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Abstract

Background: Photonic crystals are artificial structures that have periodic dielectric components with different refractive
indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we
experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency
edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the
group velocity developed here. We also analytically derived the negative refraction correctness condition that gives the
angular region where negative refraction occurs.

Methodology/Principal Findings: By using standard photonic techniques we experimentally determined the relationship
between incidence and negative refraction angles and found the negative refraction range by applying the correctness
condition. In order to compare both theories with experimental results an output refraction correction was utilized. The
correction uses Snell’s law and an effective refractive index based on two effective dielectric constants. We found good
agreement between experiment and both theories in the negative refraction zone.

Conclusions/Significance: Since both theories and the experimental observations agreed well in the negative refraction
region, we can use both negative refraction theories plus the output correction to predict negative refraction angles. This
can be very useful from a practical point of view for space filtering applications such as a photonic demultiplexer or for
sensing applications.
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Introduction

Photonic crystals can be considered as multidimensional periodic

gratings, in which the features of refraction at flat surfaces are

dominated by Bragg diffraction effects. The refraction angle from

positive to negative can be tailored based on photonic band theory

[1]. Numerous studies on diffraction gratings and periodic planar

waveguides, essentially the one-dimensional counterparts for the

photonic structures, led to the observation of a vast variety of

anomalous refraction effects, including ‘‘birefringence’’ [2–6]. These

systems have undergone extensive and systematic study based on the

wave vector diagram formalism. This formalism has proven to be an

excellent tool in explaining the unusual refractive properties for the

one-dimensional diffraction grating system. In the late 1990s,

diffraction characteristics that appeared to be negative refraction

were explained in terms of the dispersion surfaces of photonic bands

and prism, lens, and collimation effects based on refraction were

predicted [7–9]. Specifically, it has been demonstrated that light

propagation in strongly modulated 2D/3D photonic crystals

becomes refraction-like in the vicinity of the photonic bandgap,

even in the presence of strong multiple diffraction [4]. In these

conditions, it is possible to define an effective phase refractive index

to explain the propagation inside the photonic crystal using the

conventional Snell’s law. Since such effective index is determined by

the photonic band structure, it can be negative and less than unity,

which leads to negative refraction [9].

This behavior can be understood by using the effective-mass

model in electron-band theory. In the photonic case a Bloch

photon, near the bandgaps, can be considered as free, and be

regarded as a refracted photon inside of a medium with an

effective refractive index. These particular index states only appear

close the photonic bandgap in a similar way as the effective mass

states in a semiconductor. The same conclusion has been reached

by others groups [10]. For instance, the effective dielectric

constant of a 2D photonic crystal in all optical bands, for both

TE and TM polarizations, was calculated. It has been found that

near the gamma point (center of the Brillouin zone), the dispersion

relationship for the TM mode is independent of the propagation

direction, while the TE mode in general depends on the

electromagnetic waves propagation direction. Therefore, for a

2D photonic crystal, there always exists an effective dielectric

index for the TM mode near the gamma point. However, it

cannot be defined as an effective refractive index for TE mode

unless the photonic crystal is highly symmetric. By using similar

arguments presented in [9], Kavokin theoretically explored

negative refraction in one-dimensional photonic crystals (1D

PCs) [11]. By using the dispersion of the photonic bands, he

inferred negative refraction zones from frequency regions where
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the effective mass is negative. Recently, we have simulated a

lossless 1D PC structure and showed that negative refraction could

be present near the low frequency edge of at least the second,

fourth and sixth bandgaps [12]. The same conclusion was reached

by other groups [13–15]. Furthermore, we experimentally

demonstrated negative refraction in strongly modulated porous

silicon 1D-PC in the visible and near infrared regions. However, in

[12] negative refraction was explored with only one angle of

incidence. Therefore, a complete angular characterization is still

missing.

Moreover, in regards to the theory of negative refraction in 1D

PCs, the existence of antiparallel energy and phase velocity has

been thoroughly analyzed in [16]. The existence of negative

refraction in 2D PCs is substantially different from the one-

dimensional case because 2D PCs with a negative slope band

demonstrates negative refraction beam propagation. This is not

true for 1D PCs because the correctness propagation condition

needs to be fulfilled. The ‘‘correctness’’ of propagation in 1D PCs

implies that the correct physical conditions, required to observe

negative refraction, are met. The analysis presented in [16], for

2DPCs, only tackles negative refraction for on-plane propagation

where the crystal is periodic. The exact analogy for negative

refraction propagation between 2D PCs and 1D PCs is the normal

incidence case, where the 1D PCs are periodic in that particular

direction. Nonetheless the aforementioned correctness condition

should also be applied in the 2D PCs case when you have off-plane

propagation, a point that we will discuss later.

In this paper, we experimentally completed the angular

characterization of negative refraction in a 1D PC structure, near

the low frequency edge of the fourth photonic bandgap. We

compared the experimental results with current negative refraction

theory in 1D PCs [11] and with a theory developed here, based on

the group velocity. We confronted both negative refraction theories

and found good agreement between them with differences up to 4

degrees, within the explored incidence angle interval. We analytically

derived the correctness condition and showed that for the

experimental conditions we used, the correctness condition is fulfilled

up to an incidence angle of 15 degrees. We also theoretically verified

the correctness condition near the second bandgap edge (1350 nm)

and found that it is fulfilled up to an incidence angle of 20 degrees. In

order to compare the experiments with theory we developed an

approximation that accounts for the positive refraction that the

negative refraction beam suffers at the structure output. The

correction uses Snell’s law and an effective refractive index, based

on two effective dielectric constants [17]. We found good agreement

between experimental observations and the theory developed here

for the whole incidence angle interval explored. The agreement

between current theory and experimental results was good for

incidence angles smaller than 15 degrees because the effective mass

approximation begins to fail for incidence angles larger than 15

degrees and so does its consequent correction approximation. Since

both theories and experimental results agreed well in the negative

refraction region, given by the correctness condition, we can use both

negative refraction theories with the addition of the output correction

given herein to predict negative refraction angles.

Results and Discussion

Sample preparation and negative refraction angle for the
output measurement

Porous silicon (Psi) multilayers (Fig. 1) were prepared by

electrochemical anodization of crystalline silicon (c-Si) [18]. Porous

silicon was fabricated by wet electrochemical etching of highly

boron-doped c-Si substrates with orientation (100) and electrical

resistivity of 0.001–0.005 Ohm-cm (room temperature = 25uC,

humidity = 30%). On one side of the c-Si wafer, an aluminum film

was deposited and then heated at 550uC during 15 minutes in

nitrogen atmosphere to produce a good electrical contact. In order

to have flat interfaces, an aqueous electrolyte composed of HF/

ethanol/glycerol was used to anodize the silicon substrate. It is well

known that the Psi refractive index increases by decreasing the

electrical current applied during the electrochemical etching.

However, reducing the porosity too much might stop the electrolyte

flow through the porous and limit the subsequent high porosity layer

that makes the contrast. One way to allow the electrolyte to flow is

by increasing the ethanol fraction in the solution. For this reason, an

electrolyte composition of 3:7:1 was used. In addition, the HF

concentration was maintained constant during the etching process

using a peristaltic pump to circulate the electrolyte within the

TeflonTM cell. Anodization begins when a constant current is

applied between the c-Si wafer and the electrolyte by means of an

electronic circuit controlling the anodization process. To produce

the multilayers, current density applied during the electrochemical

dissolution was alternated from 3 mA/cm2 (layer a) to 40 mA/cm2

(layer b) and eighty periods (160 layers) were made. Psi samples were

partially oxidized at 350uC for 10 minutes. The best refractive

index values we found that fit the experimental photonic bandgap

structure studied here are na~1:1 and nb~2 [12]. We have

experimentally measured the refractive indices of single Psi layers

made with the same electrochemical conditions as the multilayers

[18] and we found that na~1:4060.07 and na~2:2060.11. The

refractive indices were measured by using interference fringes from

reflectance measurements [18–19]. Nevertheless, it is known that

the refractive index and etching rate for a single layer are modified

in the presence of a multilayer structure up to approximately 14%, a

phenomenon that has been systematically observed [19]. This result

might have the consequence of compromising the mechanical

stability of the structure. Indeed, in certain regions seen in Fig. 1

layers appear to be collapsed. Nevertheless, negative refraction was

observed in all our experiments where several regions were scanned.

Scanning electron microscopy (SEM) was used to measure the films

thicknesses which were 326611 nm (a) and 435611 nm (b).

Once the samples were ready, we investigated the relationship

between the negative refraction angle and the incidence angle at

633 nm (TE polarization) for the 1D PC structure. Figure 2 shows

the experimental setup we used. The apparatus consists of a plate

on which we find a curved support with a sliding base (4), a turning bar

(7) and a turning platform (8). There is a light source of 633 nm (5) that

can slide on the curved support (4) that points towards the turning

Figure 1. 1D PC structure. SEM picture showing the layers a and b,
angle of incidence a and negative refraction angle b9 inside the
structure and corrected negative refraction angle b at the output, which
can be measured experimentally. The light impinges at the right
interface (The white line on the left represents 1 micron).
doi:10.1371/journal.pone.0017188.g001
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center. On top of the turning bar (7) we find a xyz platform (2) that

holds the 1D PC (1) under test. The turning platform (8), which holds

the video camera (10), has two movement axes (9). These materials

were placed on a standard optical table. We illuminated the

sample edge with a light source at the desired incidence angle a
and, by exploring the sample side with the video camera; we found

the output refracted beam (corrected negative refraction angle b).

Once the beam was detected, its direction was confirmed by

means of the beam spot luminance on the image monitor (not

shown) that was measured with a luminance meter. As the

refracted beam gets weaker for higher incidence angles, we

explored angles up to 25 degrees in order to have enough

discrimination of the spot luminance in reference to the monitor

image background luminance. More details are given in the

methods section.

Negative refraction theory
In order to compare the experimental corrected negative

refraction angles at the output (angle b) with theory, first we need

to discuss negative refraction theory that allows us to calculate

negative refraction angles b’ as a function of incidence angles a (see

Fig. 1). Negative refraction theory for 1D PCs has been presented

in reference [11], where the condition for negative refraction uses

the notion that, if in a given direction the effective mass is negative,

the corresponding components of group and phase velocities of

light have different signs. This seems to be true for 1D PCs

because they are strongly anisotropic, so that the effective masses

have different signs in on-plane and normal-to-plane directions

[11]. However, in order to fully warrant the occurrence of negative

refraction the correctness condition needs to be fulfilled [16].

It is well known that there are significant differences between

the properties of 1D PCs and 2D PCs. In 2D PCs, when the plane

of incidence is chosen to be the periodic plane, the entire wave

vector is confined in the first Brillouin zone. In the theory of wave

propagation through a crystal lattice, the Brillouin zone is a

fundamental region of wavevectors; every vector outside this region

is tantamount to some other vector inside it. In contrast, in the 1D

PC, only the component of the wave vector along the direction of

Figure 2. Experimental set up. The eleven components of the experimental setup for negative refraction observation.
doi:10.1371/journal.pone.0017188.g002
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periodicity is restricted within the first BZ. This has a very important

implication. In 2D PCs, a band with negative slope corresponds to a

negative refraction beam. However, this is not true for 1DPCs. We

have chosen x to represent the direction of the periodicity (Fig. 1).

The slope of a certain band will then be given by Vgperkper, where

Vgper and kper are the group velocity and wavevector components in

the normal-to-plane direction respectively. Since Vgparkpar is always

positive, where Vgpar and kpar are the group velocity and wavevector

components in the on-plane direction respectively, and for a band

with positive slope Vgperkperw0, then ~SS:~kkw0, where ~SS and ~kk are

the Poynting vector and the wavevector respectively. For a band

with negative slope Vgperkperv0, then the correctness condition for

negative refraction to occurs ~SS:~kkv0 gives

Vgparkgparv Vgperkper

�� ��: ð1Þ

Where we have used the fact that the Poynting vector is

proportional to the group velocity. The group velocity components

Vgper and Vgpar can be obtained from the photonic bands’

dispersion relationship as outlined in [13] as:

Vgper~
1

Lkper

Lv

, ð2Þ

Vgpar~{

Lkper

Lkpar

Lkper

Lv

: ð3Þ

We have verified condition 1 (see the methods section), for our

proposed 1D PC structure, close to the second (1350 nm) and fourth

(633 nm) low frequency band edges (TE Polarization) and used

refractive index values and layer thickness described in the

experimental section and with n0 equals one. Condition 1 is fulfilled

for incidence angles up to 20 degrees and 15 degrees respectively.

For 633 nm light, traveling in the structure, one should expect that

for angles of incidence larger than 15 degrees there will be more

than one beam travelling inside the structure. For the normal-to-

plane direction the second and fourth allowed band ends at

1345 nm and 630 nm respectively and they are characterized by a

negative parabolicity close to the band edge. On the other hand, for

the on-plane direction it is also parabolic close to band edge but it is

characterized by a positive effective mass. In the case where the

relevant bands have different band slope signs, one can observe the

simultaneous propagation of beams [16]. Condition 1 can be

generalized as

~VVgparT
:~kkparTv ~VVgperT

:~kkperT

��� ���: ð4Þ

Where~kkparT and ~VVgparT are the total wavector and group velocity in

the parallel direction. ~kkperT and ~VVgperT are the total wavector and

group velocity in the perpendicular direction. In the 1D PC case the

vectors, according with figure 3, are given by~kkparT~(kpar1,kpar2,0),

~VVgparT~(Vpar1,Vpar2,0), ~kkperT~(0,0,kper1), ~VVgperT~(0,0,Vper1)

and in the 2D PC case by ~kkparT~(kpar1,0,0), ~VVgparT~(Vpar1,0,0),
~kkperT~(0,kper2,kper1) and ~VVgperT~(0,Vper2,Vper1).

It is clear that if we are in a band with a negative slope where
~VVgperT

:~kkperTv0 is always true and since in the parallel direction

~VVgparT
:~kkparT is always positive. Therefore inequality 4 gives the

negative refraction correctness condition either for 1D PCs or 2D

PCs. The parallel direction represents the direction where there

are no periodic dielectric regions to coherently scatter the light.

For instance, in a 1D PC is the on-plane direction (known as off-

axis as well) and for a 2D PC is the off-plane direction.

The expression for the negative refraction angle b’ for the

geometry showed in figure 1 is obtained in [11] by using the

continuity of the electric and magnetic fields at the boundary and

the effective mass approximation as:

sin2 b’ð Þ~ n2
0 sin2 að Þ

C2
, ð5Þ

where n0 is the air refractive index, a is the incidence angle, c is the

speed of light, h is Planck’s constant, l is the working light

wavelength, l0 is the wavelength associated with the top of the

fourth subband, for instance and lTl0. The effective mass

approximation works fine only if the condition l{l0ð Þ=lSS1 is

fulfilled. The parameter C2 is expressed as

C2~ 1{
mper

mpar

� �
n2

0sin2 að Þz
2m2

percl

hmpar

1{
l

l0

� �
: ð6Þ

The effective masses of light in the normal-to-plane direction mper

and on-plane direction mpar are calculated by using the

expressions given in the methods section.

We can also calculate negative refractive angles by using the

group velocity, which represents the direction of propagation

inside the medium as follows:

tan b’ð Þ~ Vgper

Vgpar

: ð7Þ

Equation (7) is given in the methods section. Figure 4 shows the

comparison between Eqs. (5) and (7). We used a working

wavelength of 633 nm (TE Polarization) which is close to the

fourth low frequency band edge (l0-630 nm), and we used

Figure 3. Correctness condition. Correctness condition generaliza-
tion from 1D PCs to 2D PCs.
doi:10.1371/journal.pone.0017188.g003
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refractive index values and layer thickness described in the

experimental section with n0 equals one. Clearly both curves are

similar with angle value differences up to 4 degrees, within the

explored incidence angle interval. This result supports the use of

the theoretical approach represented by Eq. (5) to predict negative

refraction angles.

Comparison between experimental results and theory
Figure 5, shows the experimental and negative refraction results

for the theories (eqs. (5) and (7)) for the behavior between angle of

incidence versus angle of refraction. Since the experimental values

represent corrected negative refraction angles at the output (angle

b) we cannot compare them directly with the theories because they

represent negative refraction angles b9 inside the structure.

Reference [16] investigated light propagation in a 2D PC that

consisted of dielectric rods in air with a hexagonal arrangement for

the H-polarization case. They first performed a finite-difference

time-domain (FDTD) simulation of light propagation along the C-K

interface with an incidence angle of 8 degrees. The C-K interface

goes from the center of the Brillouin zone to a vertex that joins two

edges. Second, they supposed that their periodic structure could be

described with an effective medium having an effective dielectric

constant consistent with Maxwell-Garnett theory [16] and, there-

fore, an effective refractive index. In such a case, the field inside the

PC is a plane wave. Third, by using the plane wave expansion

method (PWE) they determined that for low dielectric contrasts

between rods and air there is mainly one predominant component

contributing to the Floquet-Bloch wave (FB). If the dielectric contrast

between rods and air is bigger than 2, mixing between the different

components in the FB sum starts to occur. This was corroborated by

their FDTD simulations. Fourth, for both treatments, the effective

homogeneous medium and the periodic medium with the PWE

method gave almost the same angle for the propagating beam. This

value is in excellent agreement with the FDTD simulation result.

Given this, one might think that it is possible to describe a photonic

crystal medium, for low dielectric contrast, as a homogeneous

medium with an effective index. However, if you take the same angle

of incidence, but choose a different interface such as C-M. The C-M

interface goes from the center of the Brillouin zone to the middle of

an edge. The propagation results are completely different to the

precedent case and cannot be described by a homogeneuos medium

approximation. From this we can infer that the wave is able to see the

periodicity of the medium even when the index contrast is low.

Nonetheless, the fact the effective medium approach fails to generally

describe beam propagation in some cases, this does not preclude the

use such approximation to describe beam propagation in a particular

direction if there is only one predominant FB wave travelling in that

direction. We have done a finite element simulation of our structure

(figure 6-top) where we can observe a single negative refraction beam

(beam with angle b9) that impinges towards the normal-to-plane

interface where it is positively refracted as a single beam. This implies

that we can use an effective medium approximation in such direction

but we have to bare in mind that the effective refractive index does

not represent the refractive index of the structure as if it were a

homogeneous medium in all directions.

Since the negative refraction beam does not only propagate in

the normal-to-plane direction we have to construct an effective

medium approximation that takes into account the on-plane

propagation direction as well. We can use the normal-to-plane

eper~ fan2
azfbn2

b

� �
and on-plane epar~

fa

n2
a

z
fb

n2
b

� �{1

effective

dielectric constants, known to work fine in a multilayer system

[17]. Therefore we can construct an effective medium approxi-

mation with an effective index of refraction given by

noutput~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b’j j
p

2

fan2
azfbn2

b

� �
z

p

2
{ b’j j

p

2

fa

n2
a

z
fb

n2
b

� �{1

vuuut , ð8Þ

where fj represents the fraction volume of each layer (43% for a-

layers and 57% for b-layers), and nj is the refractive index of each

layer. The two angular prefactors multiplying each dielectric

bound are necessary to account for the contribution of each

component (normal-to-plane and on-plane). Then we can use

Snell’s law and the effective refractive index as:

cos(b)~noutput cos(b’): ð9Þ

Combining equations (5), (7), (8) and (9) the corrected negative

refraction angles at the output can be calculated as:

b~cos{1 noutput

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

n2
0 sin2 að Þ
C2

s0
@

1
A: ð10Þ

Figure 4. Negative refraction theories comparison. Angle of refraction b9 vs. angle of incidence for the 1D PC proposed structure. The theory
presented in Kavokin [11] is compared against group velocity theory. The light wavelength is 633 nm (TE polarization) and we used refractive index
values and layer thickness described in the experimental section.
doi:10.1371/journal.pone.0017188.g004
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Equation (10) is valid for 0vaminƒa, where amin is given by

1{
mper

mpar

� �
n2

0 sin2 aminð Þ§
2m2

percl

hmpar

1{
l

l0

� ������
�����: ð11Þ

Inequality (11) assures us that the angle b
0

is real.

Now, by combining equations (7), (8), and (9) the corrected

negative refraction angles at the output can be calculated as well as:

b~cos{1 noutputffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2 b’ð Þz1

p
 !

, ð12Þ

and the analytical expression for tan(b’) is given in the methods

section. Clearly, Eq. (5) values fit well with experimental values up to

15 degrees (fig. 6-middle). The angular difference db’ between values

predicted by eqs. (5) and (7) is the reason why the corrected refraction

angles at the output, obtained by using eq. (10), differs from the

experimental ones for angles of incidence larger than 15 degrees. This

is understandable because as the incidence angle increases the

effective mass approximation begins to fail. Indeed by increasing the

incidence angle, the band edge is pushed towards small wavelengths

making the separation l{l0ð Þ increase. The results for the corrected

negative refraction angles obtained with eq. (12) are shown in figure 6,

(bottom). Notice that equation (12) predicts values that lie within the

experimental accuracy obtained for all the angles of incidence.

Notwithstanding, equation (10) is a good approximation to calculate

corrected negative refraction angles at the output and it works well in

the negative refraction region given by the correctness condition. All

the experiments and calculations were done for TE polarization and

a similar approach can be used for TM polarization where we expect

to find analogous results as it was shown in reference [12].

Conclusion
In conclusion, we have experimentally completed the angular

characterization of negative refraction in a 1D PC structure, near

the low frequency edge of the fourth photonic bandgap and

compared it with current theory and theory based on group

velocity developed here. We have validated the current negative

refraction theory approach with our theory. We found good

agreement between both theories with differences within 4 degrees

in the explored incidence angle interval. In order to know the

negative refraction zone, we have analytically derived the

correctness condition and showed that for the experimental

conditions we used, the correctness condition is fulfilled up to an

incidence angle of 15 degrees. We also theoretically verified the

correctness condition near the second bandgap edge (1350 nm)

and found that it is fulfilled up to an incidence angle of 20 degrees.

Finally, we corroborated the angular experimental values with

negative refracted angular values obtained with both negative

refraction theories by applying an output correction that uses

Snell’s law and an effective refractive index, based on the two

effective dielectric constants. We found good agreement between

experimental results and our theory in the entire incidence angle

interval explored. The agreement between current theory and

experimental results was good up to an incidence angle of 15

degrees because the effective mass approximation begins to fail for

incidence angles larger than 15 degrees and the same is true for its

consequent correction approximation. Since both theories and the

experimental observations agreed well in the negative refraction

region given by the correctness condition, we can use the

combination of theory and output correction to predict negative

refraction angles. This is very useful from a practical point of view.

For instance, it could be useful for space filtering applications [20]

such as a photonic demultiplexer or for sensing applications. A

demultiplexer could be based on the fact that it is possible to have

different wavelengths light impinging on the same incidence angle,

since b9 depends on the wavelength, light with different

wavelengths is dispersed in different directions at the output.

Equations (10) and (12) will consequently be useful to estimate the

output angles. A (Bio)chemical sensor could instead exploit the fact

that the multilayers are porous and we can change their refractive

indices by infiltrating different chemical or biological compounds

that again would shift the angles b9 and b. Compound

concentration should be proportional to this angular shift.

Materials and Methods

Determination of the refracted angle b: step sequence (see
Fig. 2)

The first step consisted on choosing a convenient position of the

light source on the sliding support. That was chosen in function of

the free space needed for hand intervention. Once this position

was determined, it was kept invariant along all the measurements.

The light beam was kept as angular reference for zero degrees. So,

through the turning movement v and the linear displacement x, the

second step consisted in obtaining a regular tangent light beam

Figure 5. Comparison between negative refraction theories and experiments. Negative refraction experimental values compared against
uncorrected theoretical values (Eqs. (5) and (7)).
doi:10.1371/journal.pone.0017188.g005
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observed all along the lateral face of the specimen (parallel to y

direction). The third step was to assure that the specimen

illuminated edge was placed just over the turning center of the

apparatus. This task was performed by acting the movement y. The

fourth step was moving the turning bar (7) around to place the 1D-

PC in the desired incident angle a in reference to the light beam.

To achieve this, we acted the movement v and verified the angular

position on the goniometer (6) scale. At this point, it was necessary to

place the 1D-PC specimen in a way that assured us that the

incident beam was totally contained in the illuminated edge, and

without reaching the specimen normal face (x direction). This was

done by means of the movement x (sixth step). Then we explored the

specimen side looking for a negative-refracted beam by means of the

video camera, the turning platform and controlling the parallax error

(by keeping the refracted light spot centered on the TV monitor and

in focus). This seventh step involved the movements: w, p and f.

After we found the light spot, we explored a narrow angle dw

maintaining the light spot centered in the monitor, as we explained

before. Using a luminance-meter (measure of the luminous intensity

of light travelling in a given direction) we controlled the light level

emitted by the monitor in the portion of the image containing the

refracted light spot. With this procedure we found the angle b for

Figure 6. 1D PC results at a working wavelength of 633 nm (TE polarization). (Top) finite element negative refraction simulation showing
beam propagation inside the structure and input and output interfaces. The angle of incidence a is 15 degrees, angles b9 and b are 272 and 263
degrees respectively. (Middle) Comparison between negative refraction experimental values and corrected theoretical values (Eq. (10)). (Bottom)
Comparison between negative refraction experimental values and corrected theoretical values (Eq. (12)). We used refractive index values and layer
thickness described in the experimental section. Error bars represent systematic errors plus random errors (two standard deviations).
doi:10.1371/journal.pone.0017188.g006

Negative Refraction in 1D PCs

PLoS ONE | www.plosone.org 7 April 2011 | Volume 6 | Issue 4 | e17188



which the luminance-meter gave the highest reading (Lmax), and then

we checked the refracted intensity for points five degrees away from

this last one, verifying that their intensity was less than 50% of Lmax.

This tedious procedure was repeated for incident angles ranging from

1.5 degrees up to 25 degrees. Each angle was measured four times,

but we reported the average value as the negative refraction value and

two standard deviations errors as random errors.

The transference from the refracted light intensity (that we expect

to follow a Gaussian-like distribution according to our simulations

[12]) to the monitor emitted light (measured with the luminance

meter), cannot be considered proportional because of the energy

conversions involved (all with their own non linearities and

convergence limits). The narrow intensity per unit of area

distribution of the refracted light and the acceptance angle of the

camera suggested that the most important systematic error was due

to two factors. First, the angular determination error: angular

measurement through mechanic goniometers could reach without

problems +1 degree error; but the Lmax reading gave us a non

discernible reading along 3 degrees around the Lmax b angle. This

effect is known as spatial filtering. Second, we explored the negative

refracted spot light along a circumference centered in the same spot

as if it where the center for the w movement. Unfortunately the real

center (for the turning platform) and the refracted spot was several

microns away (at least the distance from the spot to the specimen

edge). Therefore, a further correction due to the parallax and

eccentricity compensation is needed to solve this problem. Once

more, as the refracted beam presented a narrow distribution and the

Lmax gave us a 3 degree error, this was covered largely other

systematic errors involved. We used the same light source and

polarizer reported in [12] and the negative refractive transmitted

light was captured by a CCD camera (KP-D50, Hitachi)) coupled

with a singlet lens (focal length of 8 mm, NT-45114, Edmund

Optics) placed at 8 mm from the sample. The signal from the

camera was sent to a color analogical monitor and a luminance-

meter (CS-100, Minolta) was placed at 50 cm from the monitor.

The correctness condition can be expressed as
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Effective mass approximation expressions
The effective mass expressions that only work close to the band-

edge can be obtained from reference [11] and are given by:
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The signs ‘‘2’’ and ‘‘+’’ in the expression for m
TE=TM
par

correspond to TE and TM polarized light respectively.

Equation (7) expression
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18. Nava R, de la Mora MB, Tagüeña-Martı́nez J, del Rı́o JA (2009) Refractive
index contrast in porous silicon multilayers. Phys Status Solidi C 6: 1721.

19. Pavesi L (1997) Porous silicon dielectric multilayers and microcavities. La Rivista
del Nuovo Cimento 20: 1.

20. Gerken M, Miller DAB (2003) Wavelength demultiplexer using the spatial
dispersion of multilayer thin-film structures. IEEE Photon Technol Lett 15:

1097–1099.

Negative Refraction in 1D PCs

PLoS ONE | www.plosone.org 9 April 2011 | Volume 6 | Issue 4 | e17188


