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Microscale and nanoscale mechanical resonators have recently emerged as ubiquitous devices 
for use in advanced technological applications, for example, in mobile communications and 
inertial sensors, and as novel tools for fundamental scientific endeavours. Their performance 
is in many cases limited by the deleterious effects of mechanical damping. In this study, we 
report a significant advancement towards understanding and controlling support-induced 
losses in generic mechanical resonators. We begin by introducing an efficient numerical solver, 
based on the ‘phonon-tunnelling’ approach, capable of predicting the design-limited damping 
of high-quality mechanical resonators. Further, through careful device engineering, we isolate 
support-induced losses and perform a rigorous experimental test of the strong geometric 
dependence of this loss mechanism. Our results are in excellent agreement with the theory, 
demonstrating the predictive power of our approach. In combination with recent progress on 
complementary dissipation mechanisms, our phonon-tunnelling solver represents a major step 
towards accurate prediction of the mechanical quality factor. 
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Mechanical coupling of a suspended structure to its sup-
ports is a fundamental energy loss mechanism in micro-
mechanical and nanomechanical resonators1. Referred to 

variously as clamping2 or anchor loss3, this process remains signifi-
cant even in devices fabricated from high-quality materials operated 
in vacuum and at cryogenic temperatures, and is in fact unavoidable 
in any non-levitating system. Although much progress has been 
made towards the understanding of mechanical dissipation at the 
microscale and nanoscale 2,4, obtaining reliable predictions for the 
fundamental design-limited quality factor, Q, remains a major chal-
lenge while direct experimental tests are scarce5–7. At the same time, 
the implementation of high-quality micromechanical and nanome-
chanical systems is becoming increasingly important for numerous 
advanced technological applications in sensing and metrology, with 
select examples including wireless filters3,8, on-chip clocks9, micro-
scopy10–13 and molecular-scale mass sensing14,15, and recently for a 
new generation of macroscopic quantum experiments that involve 
mesoscopic mechanical structures16–23. Here, we introduce a finite-
element-enabled numerical solver for calculating the support-
induced losses of a broad range of low-loss mechanical resonators. 
We demonstrate the efficacy of this approach via comparison with 
experimental results from microfabricated devices engineered to 
isolate support-induced losses by allowing for a significant variation 
in geometry, while keeping other resonator characteristics approxi-
mately constant. The efficiency of our solver results from the use of a 
perturbative scheme that exploits the smallness of the contact area, 
specifically the recently introduced ‘phonon-tunnelling’ approach24. 
This results in a significant simplification over previous approaches 
and paves the way for CAD-based predictive design of low-loss 
mechanical resonators.

The origins of mechanical damping in microscale and nanoscale 
systems have been the subject of numerous studies during the last 
decades, and several relevant mechanisms for the decay of acoustic 
mechanical excitations, that is, phonons, have been investigated2,4. 
These include: (i) fundamental anharmonic effects such as pho-
non–phonon interactions4,25, thermoelastic damping (TED)4,25–28 
and the Akhiezer effect4,25; (ii) viscous or fluidic damping involving 
interactions with the surrounding atmosphere or the compression 
of thin fluidic layers29–31; (iii) material losses driven by the relaxation 
of intrinsic or extrinsic defects in the bulk or surface of the resona-
tor32–37 for which the most commonly studied model is an environ-
ment of two-level fluctuators38,39 and (iv) support-induced losses, 
that is, the dissipation induced by the unavoidable coupling of the 
resonator to the substrate3,7,8,40,41, which corresponds to the radia-
tion of elastic waves into the supports5,6,24,42–44. This last mechanism 
poses a fundamental limit, as vibrations of the substrate will always 
be present.

These various dissipation processes add incoherently such that 
the reciprocals of the corresponding Q-values satisfy 1/Qtot = Σi1/Qi, 
where i labels the different mechanisms. Thus, in a realistic set-
ting, care must be taken to isolate the contribution under scrutiny. 
In contrast to all other damping mechanisms (i–iii), which exhibit 
various dependencies with external physical variables such as pres-
sure and temperature, support-induced dissipation is a tempera-
ture- and scale-independent phenomenon with a strong geometric 
character that is present in any suspended structure. Moreover, its 
scale independence implies that the same analysis can be applied to 
both microscale and nanoscale devices. We exploit this geometric 
character to isolate the support-induced contribution and obtain a 
direct experimental test of phonon-tunnelling dissipation.

The numerical solver we introduce provides a new technique 
to efficiently model support-induced losses for a broad class of 
mechanical structures. Previous approaches have relied on either 
the direct solution of an elastic wave radiation problem involving 
the substrate6,7,42–44 or the simulation of a perfectly absorbing arti-
ficial boundary5,41, with systematic tests as a function of geometry  

limited to a few specific cases5–7. In contrast, our technique repre-
sents a substantial simplification in that it reduces the problem to 
the calculation of a perfectly decoupled resonator mode together 
with free elastic wave propagation through the substrate in the 
absence of the suspended structure. A key feature of our method 
is to combine a standard finite-element method (FEM) calcula-
tion of the resonator mode together with the use of an extended  
contact at the support. This allows us to treat complex geometries, 
taking proper account of interference effects between the radiated 
waves.

In summary, we develop and test an efficient method for calcu-
lating the clamping loss of high-Q mechanical resonators. Our anal-
ysis includes a thorough experimental verification of this theoretical 
framework by employing resonators that are specifically designed to 
isolate the clamping-loss contribution to the total dissipation 1/Q. 
The measured damping in these structures matches the theoretical  
predictions and demonstrates in a direct manner the strong  
geometric character of this fundamental dissipation channel.

Results
Phonon-tunnelling approach. In analogy to radiation tunnelling 
in photonics and electron tunnelling in low-dimensional structures, 
we adopt a ‘phonon tunnelling’ picture to describe the support-
induced losses24. In this picture, the mechanical resonance of interest, 
characterized by frequency ωR, is regarded as a phonon cavity that 
is weakly coupled to the exterior by a hopping process, whereby 
the elastic energy leaks out of the resonator through the narrow 
contact areas from which it is suspended. Within this framework, 
one can start from the harmonic Hamiltonian associated with the 
elastic scattering eigenmodes of the entire structure, including the 
substrate, and derive a quantum model for the Brownian motion 
experienced by each resonance of the suspended structure.

The corresponding weak tunnel couplings can be obtained to 
lowest order in the small parameter kRd, where 1/kR is the charac-
teristic length scale over which the resonator mode varies appre-
ciably and d is the characteristic dimension of the contact area S 
from which the resonator is suspended. For typical structures that 
exhibit high-Q mechanical resonances, kRd1 is comfortably satis-
fied. This justifies the weak coupling approximation and leads to a 
general expression for the associated dissipation 1/Q in terms of the 
‘overlaps’ between the scattering modes and the resonator mode. In 
the limit d→0, the leading contribution is obtained by replacing the 
scattering modes by the free (unperturbed) modes of the supports, 
which yields24 
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Here, sR
′  and uR

′  are the stress and displacement fields asso
ciated with the normalized resonator mode, sq

( )0  and uq
( )0  are the  

analogous fields for the continuum of support modes labelled by q 
(eigenfrequencies ω(q)), and ρs and ρR are, respectively, the densi-
ties of the substrate and resonator materials. The resonator mode 
should satisfy either (i) free or (ii) clamped boundary conditions at 
the contact area, S, depending on the behaviour of the eigenmode 
when S is small, whereas the unperturbed support modes should 
satisfy the converse. These homogeneous boundary conditions cor-
respond, respectively, to d RS ⋅ =s ′ 0 and uR

′ = 0  so that only one of 
the two terms in the surface integral is finite. In general, the decom-
position between ‘resonator volume’ and ‘supports’ consistent with 
the weak coupling condition need not be unique. Examples of case 
(i) are pedestal geometries, such as microspheres, microdisks or 
microtoroids, when the pedestal is included in the support24. It is 
worth noting that for these geometries, if the pedestal is assumed 
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to have perfect impedance match with the substrate, equation (1) 
leads to a particularly simple result for the Q of an axially symmetric 
resonance7,24, which has been verified in ref. 7 for the radial breath-
ing mode of microtoroid structures. On the other hand, examples 
of case (ii) include the planar structures investigated here, when the 
resonator volume consists of the portion of the structure that is free-
standing.

A rigorous derivation of equation (1) is given in ref. 24. Alterna-
tively, if one uses a decomposition of the displacement field in terms  
of the unperturbed support modes and the discrete modes of the 
resonator volume, equation (1) follows simply from applying Fer-
mi’s Golden rule to phonon decay, with the interaction Hamiltonian 
between the resonator volume (labelled  < ) and the surrounding sup-
ports (labelled  > ) given by 

S
S u∫ ⋅ ⋅> <d s  for case (i) and − ⋅ ⋅∫ < >S

S ud s   
for case (ii). Within this framework, it is straightforward to realize 
that the validity of equation (1) is more general than the condition 
kRd1 and will also apply to any resonance, for which the sup-
port-induced frequency shift is small compared with the relevant 
mode spacing (that is, the free spectral range at the corresponding  
resonant frequency) so that the weak coupling assumption is  
warranted. For our case, the use of this master formula is completely  
equivalent to previous intuitive approaches based on forcing the 
substrate with the stress source generated by the resonator mode6,42–

44, as can be shown rigorously by using—for the elastic Green’s 
function of the substrate—a spectral decomposition in terms of 
its free modes. In the presence of mode coupling5,7 not induced 
by disorder, our treatment remains valid provided that the mode 
mixing is not dominated by support-induced interactions, which 
includes the case where it is accounted for by FEM assuming per-
fect clamping and excludes cases where symmetry breaking induced  
by the support is relevant. Finally, one should note that in the  
weak-coupling regime, it is straightforward to incorporate mode 
coupling not accounted for by the FEM into our phonon-tunnelling 
formalism.

Q-solver. Though the aforementioned framework is completely 
general, to investigate the predictive power of our approach, we 
focus specifically on the flexural modes of a symmetric plate geom-
etry of thickness t that is inscribed in a circle of radius R, with the 
contact area S corresponding to the outer rim of an idealized cir-
cular undercut (undercut distance of Lund). To calculate the theo-
retical Q-values of such devices via equation (1), we have developed  
a numerical solution technique that determines the normalized res-
onator eigenmode and eigenfrequency via FEM (with uR

′ = 0  at S)  
and is based on a decomposition into cylindrical modes for the  
support, which is approximated by the substrate modelled as  
an isotropic elastic half-space. The latter approximation is expected 
to be quantitatively precise for the low-lying flexural resonances 
when the underetched gap between the suspended structure and 
the substrate satisfies h < R (where h is the gap height), and the 
largest resonant wavelength for elastic wave propagation in the 
substrate is smaller than the relevant length scales characteriz-
ing the mounting of the sample (see below). The aforementioned 
weak-coupling condition, kRd1, follows in this case from tR. 
From equation (1), exploiting the fact that the eigenmodes of  
an elastic half-space are given by straightforward analytical 
expressions45, we obtain (see Methods section for details of this 
derivation) 
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with n = 0,  ± 1,  ± 2, …. The different types of relevant plane-wave 
modes u rq ,

( ) ( , )g n0
s  of the half-space45 (that is, longitudinal (l), trans-

verse vertical (t) and surface acoustic waves (s) given that transverse 
horizontal waves do not contribute) are labelled by γ = l, t, s with cγ, 
the corresponding speed of sound—as determined by the density ρs, 
Poisson ratio νs and Young’s modulus Es of the substrate. We adopt 
spherical coordinates for the incident wave vector q  with polar 
angle θ and cylindrical coordinates for the position r . The squared 
displacements | ( , ) |, ;

( )uq zg n0 20 s  are given by analytical expressions, 
that only depend on γ, cosθ and νs

24,45, which lead to straightforward  
integrals for the functions  u qn, ( , )g n≠s s  detailed in the Methods section.

If one considers low frequency modes that are symmetric with 
respect to both the x − z and y − z planes so that fz,0≠0 and ωRcγ/R 

γ, one can approximate the series in equation (2) by the n = 0 term 

with the un,g  evaluated at q = 0. For a Poisson ratio νs = 1/3, this 
yields the following approximation 
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where fz,0 corresponds to the total force applied on the contact  
area S. For the typical micromechanical resonators analysed 
here (see below), this approximation deviates from equation 
(2) by 20%. Finally, we highlight that it is straightforward to 
generalize the above to in-plane modes and the rim need not be  
continuous, as in cases where the resonator volume makes contact 
with the support at a disjoint set of small areas (for example, a bridge 
geometry with no undercut).

Free–free design. To experimentally verify our solver, we have 
developed ‘free–free’ micromechanical resonators consisting 
of a central plate (resonator) of length L and width w suspended  
by four auxiliary beams as depicted in Figure 1a. These struc-
tures are etched from a high-reflectivity monocrystalline distrib-
uted Bragg reflector (DBR)—as described in the Methods section,  
suited for Fabry–Perot-based optomechanical systems46. The devices  
used in this study constitute a variant of the previously demon
strated free–free flexural design in which auxiliary beams with 
widths wsw and lengths Ls = λt/4 (where λt is the resonant 
wavelength for the propagation of torsional waves) placed at the  
nodes of the central resonator mode provide noise filters to suppress 
support-induced losses3. A major drawback with the λt/4-beam 
design is that the resulting auxiliary beam length can be exces-
sive. In fact for the eigenfrequencies investigated in this work, the  
corresponding beam length ( > 400 µm at 1.7 MHz) leads to proli
feration of low-frequency flexural resonances that compromise the 
stability of the optical cavity and render mode identification diffi-
cult. We circumvent this issue by utilizing instead a reduced length 
Lsλt/4 chosen to avoid spectral overlap between the free–free  
resonance and flexural resonances of the auxiliary beams.

The free–free design provides an ideal platform to isolate and 
measure phonon tunnelling dissipation: first, by altering the attach-
ment position of the auxiliary beams, this design allows for a signi
ficant variation of geometry, while approximately preserving the 
frequencies and effective surface-to-volume ratios of the resona-
tors. As these characteristics are kept constant, one can rule out the 
influence of additional damping mechanisms (specifically those 
driven by internal losses and surface effects) on the variation in Q 
and hence isolate support-induced losses in the measured devices. 
Second, the free–free resonators provide an intuitive illustration of 
the strong geometric character of the support-induced dissipation. 
Heuristically, the clamping loss will be proportional to the elastic 
energy radiated through the auxiliary beams, which should approx-
imately scale as the squared deflection of their contacts with the 
central resonator (see Fig. 1b,c). Thus, varying the contact position ˆ , ,Rys bsa b a b

R R=
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of the auxiliary beams results in a characteristic modulation of the 
damping rate, which approximately maps out the central resonator 
mode shape (Fig. 1b). As expected, the minimum-loss design corre-
sponds to the geometry in which the auxiliary beams are attached at 
the nodes of the fundamental resonance of the central resonator. It 
is interesting to note that the theoretical clamping loss limit 1/Qth for 
nodal positioning is always finite as described in Figure 1c. In turn, 
for generic placement away from the nodal points, one obtains for 
the improvement in Q with respect to the clamped–clamped con-
figuration the heuristic relation Qf − f/Qc − c~(w/2ws)2, which assumes 
that ωR and the effective mass mR are the same for both configura-
tions and ωR lies away from the flexural resonances of the auxilliary  
beams. This figure of merit can be derived from equation (3), if one 
uses the approximate scalings | | / /,f E t wk mz 0

3 3 6c c R R R R− ∼ r  and 
| | / /,f E t w k mz 0

3 3 3f f R s R R R− ∼ r , which follow from neglecting  
the undercut, using thin-plate elasticity, and exploiting the fact that  
wsL to analyse the elastic wave propagation in the auxilliary beams24.

Measured dissipation. To identify the mechanical modes of our 
microfabricated resonators (see Figure 2a for an example of a 
completed device), we compare the optically measured resonator  

frequencies, as a function of the auxiliary beam position, with the 
theoretical eigenfrequency variation. The simulated values are gen-
erated using the geometric parameters determined via careful anal-
ysis of the completed resonators (see Supplementary Method). As 
can be seen in Figure 2b, in addition to the symmetric free–free res-
onance, there is also an antisymmetric eigenmode with comparable 
frequency. We observe no mode coupling between these resonances, 
which is consistent with the specific mirror symmetries of the struc-
ture. The frequencies are accurately reproduced by the FEM simula-
tion, if we allow for frequency offsets that are solely dependent on 
the mode parity (262 kHz offset for the free–free mode and 89 kHz 
offset for the antisymmetric mode). We attribute these shifts to a 
material-related dissipation mechanism involving both surface and 
bulk contributions (see Supplementary Method for further details).

All dissipation measurements have been performed at high vac-
uum (10 − 7 mbar) and at cryogenic temperatures (20 K) to suppress 
fluidic and thermoelastic damping in the devices  (Fig. 2c,d). Under 
these conditions, we record quality factors spanning 1.4×104 to 
5.1×104, with the minimum Q corresponding to the free–free mode 
of devices with an auxiliary position of 62.5 µm and R = 116 µm, and 
with the maximum Q to the geometry closest to nodal positioning 
(37.4 µm) for the same radius and type of mode (see Fig. 3). For 
the symmetric mode, we readily observe the expected characteris-
tic modulation in Q as a function of the placement of the auxil-
iary beams with a relative variation of ∆Qexp/Qexp~260% (~80%) for 
R = 116 µm (R = 131 µm). At the same time, the use of the free–free 
geometry ensures that the frequency variation is kept small, with 
a range of ∆f/f~20% (~10%). In contrast, the Q-values for the 
antisymmetric mode are nearly constant with Q≈2.1×104 (Fig. 3c). 
This is expected as the theoretical support-induced loss for this 
mode is negligible. Additionally, as this resonance involves mainly 
deformations of the auxiliary beams, its dissipation is not correlated 
with the mode shapes of the central resonator. The damping of this 
mode is instead dominated by other sources of dissipation, most 
likely by the material-related losses that are also responsible for the 
frequency shifts. Thus, we obtain an independent corroboration 
that the characteristic Q-variation observed for the free–free mode 
is indeed induced by the modification of the geometry rather than 
by the small frequency variation present in the devices.

Discussion
To quantitatively compare the measurements with our numerical 
predictions, two issues must be considered: (i) our model only cap-
tures support-induced losses, although other loss mechanisms may 
still contribute to the overall damping in the devices and (ii) the 
parameters for the half-space model of the substrate must be prop-
erly chosen. Consideration (i) together with the fact that we have 
designed sets of resonators for which the frequencies and effective 
surface-to-volume ratios are kept approximately constant implies 
that any additional damping mechanism that is relevant at low 
temperatures and high vacuum, but is insensitive to the variation 
in geometry, should contribute a constant offset 1/Q* in the meas-
ured dissipation 1/Qtot. Consideration (ii) is non-trivial given the 
long-wavelength nature of the elastic waves radiated into the sub-
strate. For an average resonator frequency of 2.12 MHz, estimates of 
the maximum wavelength for the freely propagating elastic waves 
yield a value of 2.5 mm, which largely exceeds the wafer thickness 
(300 ± 25 µm). Thus, the mechanical material parameters for the 
substrate should be determined by the properties of the underlying 
stage and positioning mechanism in the cryostat rather than those  
of the chip itself. Hence, we assume for the half-space the mechani-
cal properties of polycrystalline commercially pure (grade 2)  
titanium (see the caption of Figure 3 for more details), of which the 
bulk of the structure beneath the resonator consists. Taking all of 
this into account, the theory shows remarkable agreement with the 
measured dissipation (as shown in Fig 3). It is important to note that 

Figure 1 | Mapping out phonon-tunnelling dissipation in a free–free 
resonator. (a) Schematic diagram of the resonator geometry. (b) Normalized 
squared centre of mass displacement of a single auxiliary-beam central-
resonator contact calculated via FEM (the inset shows the profile of the 
free–free mode as approximated by Euler–Bernoulli theory). (c) Simulated 
dissipation (see equation (2)) as a function of the auxiliary beam’s y-
coordinate (ya). Values corresponding to eight discrete geometries were 
calculated here with t = 6.67 µm, ws = 7 µm, w = 42 µm, L = 132 µm, R = 116 µm 
and Lund = 27 µm—the line is simply a guide for the eye. The FEM-calculated 
mode shapes correspond to the three extreme examples of the resonator 
design, from left to right: auxiliary beams near the resonator centre 
(ya = 13 µm), beams near the ideal nodal position (ya = 37.4 µm) and beams 
attached at the ends (ya = 62.5 µm). The theoretical clamping loss limit 1/Qth 
for nodal positioning is always finite with the geometry closest to this position 
(indicated by the arrow) yielding 1/Qth≈2×10 − 7.
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the only free parameter used in the model of the free–free mode 
is a constant offset of 1/Q* = 2.41×10 − 5. Although the exact nature 
of the corresponding dissipation mechanism is currently unknown, 
we assume that it arises from material losses in the resonator  
epi-structure.

It should be noted that most commercially viable resonators 
operate in a regime where TED dominates, and in some instances, 
intuitive understandings of the support-induced damping3,8,40 have 
allowed for its suppression below other limiting damping mecha-
nisms. Nonetheless, if current efforts to minimize TED in such 
structures at room temperature are successful28, support-induced 
losses may pose the next challenge for maximizing Q. On the other 
hand, in fundamental research thrusts employing high vacuum and 
cryogenic systems, support-induced losses can become a dominant 
factor7,41. For example, the free–free designs explored here provide 
a route to minimize support-induced losses for application in opto-
mechanical experiments utilizing the micromechanical resonator as 
an end mirror in a high-finesse Fabry–Perot cavity46. To gauge the 
relevance of our ‘free–free’ micromirror design in this context, it 
is instructive to compare the fundamental limit at nodal position-
ing Qth≈5×106 and the maximum measured Q-value of 5.1×104  
with the corresponding results for the fundamental flexural mode 
of a clamped bridge of comparable dimensions. In fact, for the  
typical dimensions considered, as required for integration in a 

high-performance Fabry–Pérot cavity, we obtain a theoretical limit 
Qc − c~103 in line with previous measurements on monocrystalline 
DBR optomechanical structures47.

Given the scale-independent nature of support-induced losses, 
our solver can be applied equally well to nanoscale mechani-
cal devices. We find that for a recent demonstration of a nano-
mechanical doubly clamped beam coupled to a superconducting  
qubit at milliKelvin temperatures48, the measured values for the  
resonator’s maximum Q (≈6×104) can be understood solely via the 
phonon-tunnelling loss model (beam geometry of 0.3×0.18×6 µm; 
M. LaHaye, private communication), which predicts a Q-value  
of 5.4×104, in excellent agreement with the experimental value. In 
addition, the phonon-tunnelling framework is also applicable to 
prestressed nanoresonators such as Si3N4 strings34 or membranes 
and has recently been experimentally verified for the latter49.

In conclusion, we have developed an efficient FEM-enabled  
numerical method for predicting the support-induced dissipation in  
microscale and nanoscale mechanical resonators. In combination with  
existing models for other relevant damping channels (for example, 
fluidic and TED27,28), our ‘phonon-tunnelling’ solver makes further 
strides towards accurate prediction of Q. Furthermore, we provide a 
stringent experimental test of the corresponding theory using resona-
tors engineered to isolate support-induced losses. Our results unam-
biguously demonstrate that phonon-tunnelling plays a significant 

Figure 2 | Characterization of the completed free–free resonators. (a) Optical micrograph of the 5×5 mm chip containing the batch-fabricated 
microresonators as well as an electron micrograph highlighting a single suspended structure; the scale bar in this image is 20 µm. (b) Simulated (left) and 
measured (right) eigenfrequencies as a function of the auxiliary beam y-coordinate. The measured values (discrete points) show excellent agreement 
with the simulated data set, albeit with a slight offset dependent on the parity of the mode. The fitting lines in the right plot correspond to a mean 
frequency offset of 262 kHz for the symmetric (sym) free–free modes and 89 kHz for the neighbouring antisymmetric (antisym) modes (inset images 
show  the FEM-derived mode shapes). Lower panels—examples of the fitting techniques utilized for Q-value extraction including: (c) Lorentzian fitting 
of the free–free resonance (captured on a spectrum analyser) for a device with R = 116 µm and ya = 29 µm resulting in Q = 4.5×104 and (d) ringdown fitting 
of the same device using linear regression of the natural log of the mean square of the free-ringdown signal captured single-shot with a high-speed 
oscilloscope yielding Q = 4.46×104. The inset includes the residuals to the linear fit showing an excellent agreement with the expected exponential decay.
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role in the mechanical dissipation of these devices and illustrate the 
strong geometric character of this fundamental damping mechanism. 
Finally, we note that as the weak-coupling approximation underly-
ing our treatment is more general than the condition of small contact  
area, our numerical solver can in principle be extended to other  
relevant scenarios such as phononic-band-gap structures41.

Methods
Numerical calculation of Q-values. To derive equation (2) from equation (1),  
we adopt for the free elastic half-space45, modelling the decoupled support,  
a decomposition into eigenmodes u rq n, , ,

( ) ( )q g
0  (with n = 0,  ± 1,  ± 2, …) that have 

axial symmetry with respect to z (see Fig. 1). These are related to the plane  
wave eigenmodes u rq ,

( ) ( )g
0  by 

		
u r i u rq n

n
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2
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where we adopt spherical coordinates for the incident wavevector 
q q q( , , ) (sin cos ,sin sin ,cos )q j q j q j q=  (θ = π/2 for γ = s and θ ≤ π /2 otherwise). 

We note that for the suspended plate geometry considered, the appropriate resona-
tor mode satisfies uR

′ = 0  at the contact S so that we need to evaluate the second 
term in equation (1).

The thin-plate condition tR directly allows us, given the flexural nature of the 
modes of interest, to neglect stresses at S that are parallel to the substrate, with the 
possible exception of bending-moment contributions45—this also applies if there 
are small transverse dimensions comparable to t. However, the bending-moment 
contributions also become negligible in the limit t/R→0, as can be shown by using: 
(i) that, given ωRcγ/R γ, we can Taylor expand u rq n, , ,

( ) ( )q g
0  at the origin in the 

integral over S, (ii) that we can assume relevant stresses to be concentrated around 
the ends of the auxiliary beams so that the bending moments at S are mostly ori-
ented along y, (iii) the reflection symmetries with respect to the y − z (operator  
R̂x

) and x − z (operator R̂y ) planes and (iv) that, barring interference effects, 
these bending-moment contributions are at most of relative order24 kRt—here 
k E tR R R R= ( / ) //12 1 4r w  is the resonant wavevector for the propagation of 

flexural waves. Thus, we find that for all mode types other than  −  +  (antisymmet-
ric (symmetric) with respect to R̂x  (R̂y )), the correction associated to neglecting 
the bending moments scales as ∆Q/Q~(kRt)2, whereas for  −  +  modes, it scales 
as ∆Q/Q~(kRt) (note that L~R). In turn, we find that the relative error in using 
equation (1), arising from the weak-coupling approximation, scales in this case 
as ∆Q/Q~|∆ωR|/ωR~|∆I(ωR)|/2ωR~(kRt)3, where the phonon-tunnelling-induced fre-
quency shift ∆ωR is approximated by ∆ I I( )/ ( / ) ( )/w p w w wR d2 1

0
≈ −

∞
∫  where I(ω) 

is the environmental spectrum24.
Hence, we can assume d RS z⋅s ′  ˆ and neglect the variation of u rq n, , ,

( ) ( )q g
0  

across the thickness t (that is, the z-dependence at S), so that the support modes 
only enter into equation (1) through u rq n z z, , , ;

( ) ( ) |q g
0

0= . To determine the latter, we  
adopt cylindrical coordinates r r r z= ( cos , sin , )f f , exploit that reflection at the  
free surface preserves the tangential component of the wavevector implying 
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and use the Bessel integral 
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 Thus from equations (4–6), we obtain 
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where we have also used that uq q z( , , ), ;
( ) ( )q j g
0 0  is independent of ϕ. Subsequently, 

substitution of equation (7) into equation (1) leads to equation (2) after  
using that here 
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where dγ is the dimensionality (that is, dγ = 3 for γ≠s and dγ = 2 for γ = s), performing 
the substitution ω = cγq (for each γ ), and integrating over ω. Finally, substitution 
of the explicit expressions for the plane wave eigenmodes u rq ,

( ) ( )g
0  (see for example 

(7)(7)
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Figure 3 | Compiled dissipation results displaying excellent agreement 
between the theory and experiment. (a,b) Comparison of experimental 
measurements at T = 20 K, with theoretical dissipation values for the free–
free mode of resonators with measured central dimensions of 132×42 µm 
and radius R = 116 µm and R = 131 µm, respectively. Panel (a) includes SEM 
images of the three extreme designs (for R=116 µm) with overlaid CAD 
models of the resonator geometry. Both ringdown and spectrally-derived 
data are included, with values averaged over two nominally identical chips 
(error bars denote a confidence interval of 99%). We include both raw 
simulated data as well as fitted data (continuous lines are a guide to the 
eye) incorporating a constant offset 1/Q* = 2.41×10 − 5. For the effective 
substrate, we utilize the mechanical properties of Ti, which is the main 
constituent of the positioning system on which the chips are mounted 
(ρ = 4,540 kg m − 3, Es = 116 GPa and νs = 0.34). (c) Measured dissipation for 
the antisymmetric (antisym) mode of the same structures exhibiting a lack 
of geometric dependence.
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structure as obtained from a weighted average between the relative content of 
GaAs and AlAs (46.37% GaAs/53.63% AlAs). The corresponding parameters are: 
C11 = 119.6 GPa, C12 = 55.5 GPa, C44 = 59.1 GPa and ρR = 4,483 kg m − 3. The resonator 
axes are aligned along 〈100〉 (zinc-blende structure). Note that we ignore the 6° 
misorientation of the germanium substrate, as we have checked that it has a negli-
gible impact (error of 0.3%) on the simulated frequency response of the resonators. 
Finally, as a non-trivial check, we have applied our numerical method to bridge 
geometries with no undercut for which a simple analytic expression is valid in  
the limit of large aspect ratio (see Supplementary Method).

Epitaxial material structure and resonator fabrication procedure. The layer 
structure for our high reflectivity resonators consists of 40.5 periods of alternating 
quarter-wave GaAs (high index) and AlAs (low index) grown lattice-matched 
to an off-cut monocrystalline germanium substrate. The ideal total thickness of 
the heterostructure is 6,857.6 nm, with individual layer thicknesses of 77.6 and 
91.9 nm for the GaAs and AlAs, respectively, yielding a nominal peak reflectivity 
at 1,064 nm, as with our previous optomechanics experiments47. With this design, 
the germanium substrate enables the use of a high-selectivity gas-phase etching 
procedure, based on the noble-gas halide XeF2, to rapidly and selectively undercut 
the underlying germanium substrate. Thus, we realize a free-standing epitaxial 
Bragg mirror via a simple and fast-turnaround fabrication procedure. The details 
of both the epitaxial material design and microfabrication procedure are covered 
in ref. 50.

Measurement technique. To characterize the frequency response of our micro-
resonators, we utilize a custom-built optical fibre interferometer featuring a con-
tinuous flow 4He cryostat as the sample chamber51. High-sensitivity displacement 
resolution is achieved in this system via optical homodyne interferometry. Cryo-
genic testing of these devices is necessitated because of the limitations imposed by 
TED at room temperature. Estimation of the magnitude of TED is possible using 
the analytical and finite element models developed previously26–28, which predict 
a Q-value of ~4,000 for the current DBR composition and thickness at 1.8 MHz 
and 300 K—consistent with performed measurements. To avoid TED, our cryostat 
enables interrogation down to 20 K (resulting in an estimated TED limited Q of 
9.9×108); the minimum temperature is currently limited by the large view-port 
above the sample stage. Additionally, this system is capable of vacuum levels down 
to 2.5×10 − 7 mbar at cryogenic temperatures, removing any additional damping 
induced by fluidic or squeeze film effects29–31. The eigenmodes of the resonator are 
excited by driving a high-frequency (10 MHz) piezo disc soldered to a copper stage 
in thermal contact with the cold finger. For spectral characterization, the piezo  
disc is driven with white noise and the resonator frequency response is recorded  
on a spectrum analyser. For the free-ringdown measurements, the decay of a  
resonantly excited device is recorded in a single shot on a high-speed oscilloscope 
(see Supplementary Method for further details). 
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where we use the ratio α≡(ct/cl)2 = (1 − 2νs)/2(1 − νs) for the supports’ material  
(νs is the corresponding Poisson ratio). In turn, ξ(α) is the ratio of the propagation 
velocity of surface waves to ct, which is always less than unity45, and 
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The sum in equation (2) can be reduced to a sum over n≥0 by noting that 
J − n(x) = ( − 1)nJn(x) and that as the resonator mode is real, the linear stress Fourier 
components satisfy f fz n z n, ,

*
− = . Furthermore, the length of the central resona-

tor L is comparable to the radius R, and we focus on low-lying resonances of the 
suspended structure so that the aforementioned condition ωRcγ/R γ is always 
satisfied. This implies | / |, ,Σ Σg g g g  u um n 1 for m > n and Σg gun, ≠ 0, which  
can be understood by considering the behaviour of the Bessel functions for small 
arguments. Thus, we find that in equation (2), the sum over the index n is domi-
nated by the first non-vanishing term as determined by the reflection symmetries 
R̂x,R̂y . The latter also imply (n = 0, 1, 2, …): 
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where the resonator mode of type α,β satisfies ˆ , ,Rxs asa b a b
R R=  and  

ˆ , ,Rys bsa b a b
R R= . To efficiently extract the above from the FEM simulation, we 

convert them into volume integrals using an adequate Gaussian weight so that, for 
example, for a fully symmetric mode, we have 
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where we again use cylindrical coordinates and V denotes the resonator volume. In 
addition, we exploit that the reflection symmetries naturally allow to perform the 
FEM simulation on a single quadrant. Thus, numerical evaluation can be conven-
iently performed using a fixed a* and a mesh size M such that (V/4 M)1/3 < a*t. We 
have checked the convergence and estimate the numerical error to be of order 5%.

Numerical simulations of the resonator mode are performed with the aid of 
COMSOL multiphysics. Accurate three-dimensional CAD models representing the 
resonator geometry are generated using Solidworks (matched with high-quality 
scanning electron microscope images as described in Supplementary Method),  
and the bidirectional interface between the two programs is exploited to perform  
a parametric sweep of the auxiliary beam contact position for determining the 
pertinent information about the relevant mode, namely its eigenfrequency, linear 
stress Fourier components fz,n and normalization constant. In this instance, a single 
CAD file is used with a global variable incorporated to control the lateral position 
of the auxiliary beams with respect to the centre of the central resonator. We use 
for the mechanical properties of our single-crystal resonators an anisotropic  
material model incorporating the elastic stiffness matrix for the epitaxial  
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