Skip to main content
. 2011 Apr 6;6(4):e18262. doi: 10.1371/journal.pone.0018262

Table 1. Results of the multivariate linear model.

Dependent Block R2 Independents and partial coefficients
FNum Φ SKW KUR AGV SAP PKV
Fielder VB 0.8641 −0.0451 0.0072 −0.0012
AB 0.7031 −0.0091 0.0011 0.0262
a VB 0.8941 0.1661 −0.0373
AB 0.7901 0.2081 −0.2883
b AB 0.3091 −0.0021 0.0353 −0.0022 2e-53
c VB 0.9021 0.0101 0.00012
AB 0.8271 0.0031 −0.0061
β 0 AB 0.8221 0.2401 0.3543
β 1 VB 0.7981 −0.2461
AB 0.8891 −0.8771 −1.0903
β 3 VB 0.6901 0.0671
AB 0.8221 0.2401 0.3543
β 4 AB 0.1111 0.5981

The Fiedler and spectral embedded metrics of scan path were predicted by main scan path parameters in a stepwise multivariate linear regression model. VB, the valence block; AB, the arousal block; R2, the adjusted coefficient of determination; FNum, the fixation number; Φ, the scan path diameter; AGV, the average velocity of saccade; SKW, the weight skewness; KUR, the weight kurtosis; SAP, saccade amplitude; PKV, the peak velocity of saccade.

1

p<0.001, by F-test for the significance of the regression model or by t-test for the significance of partial coefficients.

2

p<0.01, by t-test for the significance of partial coefficients.

3

p<0.05, by t-test for the significance of partial coefficients.