
and Jamcl expression in fukutin and fkrp MO-injected
embryos is significantly different from that in dagl
MO-injected embryos (Fig. 5A—-C) and down-regulated
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Figure 5. Quantification of laminin isoform gene expression levels. Expression levels of lamal (A), lamb1 (B), lamcl (C) and lama?2 (D), normalized to B-actin
expression in fukutin, fkrp and dagl MO-injected, as well as sly/lamcl —/— embryos at 28 hpf. Each coloured bar represents the mean of fold-changes in relation
to control (buffer-injected) embryos, set as 1. Error bars represent standard error of the mean (SEM). Statistical significance is indicated by asterisks.

lamal, lambl and lamcl expression in sly/lamcl —/—
embryos (Fig. SA—C). Together, these results suggest that
removal of Fukutin or FKRP, but not dystroglycan perturbs
the gene expression levels of laminin isoforms.

Expression of laminin o2 is selectively down-regulated in
fukutin or fkrp MO-injected embryos

Dystroglycanopathies due to mutations in fikutin or fkrp may
be associated with a reduction in laminin «2 isoform (a ligand
of dystroglycan), as shown by western blot or immunostaining
(31,42). To test whether the reduction in laminin a2 may be
due to perturbation of transcription or disruption of dystrogly-
can—ligand interactions, we quantified the gene expression
level of lama? in fukutin and fkrp MO-injected embryos, com-
pared with control and dag/ MO-injected embryos at 28 hpf.
Without laminin y1, laminin a2 cannot form functional het-
erotrimer laminin-2 (a2B1vyl) in sly/lamcl —/— embryos
(39). Thus, apart from dag! MO-injected embryos, sly/lamcl
—/— embryos are used for representing disruption of dystro-
glycan—ligand interactions.

Here we show that, compared with control embryos, lama2
gene expression is not significantly down-regulated in either
dagl MO-injected or sly/lamcl —/— embryos (Fig. 5D).
Interestingly, removal of Fukutin or FKRP causes a significant
down-regulation of lama2 expression (~2-fold) in relation to
control embryos (Fig. 5D). In addition, down-regulated lama?2
expression in fukutin and fkrp MO-injected embryos is signifi-
cantly different from that in dag/ MO-injected or sly/lamcl
—/— embryos (Fig. 5D). In sum, our results are consistent
with the previously reported reduction in laminin a2 isoform
in Fukutin- or FKRP-deficient dystroglycanopathy patients
(31,42), yet down-regulation of lama?2 gene expression is not

due to disruption of dystroglycan—ligand interactions,
suggesting an alternative pathological mechanism.

Knockdown of Fukutin or FKRP may affect protein
secretion beyond glycosylation of a-dystroglycan

The coatomer vesicular complex is essential for maintenance
of the Golgi and secretory activities in eukaryotic cells. Loss
of coatomer function leads to notochord differentiation
defects in zebrafish coat protein complex I mutants (41). As
Fukutin and FKRP are putative glycosyltransferases in the
secretory pathway, we wondered whether notochord defects
in fukutin and fkrp MO-injected embryos might be due to
abnormal secretion. In contrast to a severe reduction in glyco-
sylated a-dystroglycan in the neural tube, floor plate and
hypochord, we frequently detected accumulation of ITH6 epi-
topes in the notochord cells of fukutin and fkrp MO-injected
embryos (Figs 4B and 6E and F). We speculated that the accu-
mulated IIH6 epitopes might be unsecreted dystroglycan and
asked whether removing the dystroglycan propeptide would
eliminate accumulation of IIH6 epitopes in fukutin or fkrp
MO-injected embryos. We show that fukutin and dagl
MO-co-injected embryos resemble loss-of-Fukutin mor-
phology (Fig. 6B and C). The accumulation of ITH6 epitopes
caused by knockdown of Fukutin is still detected, even in
the absence of dystroglycan (indicated by the absence of
immunoreactivity in the notochord surrounding tissues)
(Fig. 6B and C). Similar results were also observed in fkrp
and dagl MO-co-injected embryos (data not shown).
Together, these results suggest that fukutin and fkrp are epi-
static to dagl and implicate that accumulated ITH6 epitopes
may be present on other proteins in the notochord cells.
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Figure 6. Knockdown of Fukutin or FKRP may affect protein secretion beyond glycosylation of a-dystroglycan. (A) Western blot analysis of microsome pellets
detected by the IIH6 antibody. Glycosylated a-Dagl is absent in dag/ —/— embryos. Nevertheless, low molecular-weight unknown proteins were detected by
the IIH6 antibody. (B and C) fukutin and dagl MO-co-injected embryos resemble loss-of-Fukutin morphology. Although dystroglycan is not detected in the
notochord surrounding tissues (bracket, C), accumulation of IIH6 epitopes is still detected in the notochord cells. (D—F) IIH6 epitopes in the notochord
cells are not labelled by WGA-FITC and mainly accumulate in the vacuoles (dashed circles) in fukutin and fkrp MO-injected embryos. Cell size is enlarged
in the floor plate (brackets) and hypochord (arrows). NT, neural tube; FP, floor plate; V, vacuole. Bar, 25 pm.

Additional assessments further confirm that the ITH6
epitope is not only present on a-dystroglycan, which also
carries the N-acetylglucosamine modification that can be
recognized by wheat germ agglutinin (WGA). In dagl —/—
embryos, western blot analysis using the IIH6 antibody
reveals several low molecular-weight bands in microsome
pellets, but not in glycoproteins enriched by WGA beads
(Figs 1E and 6A). In addition, we ask whether fluorescein iso-
thiocyanate (FITC)-conjugated WGA may co-localize with
accumulated ITH6 epitopes in the notochord cells. We show
that WGA-FITC labels the PBM and Golgi apparatus in
control embryos (Fig. 6D), whereas ITH6 epitopes in the noto-
chord cells are not labelled by WGA-FITC and mainly
accumulate in the vacuoles in fitkutin and fkrp MO-injected
embryos (Fig. 6E and F). Based on these results, we infer
that knockdown of Fukutin or FKRP may, directly or
indirectly, affect protein secretion beyond glycosylation of
a-dystroglycan.

Knockdown of Fukutin or FKRP causes ER stress and
activates the UPR

The first compartment of the secretory pathway is the ER,
where transmembrane and secreted proteins fold into their
native confirmation and post-translationally modified. Influx

of nascent, unfolded polypeptides causes ER stress. Signal
transduction pathways maintaining the homeostasis of the ER
are termed as the UPR, which involve changes in gene tran-
scription in stressed cells (reviewed in 43,44). Here we exam-
ined the possibility that removal of Fukutin family proteins
may cause ER stress and activate the UPR. A classical
marker for UPR activation is BiP/GRP78, the most abundant
chaperone that regulates all three UPR signalling branches by
binding to unfolded proteins in the ER lumen (43,44). We quan-
tified the gene expression level of bip in fukutin and fkrp
MO-injected embryos, compared with control embryos in
addition to dag! MO-injected and sly/lamcl —/— embryos,
which represent disruption of dystroglycan—ligand interactions.

Here we show that bip expression in dag! MO-injected and
sly/lamcl —/— embryos are not significantly different from
control embryos. In contrast, bip expression is significantly
up-regulated by ~3-fold in fukutin or fkrp MO-injected
embryos at 28 hpf, compared with control embryos as well
as dagl MO-injected and sly/lamcl —/— embryos
(Fig. 7A). One branch of the UPR is regulated through tran-
scription factor XBP1 activation, which requires an unconven-
tional splicing (44). We show that increased XBPI
unconventional splicing was detected in fukutin or fkrp
MO-injected embryos (Supplementary Material, Fig. S5).
GYLTLI1B, a putative glycosyltransferase also known as
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LARGE2, was identified to stimulate O-glycosylation of
a-dystroglycan in cultured cells (45,46). Similar to dagl
MO-injected embryos, the IIH6 immunostaining is almost
absent in gylt/lb MO-injected embryos, whereas laminin-1
localization is not affected (Supplementary Material,
Fig. S2). Absence of the IIH6 epitope implicates loss of the
ligand interaction site on dystroglycan. As an additional com-
parison, we find that bip expression in gylt//b MO-injected
embryos is similar to control embryos and significantly
lower than up-regulated bip in fukutin or fkrp MO-injected
embryos (Fig. 7B).

Analysis of bip gene expression suggests that knockdown of
Fukutin or FKRP, but not disruption of dystroglycan—ligand
interactions is responsible for activation of the UPR. Next,
we examine whether the UPR in fukutin or fkrp MO-injected
embryos may be restricted in specific tissues. By in situ
hybridization, we find a ubiquitous up-regulation of bip
expression in fukutin and fkrp MO-injected embryos. Never-
theless, the most intense signal is detected in the neural floor
plate and expanded hatching gland at 28 hpf (Fig. 7C-E),

both then diminished by 48 hpf (Supplementary Material,
Fig. S3).

The size of the ER correlates with the unfolded protein load
across cell types and the UPR contributes to the coupling of
ER expansion to ER stress (44). To assess ER stress in
fukutin or fkrp MO-injected embryos, an ER—yellow fluor-
escent protein (YFP) marker was co-injected to indicate the
size of the ER. Compared with unstressed ER around the
nuclei in control embryos (Fig. 7F), we find remarkable expan-
sion of the ER in fukutin or fkrp MO-injected embryos,
especially in the notochord cells where vacuoles fail to
inflate properly and nuclei possess abnormal shape (Fig. 7G
and H). In addition, enlarged cell size in the floor plate and
hypochord is correlated with the expanded ER (Fig. 6E and
F). We show that levels of WGA-FITC-labelled PBM are
strongly decreased in fukutin or fkrp MO-injected embryos
in which no discernable structure of WGA-FITC-labelled
Golgi apparatus was identified in the neural floor plate or noto-
chord cells, suggesting fragmented or altered Golgi mor-
phology in response to ER stress (Fig. 7I-K). Taken
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together, these results suggest that knockdown of Fukutin or
FKRP causes ER stress and activation of the UPR before dis-
ruption of dystroglycan—ligand interactions.

DISCUSSION

In this study, we have modelled dystroglycanopathies in zeb-
rafish by characterization of a novel dagl loss-of-function
allele and inhibition of Fukutin family protein activities.
Mutations in dystroglycan, which may lead to embryonic leth-
ality, have not been identified yet to cause human muscular
dystrophy, whereas mutations in fukutin or fkrp are most com-
monly responsible for dystroglycanopathies in humans. Two
groups previously showed that fkrp MO-injected zebrafish
embryos recapitulate «-dystroglycan glycosylation defect
and thus are suitable for modelling human dystroglycanopa-
thies (47,48). By comparing dag/ mutant allele with fukutin
and fkrp MO-injected embryos, for the first time, we are
able to distinguish differences in their muscle pathology and
dissect the underlying molecular and cellular mechanisms.

First, we have shown that a complete absence of dystroglycan
leads to dislocated dystrophin associated with free ends of
detached muscle fibres, whereas laminin localization remains
unaffected in zygotic dagl —/— zebrafish. Interestingly, dys-
trophin immunoreactivity cannot be detected in dagl
MO-injected embryos, in which translation of maternal dag!
transcript is inhibited, while laminin immunoreactivity is unaf-
fected (49). We reason that lack of maternally supplied dystro-
glycan may lead to a loss of dystrophin, but laminin localization
isunchanged. In contrast to previous findings that hypoglycosy-
lated a-dystroglycan in patients and fkrp MO-injected embryos
leads to reduced dystroglycan—laminin-binding activity in vitro
(22,47,48), our results are consistent with the dystroglycan-
deficient chimaeric mice which develop muscular dystrophy
with decreased levels of dystrophin, whereas basement mem-
branes and the deposition of laminins remain unaffected (50).
In addition, analyses have shown that dystrophin immunoreac-
tivity is essentially normal in muscle biopsies of most FCMD
patients (42,51,52), as it is in fukutin and fkrp MO-injected
embryos (data not shown), suggesting that pathological mech-
anisms different from a complete absence of dystroglycan or
disruption of dystroglycan—ligand interactions could be
involved (see below).

Second, we have shown that removing Fukutin or FKRP in
zebrafish causes notochord differentiation defects and perturbs
expression of laminins before muscle degeneration. Notably,
aberrant expression of laminin a5 was reported to be detected
around most muscle fibres in FCMD patients, whereas it was
rarely detected in control muscle biopsies (42,53). Together,
these results raise the possibility that changes of laminin
isoform expression may lead to abnormal laminin polymeriz-
ation and assembly within the basement membrane. Indeed,
fragility in basal lamina has been reported in the brain of
FCMD and fkrp mutation-associated WWS and MEB patients
(54-57). In addition, Fukutin-deficient chimaeric mice show
disorganized laminar structure in the brain and retina (58);
similar results have been shown in homozygote Fkrp-Neo
(Tyr307Asn) mice, which have reduced levels of fkrp tran-
script (59).
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Third, we have shown that knockdown of Fukutin family pro-
teins, but not disruption of dystroglycan—ligand interactions
causes ER stress and activation of UPR. UPR is an evolutiona-
rily conserved mechanism allowing the ER to recover from the
accumulation of unfolded proteins mainly by (i) down-
regulation of genes encoding secreted proteins and increasing
the transcription of genes that contribute to ER function, (ii)
reducing translation initiation and (iii) increasing the clearance
of misfolded proteins through ER-associated degradation
(ERAD) (43,60,61). Intriguingly, disruption of Fukutin or
FKRP expression leads to accumulated IIH6 epitopes (Fig. 6),
which are not present on a-dystroglycan and probably seques-
tered into the notochord vacuoles by a mechanism similar to
autophagy in UPR-activated cells to ease ER stress (62,63).
Here we propose a model for dystroglycanopathies linked
with the UPR (Fig. 8). In the normal condition, when dystrogly-
can is misfolded, the UPR acts as the quality control machinery
to ensure proper folding and secretion of glycosylated dystro-
glycan. Our result indicate, however, that in dystroglycanopa-
thies, knockdown of Fukutin or FKRP function may affect
protein secretion beyond glycosylation of «-dystroglycan,
resulting in acute ER stress and the activation of UPR.
Subsequent signalling events as part of the UPR to ease the
ER stress include changes in gene transcription, ERAD
and translational repression. When the stress remains
overwhelming, cell death pathways may be activated. Hypogly-
cosylated dystroglycan may be secreted to the plasma mem-
brane, yet its interactions with ligands in the extracellular
matrix are disrupted.

It is becoming evident that the extent of hypoglycosylated
a-dystroglycan as judged by IIH6 immunostaining may not
be the only factor contributing to the clinical severity of
patients carrying fukutin or FKRP mutations (64). In addition,
Sfukutin and fkrp mutations can perturb sarcolemma-associated
proteins beyond a-dystroglycan (51,65). We reason that vari-
able immunoreactivities of DGC components in fukutin or fkrp
mutation-associated dystroglycanopathies may reflect distinct
consequences from ER stress and activation of UPR. Signifi-
cantly, the UPR may be responsible for the pathological mech-
anism that contributes to the wide spectrum of clinical severity
in dystroglycanopathies. In fact, a wide variety of diseases
have been associated with malfunction of the ER and defective
UPR signalling, including Marinesco—Sjogren syndrome, a
cerebellar ataxia with cataract and myopathy, caused by
mutations in S/LI that encodes a nucleotide exchange factor
for BiP (66). In addition, intense UPR signal in the neural
floor plate of fukutin and fkrp MO-injected embryos is also
consistent with the central nervous system involvement in
some dystroglycanopathy patients (4,10).

Up-regulation of BiP/GRP78 was reported in muscle biop-
sies from LGMD2I patients (67). To verify this result, we
have studied muscle biopsies from patients with a number of
molecularly characterized dystroglycanopathies. We indeed
detected activation of the UPR in some dystroglycanopathy
patients with mutations in fukutin or fkrp. The activation of
the UPR was, however, not a universal finding (our unpub-
lished results). We reasoned that the difference between the
zebrafish and the human results could be related to different
factors: (i) the clinical severity and genetic background of
the population studied was heterogeneous, unlike the
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zebrafish; in particular, hypomorphic alleles may retain
residual function, allowing patients to ease the ER stress;
thus, the UPR marker detected at a late time point is lower
than expected, (ii) the timing at which a muscle biopsy was
obtained. During the progression of muscular dystrophy,
muscle cells in different patients are replaced by connective
tissue and fat to different degrees; thus, the detection of UPR
needs to be normalized according to the residual muscle
mass on muscle biopsies, and (iii) muscle biopsies may not
be the ideal tissue to detect subtle UPR activation. In fact, the
strongest signal of the UPR activation in the zebrafish models
of dystroglycanopathies is detected in the neural floor plate
prior to muscle differentiation. This suggests that a different
approach and availability of different tissues is required to
further investigate the UPR in dystroglycanopathy patients.

In sum, the zebrafish provide valuable models for studying
the pathophysiological aspects of dystroglycanopathies. While
it remains unclear whether Fukutin and FKRP are bona fide
glycosyltransferases, our study suggests important roles for
Fukutin family proteins in the secretory pathway and that
the UPR may contribute to the wide phenotypic spectrum of

some dystroglycanopathies in humans. Further studies of the
roles of Fukutin and FKRP in the secretory pathway will
provide new insights into the molecular mechanisms that are
critical for the organs targeted in some dystroglycanopathies
and help development of therapeutic strategies that ease ER
stress.

MATERIALS AND METHODS
Antisense MOs and constructs

Unless otherwise stated, MOs (Gene Tools) were injected into
1- or 2-cell-stage embryos with dosages specified below. Stan-
dard control MO (7 ng), dagl MO (7 ng) and gyltlib/large?2
MO (6 ng) have been described (49,68). MOs used in this
study: fikutin MO (5'-AGCAGCCTCATATCTGTGCCC
AGAA-3', 7ng); fkrp MO (5-CTGGCAAAAACTGATA
CGCATTATG-3', 6 ng). Zebrafish fkrp coding sequence was
cloned in front of the egfp coding sequence to generate
in-frame fkrp—egfp construct and make mRNA for injection.
ER-YFP vector (Clontech) encodes a fluorescent fusion
protein carrying Calreticulin ER targeting and lysine-aspartate-
glutamate-leucine retrieval sequences. ER—YFP mRNA was
made and injected (200 pg) alone or with MOs.

EBD, Acridine Orange and ir situ hybridization

As previously described (37,38), 0.1% EBD (Sigma) and
5 pg/ml Acridine Orange (AO, Sigma) were injected into
the peri-cardic sinus of zebrafish embryos by 48 hpf, allow-
ing EBD or AO circulated through the cardiovascular
system before analysis under confocal microscopy. In situ
hybridization for ihhb expression was carried out as
described (69,70).

Immunohistochemistry

Protocols for the following primary antibodies have been
described (49): rabbit anti-laminin (Sigma L-9393; 1:400),
mouse anti-B-Dagl (Novocastra 43DAGI1/8DS; 1:50) and
anti-dystrophin (Sigma MANDRA-1; 1:100). For anti-a-Dagl
(ITH6 epitope, gift from K. Campbell; 1:50), embryos were
fixed in 4% paraformaldehyde (PFA) overnight at 4°C, fol-
lowed by 100% methanol. Fluorescent secondary antibodies
(Molecular Probes; 1:250) used in this study are Alexa 488
anti-mouse or anti-rabbit immunoglobulin G (IgG); Alexa
594 anti-mouse IgG or immunoglobulin M. WGA-FITC
(Sigma; 10 pwg/ml) was used for detecting N-glycans and
Golgi apparatus. For labelling F-actin, embryos were fixed
for 2 h at room temperature in 4% PFA, followed by four
washes of 2% Triton X-100/phosphate-buffered saline and
incubation in Alexa 488 phalloidin (Molecular Probes;
1:100) overnight at 4°C.

Microsome preparation, glycoprotein enrichment and
western blot analysis

Zebrafish embryos were homogenized in pyrophosphate buffer
containing protease inhibitors cocktail (Roche) and centri-
fuged at 14 000g. The supernatant was then ultra-centrifuged



at 142 000g to obtain microsome pellet, which was then solu-
bilised in wash buffer (Tris-buffered saline containing 0.1%
Triton X-100 and protease inhibitors). The solubilised fraction
can either proceed to western blot analysis or incubate with
WGA beads (Vector Labs) overnight at 4°C for glycoprotein
enrichment. WGA beads were washed three times in wash
buffer, followed by elution with 0.3 M N-acetylglucosamine
in wash buffer. Proteins were separated by 4—12% Bis—Tris
gels (Invitrogen); transferred to polyvinylidene fluoride
membranes (Immobilon); probed with IIH6 antibody
(1:2000), anti-acetylated tubulin (1:1000) or anti-B-Dagl
(1:50) and developed with horseradish peroxidise-enhanced
chemiluminescence (Pierce).

Quantitative real-time PCR and statistical analysis

Total RNA was extracted from control and MO-injected
embryos using TRIzol (Invitrogen). First-strand cDNA was
synthesized using random primers and SuperScript II
(Invitrogen). Tagman probes (Applied Biosystems) were
used for quantifying gene expression levels of lamal, lambl,
lamcl, lama2, bip and B-actin (Supplementary Material,
Table S1). Quantitative PCR was carried out for three biologi-
cal repeats with measurements taken from three technical
repeats, followed by one-way analysis of wvariance and
Tukey honestly significantly different test.

SUPPLEMENTARY MATERIAL
Supplementary Material is available at HMG online.
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