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Abstract: We applied hyperspectral imaging to measure spatially-resolved 
diffuse reflectance spectra in the visible range and an iterative inversion 
method based on forward Monte Carlo modeling to quantify optical 
properties of two-layered tissue models. We validated the inversion method 
using spectra experimentally measured from liquid tissue mimicking 
phantoms with known optical properties. Results of fitting simulated data 
showed that simultaneously considering the spatial and spectral information 
in the inversion process improves the accuracies of estimating the optical 
properties and the top layer thickness in comparison to methods fitting 
reflectance spectra measured with a single source-detector separation or 
fitting spatially-resolved reflectance at a single wavelength. Further 
development of the method could improve noninvasive assessment of 
physiological status and pathological conditions of stratified squamous 
epithelium and superficial stroma. 
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1. Introduction 

Diffuse reflectance spectroscopy (DRS) has been widely used to interrogate the scattering and 
absorption properties of turbid media such as soft tissue. Quantification of tissue optical 
properties, namely, the absorption coefficient (μa) and the reduced scattering coefficient (µs'), 
enables noninvasive probing of blood content, oxygenation status and microstructure of the 
tissue. One application with a significant impact on health care is to noninvasively detect 
changes in tissue optical properties associated with intraepithelial neoplasia, a precursor of 
carcinoma or cancer [1–5]. Early detection of cancer and its precursor leads to more effective 
treatments and therefore lower mortality and higher quality of life. During the progression of 
intraepithelial neoplasia, scattering of light in the epithelium increases due to increased 
nuclear-to-cytoplasmic ratio and denser chromatin clumps of epithelial cells. In the stroma 
which consists mainly of connective tissue and blood vessels, hemoglobin absorption 
increases due to angiogenesis accompanying the development of precancers. Moreover, there 
have been experimental evidences indicating that scattering in the stroma decreases due 
possibly to the breakdown of collagen network [1,2,6,7]. 

Extraction of tissue optical properties from diffuse reflectance measurements is typically 
achieved by establishing a forward model to predict the diffuse reflectance given average 
optical properties of the bulk tissue and then fitting the predicted reflectance to the measured 
data or comparing the measured data to a pre-calculated database. Various forward models 
have been developed to describe photon propagation in turbid media and used to quantify 
tissue optical properties from simulated data or experimental data from tissue mimicking 
phantoms. Examples of forward models include analytical models using the diffusion 
approximation to solve the radiative transport equation [8–14], numerical models based on 
Monte Carlo (MC) simulations [15–20] and empirical models [5,21]. Instruments used to 
measure diffuse reflectance for the quantification of tissue optical properties can be 
categorized into time-resolved [22], frequency-domain [23] and steady-state methods [5,8–
21]. Time-resolved and frequency-domain approaches are limited to near-infrared 
wavelengths with relatively large penetration depths (>2 mm) and are not be suitable for 
detecting optical properties of epithelium and superficial stroma where epithelial precancer 
and early cancer reside. Steady-state detection of diffuse reflectance can be achieved with 
UV-visible light which has shallower penetration depths in tissue of less than 1 mm [24]. 
Therefore, we focus on steady-state DRS techniques in this paper. By measuring and 
analyzing diffuse reflectance at multiple source-detector separations (SDS) which is known as 
spatially-resolved diffuse reflectance, reasonably high accuracies of quantifying the optical 
properties of homogeneous tissue mimicking phantoms have been demonstrated [9,13–15,18–
21]. Spatially-resolved steady-state DRS systems can be equipped with a broadband light 
source and a spectral detection device to achieve fast acquisition of full spectra and more 
robust identification and quantification of multiple chromophores present in the tissue 
[13,14,18,19]. 

On the other hand, there have been studies showing that a diffuse reflectance spectrum 
measured from only one location at the sample surface, either with a single optical fiber or by 
combining photons collected with multiple fibers, is sufficient to quantify tissue optical 
properties when proper constraints are applied to the spectral dependences of the optical 
coefficients [5,8,10–12,16,17]. In principle, tissue optical properties can be determined as 
long as the number of measured wavelengths is at least equal to the number of unknown 
parameters to be determined. In practice, spectra are usually measured with many more 
wavelengths to reduce the effect of inevitable noise. Detecting reflectance from a single area 
of tissue has the advantage of making compact probes which are highly desired for in vivo 
applications [5,10–12,17]. However, accurate descriptions of the wavelength-dependent 
absorption and scattering properties of tissues, which might be difficult to obtain in vivo, are 
necessary to get accurate results by using this approach. 

Applying DRS for noninvasive detection of precancer in stratified squamous epithelium 
such as that in the uterine cervix, oral cavity and skin faces a challenge that changes in the 

#141715 - $15.00 USD Received 25 Jan 2011; revised 17 Feb 2011; accepted 6 Mar 2011; published 16 Mar 2011
(C) 2011 OSA 1 April 2011 / Vol. 2,  No. 4 / BIOMEDICAL OPTICS EXPRESS  903



reduced scattering coefficients associated with neoplasia are in opposite directions for the 
epithelium and the stroma. Using a homogeneous tissue model to fit DRS data of two-layered 
tissues in which the layers have different optical properties may result in large errors in 
extracted optical properties [25]. Despite the fact that various forward models have been 
established to describe photon propagation in layered scattering media, extracting optical 
properties of two-layered media [25–28] are less successful than extracting optical properties 
of homogeneous tissues. The development of a DRS-based method capable of accurately 
quantifying the reduced scattering coefficients of the epithelium and the stroma separately 
could improve the sensitivity of detecting precancerous changes in stratified squamous 
epithelium and may have great impact on early diagnosis of cancer. 

We propose the applications of hyperspectral imaging to obtain diffuse reflectance spectra 
from each pixel in a two-dimensional image and iterative inversion based on forward MC 
modeling to extract optical properties of a two-layered tissue model. Hyperspectral imaging-
based systems have been used to measure spatially-resolved diffuse reflectance spectra for the 
determination of absorption and scattering properties of turbid media [19,27]. Our approach 
differs in two aspects. First, we use an imaging fiber-optic bundle in contact with the sample 
to collect reflected photons as opposed to the previously reported noncontact configuration. 
Second, we impose spectral constraints on the optical properties and include both the spectral 
and the spatial characteristics of the measured diffuse reflectance data as the input to the 
inversion process. After validating the forward MC method and the inversion procedure by 
comparing with independent MC simulations and experimentally measuring homogeneous 
tissue mimicking phantoms, respectively, we demonstrate that simultaneously analyzing 
diffuse reflectance spectra collected at multiple source-detector separations (SDSs) improves 
the accuracy of estimating the optical properties and top layer thickness of two-layered tissue 
models. 

2. Materials and methods 

2.1. Experimental setup for spatially-resolved DRS 

We incorporated an industrial grade plastic imaging fiber bundle (Tonder Lock Industrial 
Corp.) into a hyperspectral imaging system based on imaging Fourier transform spectrometry 
to measure spatially-resolved reflectance spectra from turbid media. A schematic diagram of 
the experimental setup is shown in Fig. 1. Detailed descriptions of the optical setup and  
 

 

Fig. 1. Schematic diagram of the experimental setup. One source fiber and an imaging fiber 
bundle formed a simple fiber package whose distal end was in contact with the sample. The 
proximal end of the fiber bundle was positioned at the focal plane of the objective for the 
acquisition of hyperspectral images of the sample via the fiber bundle. 
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characteristics of the hyperspectral imaging system have been published [29]. Briefly, a 
hyperspectral imaging data cube was obtained by capturing a series of images at regularly 
spaced optical path-length differences between two beams in an interferometer, recording the 
interference intensity as a function of the optical path-length difference for each pixel 
(interferogram), and Fourier transforming the interferograms pixel by pixel. We acquired a 
hyperspectral imaging data cube in 5 seconds with an exposure time of 50 ms per image. The 
fiber bundle consisted of 7400 fibers with a nominal numerical aperture (NA) of 0.5 and core 
diameters of about 20 μm. A single fiber with a core diameter of 200 μm was tightly attached 
to the distal end of the fiber bundle to couple white light from a Xenon arc lamp to the turbid 
media. The end surface of the source fiber was level with that of the fiber bundle. The 
proximal end of the fiber bundle was imaged by a 4 × microscope objective. 

2.2. Forward MC model 

The numerical MC method was used to model photon transport in this study mainly because 
of its flexibility to work for arbitrary probe geometry. The main shortcoming of MC modeling 
is computational complexity which impedes its application as an inverse model to extract 
optical properties from diffuse reflectance spectra. We adopted the strategy proposed by Liu et 
al., using fast scaling MC as the forward model to obtain a diffuse reflectance spectrum of 
layered media with a single MC run [30]. First, a conventional two-layered variable weight 
MC code similar to the MCML method was developed in C/C++ [31]. Photons were launched 
in a single ray to create a photon trajectory database or an impulse response of a baseline 

medium with µa = 0 cm
1

 and µs' = 100 cm
1

. The Henyey-Greenstein phase function was used 
to model the probability distribution of single scattering angle. The coordinates of all the 
photon scattering events were recorded and used to scale photon propagation steps according 
to the optical coefficients of the target medium relative to those of the baseline medium [32]. 
Total number of scattering events for each photon exiting the sample was also recorded to 
calculate the photon weight. All photons leaving the sample from the top surface were 
considered to be collected by the detection fibers to increase computational efficiency. The 
effect of ignoring the finite NA of the detection fibers was assumed to be equivalent to 
multiplying the reflectance by a proportional constant, which could be corrected by proper 
calibration. Because fibers with finite areas were used to illuminate the sample and collect 
reflected photons, convolution of the impulse response was performed after scaling to 
estimate the detected reflectance given the SDS and the diameters of the source and detection 
fibers [15]. 

To establish a two-layered tissue model for MC simulations, the absorption coefficients 
(µa), scattering coefficients (µs) and anisotropy factors (g) of the two layers and the thickness 
of the top layer needed to be predetermined. We assumed that hemoglobin is the dominant 
absorber in non-skin soft tissues under visible light illumination and expressed the 
wavelength-dependent absorption coefficient of the tissue model by the equation [8,15] 

 2 2( ) [ ( ) (1 ) ( )]oxy deoxy

a Hb a af StO StO          (1) 

where μa
oxy

(λ) and μa
deoxy

(λ) are wavelength-dependent absorption coefficients of oxygenated 
hemoglobin and deoxygenated hemoglobin, respectively [33]. fHb is total hemoglobin 
concentration and StO2 is oxygen saturation of the tissue. This equation could be modified to 
include melanin absorption for modeling epidermis/skin or water absorption for wavelengths 

longer than about 800 nm. The reduced scattering coefficient, μs' = μs(1g), combines µs with 
g into one parameter to describe approximately isotropic diffusion of photon energy in turbid 
media. In soft tissues, the wavelength-dependent reduced scattering coefficient has been 
modeled as a power-law equation [5,13] 

 '( ) k

s A     (2) 

where A and k are constants. Given fHb, StO2, A and k of the top and the bottom layers, µa and 
µs' of each wavelength were computed by using Eqs. (1) and (2) and were used to calculate 
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SDS-dependent reflectance at the corresponding wavelength. For all MC simulations a 
constant g of 0.9 was used and the refractive indices of the medium and the fibers were 1.338 
and 1.462, respectively. The thickness of the top layer, if used, was 0.3 mm to represent the 
epithelium. The bottom layer was semi-infinite with a thickness of 50 mm to represent the 
stroma. 

2.3. Inversion procedure to quantify optical properties 

An iterative nonlinear curve fitting method, the Levenberg-Marquardt algorithm, was used to 
minimize the difference between input data and reflectance spectra calculated by using the 
forward scaling MC code [17]. Because the intensity of diffuse reflectance decreases 
monotonically with SDS, the accuracy of the inversion procedure is mostly determined by 
detection regions near the source. In order to address this issue, we multiplied both the 
calculated and the input spectra by the same constant for each SDS to equalize the influences 
of different SDSs on fitting accuracy. The constant for an SDS was set to be inversely 
proportional to the corresponding average reflectance in the wavelength range of 590–620 nm 
of the input spectra. The same constants were used both in the calculated and in the input 
spectra to preserve the information of relative intensities between SDSs. 

In order to determine the initial values of the parameters to be fitted, we performed a quick 
search for the best fits between the input data and reflectance spectra calculated by using 100 
sets of randomly assigned values of the input parameters. Initial values of the free parameters 
were set as averages of the input parameters from the best five results in the quick search. To 
improve the efficiency of the quick search, we used 10

4
 photons per set to calculate 

reflectance spectra by the scaling MC code and discarded photons undergoing over 1500 
scattering events without exiting the tissue. After picking the initial values of the free 
parameters, a complete curve fitting was performed using 10

5
 photons in the scaling MC code 

during each iteration of the Levenberg-Marquardt algorithm to search for the global 
minimum. The inversion procedure was implemented in MATLAB (The MathWorks, Inc.) 
with a graphical user interface to facilitate interactive file management and setting of 
parameters. Computational time for simulations depended on the speed of CPU used. For 
example, on a computer with a CPU of Intel Core i5-760 2.8GHz and 8MB memory, a single 
MC run of a non-absorbing homogeneous medium with 10

6
 photons took about 1 hour and the 

fitting process took about 8–12 hours depending on the number of free parameters to be fitted. 

2.4. Phantom experiments 

In order to validate the inversion procedure described in Section 2.3, we fit spatially-resolved 
diffuse reflectance spectra experimentally measured from tissue mimicking phantoms and 
compared the extracted optical properties with the known values. Three homogenous liquid 
phantoms were prepared by using 1.04 μm diameter polystyrene beads (Bangs Lab Inc.) as 
scatterers and red ink as the absorber. All phantoms had the same concentration of polystyrene 
beads in water, 6.07x10

9
 particles per milliliter. Phantom 1 consisted of only the scatterers 

without any absorber and served as the calibration phantom. The liquid phantoms were 
contained in transparent plastic containers with a diameter of 10 mm and a height of 20 mm. 
During data acquisition the distal end of the fiber package was dipped into the liquid phantom 
about 3–5 mm below the surface and the liquid phantom was continuously stirred using a 
magnetic stirrer to prevent sedimentation of the beads. 

Wavelength-dependent conversion factors between the experimentally measured spectra 
and the absolute reflectance calculated by MC simulations were determined by using the 
calibration phantom. We calculated spatially-resolved reflectance spectra of the calibration 
phantom by using the reduced scattering coefficients predicted with Mie theory in the scaling 
MC code. The conversion factors were then obtained by dividing the calculated spectra by the 
measured spectra of the calibration phantom wavelength by wavelength. Spatially-resolved 
reflectance spectra of phantoms 2 and 3 were calibrated with the conversion factors for each 
detection region separately, which corrected the effects of wavelength-dependent system 
response and eliminated the influence of ignoring the NA of the detection fibers in the scaling 
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MC code. In order to account for any remaining variability of reflectance intensities measured 
from the phantoms due to instabilities in light source intensity or in coupling efficiencies of 
white light into the source fiber as well as reflected light into the detection fiber bundle, 
calibrated spectra of each phantom were normalized to the corresponding reflectance intensity 
measured at 600 nm wavelength with an SDS of 1.8 mm. The reflectance spectra calculated 
by the scaling MC code during inversion were also normalized to the simulated reflectance 
intensity of the same SDS and wavelength. The normalized spectra were taken as the input 
data to the inversion procedure as described in Section 2.3. 

For extracting the optical properties of the phantoms, the forward MC model described in 
Section 2.2 was modified so that µs'(λ) of the beads were calculated according to Mie theory 
and µa(λ) of hemoglobin was replaced with that of the red ink measured by a UV/visible 
spectrophotometer (Biochrom WPA Biowave II). Due to the limitation of the scaling MC 

method in which g must be constant, we calculated µs(λ) using this equation μs = μs'/(1g) 
instead of using the µs(λ) obtained directly from Mie theory to prevent deviations in µs'(λ) 
from Mie. Free parameters to be fitted were the size and concentration of the beads and the 
concentration of the red ink. 

2.5. Simulated DRS data of two-layered tissue models 

To evaluate the ability of the proposed method to extract optical properties of two-layered 
tissue models, we used simulated DRS data of two-layered tissue models to investigate 
whether simultaneously analyzing diffuse reflectance spectra measured from multiple SDSs 
are advantageous over methods which fit the reflectance spectrum measured with a single 
SDS or fit the spatially-resolved reflectance measured at a single wavelength. In general, 
including more wavelengths in the inversion procedure improved the accuracies of 
quantifying μa(λ) and µs'(λ) (data not shown). A moderate number of 100 wavelengths were 
selected in the range of 400–800 nm for the following analyses based on considerations of the 
accuracy and efficiency of inversion and experimentally feasible spectral resolution. Spatially-
resolved diffuse reflectance spectra of a two-layered tissue model were generated by using the 
scaling MC code with 5 × 10

6
 photons. The diameters of both the source fiber and the 

detection fibers were set to be 0.2 mm. Random noise with a normal distribution and 5% 
standard deviation was added to the simulated reflectance values to take into account the 
uncertainties in real measurements. The simulated reflectance spectra with noise were used as 
the input data for inversion as described in Section 2.3. 

We designed two fitting scenarios for performance evaluation. In the first scenario, we 
compared the performance of simultaneously analyzing spectra obtained from multiple SDSs 
to that of analyzing the reflectance spectrum collected at a single SDS. We used the inversion 
procedure to extract optical properties of only the bottom layer while the top layer optical 
properties were fixed at the true values. The single-SDS cases analyzed were 0.2 mm, 1.0 mm 
and 2.0 mm. The multi-SDS condition used 9 SDSs between 0.4 mm and 2.0 mm with an 
increment of 0.2 mm. The input parameters, fHb, StO2, A and k, of the top layer were 0.4 [g/l], 
0.9, 5000, 1, and those of the bottom layer were 1 [g/l], 0.9, 5000 and 0.865, respectively. The 

ranges of µa(λ) and µs'(λ) of the top layer were 0.01–7.22 cm
1

 and 6.25–12.50 cm
1

 and those 

of the bottom layer were 0.03–18.06 cm
1

 and 15.41–28.06 cm
1

, respectively, for λ = 400–
800 nm. These values were selected according to previously reported optical properties of the 
epithelium and the stroma in the oral cavity [34]. The same absorber (hemoglobin) was used 
in both layers in order to compare our method with a previous study using a similar inversion 
method and a single SDS of 1.5 mm [30], not to suggest that hemoglobin exists in the top 
layer representing the epithelium. Fittings with the top layer thickness d as known or unknown 
were both performed. The ranges for possible values of fHb, StO2, A, k and d were 0.5–1.5, 
0.5–1, 4800–5300, 0.8–1.2, and 0.1–0.6 mm, respectively. 

In the second scenario, we assumed all parameters of the two layers were unknown to 
assess the capability of the proposed method to quantify all optical properties of two-layered 
tissue models. Instead of using Eq. (1), the wavelength-dependent absorption coefficient of 
the top layer was calculated by using the equation 
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1( ) ( )a epiC      (3) 

where μepi(λ) is the wavelength-dependent absorption coefficient of epithelial tissue reported 
in the literature [34] and C is a proportional constant. For calculating simulated DRS data 
using the scaling MC code, C was set to 1 and all the other input parameters of the two-

layered model were the same as in the first scenario. The range of µa1(λ) was 0.51–3.33 cm
1

 
in the wavelength range of 400–800 nm. The range of C to be searched in the inversion 
process was 0.5–1.5. Fittings with the top layer thickness d as known or unknown were both 
performed. 

3. Simulation and phantom results 

3.1. Validation of the scaling MC code 

To confirm the accuracy of the scaling MC code, we first compared total reflectance of two-
layered media calculated by using our conventional MC simulation code with that obtained by 
using the MCML code. Ten random combinations of optical properties were used as input 
parameters and 10

5
 photons were launched for each combination. If the total reflectance 

calculated with MCML was taken as the true value, the mean percent error (MPE) of total 
reflectance calculated with the conventional MC code was 1.3%. MPE was defined as 
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i ti

X X

X
MPE

n



 
 
 

 
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where n, Xti and Xfi were the total number of samples, the true values and the estimated values, 
respectively. After validating the conventional MC code, we compared total reflectance 
calculated using the conventional MC code and the scaling MC code with a wide range of 

optical properties. The ranges of μa and μs' of the top layer were 1–4 cm
1

 and 9.5–14 cm
1

, 

and those of the bottom layer were 1.5–10 cm
1

 and 19.7–28 cm
1

, respectively. A total of 
9500 random combinations of optical properties were tested with 10

5
 photons launched per 

combination. The scaling MC code showed an MPE of only 1.67% in total reflectance while 
the computation time was reduced by at least two orders of magnitude. 

3.2. Quantifying optical properties of homogeneous liquid phantoms 

Spatially-resolved reflectance spectra of each of the 3 phantoms were averaged from 5 
measurements taken with the hyperspectral imaging system. To prevent high levels of 
uncertainty in the calibrated spectra due to low sensitivity of the CCD at wavelengths shorter 
than 450 nm, we selected the spectral range between 450 nm and 800 nm for the following 
analyses. The coefficient of variation in the measured reflectance intensity averaged over the 

selected wavelength range was 4%. The spectral resolution was 8067 cm
1

, corresponding to 
about 16.4 nm at a wavelength of 450 nm. Figure 2 shows a grayscale image of the proximal 
end of the detection fiber bundle collected by the microscope objective. Because the source 
fiber was not attached to the fiber bundle at the proximal end, the location of the source fiber 
relative to the fiber bundle was estimated assuming that the pixel with the highest intensity 
was the contact point between the source fiber and the fiber bundle. The center of the fiber 
bundle and the pixel with the highest reflectance intensity were automatically detected using a 
program developed with LabVIEW (National Instrument Inc.). We defined 8 circular 
detection regions along a line connecting the center of the fiber bundle and the pixel with the 
highest intensity. The SDSs were between 0.4 mm and 1.8 mm with an increment of 0.2 mm 
which was the diameter of each detection region. Reflectance spectra of all pixels within each 
detection region were summed together to obtain the reflectance spectrum for the 
corresponding SDS. During the analysis of spatially-resolved diffuse reflectance spectra of the 
phantoms, both the regions with the shortest SDS of 0.2 mm and the longest SDS of 2.0 mm  
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Fig. 2. Image of the proximal end of the fiber bundle captured with the microscope objective. 
The center of the fiber bundle and the pixel with the highest intensity determine the line 
passing through the center of the source fiber. The 8 green circles indicate the regions for 
measuring diffuse reflectance spectra. 

were not used due to insufficient dynamic range of the CCD to acquire spatially-resolved 
reflectance spectra with adequate signal-to-noise ratios across the whole fiber bundle. 

Figure 3 shows that the curve fitting results of phantom 3 matched well with the 
reflectance spectra measured at the 8 SDSs. The accuracies of extracting µa(λ) and µs'(λ) from 
the measurements were expressed as the root-mean-square percent error (RMSE%) which was 
calculated as 
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where m was the total number of wavelengths analyzed. Xti was the expected value based on 
phantom compositions and Xfi was the fitted value at the same wavelength. The RMSE% 
averaged from the results of phantoms 2 and 3 were 4.33% and 2.25% for μa(λ) and μs'(λ), 
respectively. 

Figures 4(a) and 4(b) compare the expected µa(λ) and µs'(λ) with their corresponding fits 
for phantoms 2 and 3, respectively. The red lines represent µa(λ) and the blue lines represent 
µs'(λ). The MPE of the free parameters, the size and concentration of the beads and the 

concentration of the red ink, were 0.72%, 1.6% and 3.5%, respectively. 
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Fig. 3. Spatially-resolved reflectance spectra of phantom 3 with SDSs from 0.4 mm to 1.8 mm 
and their corresponding fits. 

 

Fig. 4. Extracted µa(λ) (red lines) and µs'(λ) (blue lines) of the phantom experiments. The solid 
lines represent the expected values based on phantom compositions and the dashed lines 
represent the spectra extracted from DRS data. 
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3.3. Quantifying optical properties of two-layered tissue models from simulated DRS data 

Figure 5 shows an example of multi-SDS curve fitting results with d as a known parameter in 
the first fitting scenario. The MPE of hemoglobin parameters and RMSE% of µa(λ) and µs'(λ) 
of the bottom layer were summarized in Table 1. The mean and standard deviations of MPE 
and RMSE% were the statistical results of 10 independent fittings with different random noise 
added to the simulated DRS data. Smaller mean and standard deviation of errors indicated 
higher accuracy and precision, respectively. We note that analyzing the spectrum of a single 
SDS = 1.0 mm resulted in errors slightly higher or comparable to those obtained by analyzing 
multi-SDS spectra. However, the errors for the other single-SDS cases were significantly 
higher (data not shown for the unknown d case). The best single SDS for the extraction of 
optical properties is highly dependent on the optical properties of the medium which are 
unknown in advance. Using hyperspectral imaging to collect DRS enables flexible selection 
of SDSs which can be optimized for minimizing differences between the input data and fitted 
spectra. 

 

Fig. 5. Example of simulated diffuse reflectance spectra with noise and curve fitting results at 
multiple SDSs. 
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Table 1. MPE of estimating hemoglobin parameters and RMSE% of quantifying µa(λ) 
and µs'(λ) of the bottom layer with known optical properties of the top layer. The 

numbers are expressed as mean ± standard deviation among 10 independent runs. 

  MPE (%) RMSE% 

  fHb StO2 d µa µs' 

(a) d was known           

SDS = 0.2 mm 3 ± 13 10 ± 10 NA 14.1 ± 7.4 2.0 ± 1.1 

SDS = 1.0 mm 8 ± 3 5 ± 5 NA 8.3 ± 3.0 1.8 ± 0.7 

SDS = 2.0 mm 2 ± 15 10 ± 6 NA 14.5 ± 9.1 18.0 ± 10.4 

Multiple SDSs = 0.4-2.0 mm 2 ± 7 6 ± 5 NA 6.6 ± 4.4 0.9 ± 0.5 

(b) d was unknown           

SDS = 1.0 mm 0 ± 8 4 ± 4 6 ± 11 7.9 ± 4.3 1.7 ± 0.9 

Multiple SDSs = 0.4-2.0 mm 5 ± 4 1 ± 3 4 ± 3 6.2 ± 4.2 1.8 ± 1.0 

The results of the second fitting scenario in which all optical properties of a two-layered 
tissue model were quantified were summarized in the Table 2. µa1(λ) and µs1'(λ) represent the 
absorption and the reduced scattering coefficients of the top layer and µa2(λ) and µs2'(λ) 
represent those of the bottom layer, respectively. The accuracies in quantifying µa1(λ) and 
µs1'(λ) were higher when d was known than unknown. The errors in quantifying µa2(λ) and 
µs2'(λ) were less than 10% regardless of whether d was known. The generally larger errors in 
extracted absorption and reduced scattering coefficients of the top layer than those of the 
bottom layer are attributed to lower sensitivity of diffuse reflectance to the top layer with a 
thin thickness of 0.3 mm. The sensitivity to the top layer optical properties might be enhanced 
by using smaller SDSs and shorter wavelengths in the inversion procedure. 

Table 2. MPE of estimating input parameters and RMSE% of quantifying µa1(λ), µs1'(λ), 
µa2(λ), and µs2'(λ) of a two-layered tissue model with or without knowing the thickness of 

the top layer, d. The values are expressed as mean ± standard deviation among 10 
independent runs. 

  MPE (%) RMSE% 

  C fHb StO2 d µa1 µs1' µa2 µs2' 

d was known 5 ± 6 1 ± 5 3 ± 3 NA 6.0 ± 5.0 4.3 ± 2.8 4.7 ± 3.7 1.4 ± 1.2 

d was unknown 12 ± 8 6 ± 6 3 ± 5 2 ± 3 12.0 ± 7.2 6.2 ± 5.1 7.2 ± 4.1 1.2 ± 1.0 

4. Discussion and summary 

The major novelty of the proposed method is the use of a hyperspectral imaging system and 
an imaging fiber-optic bundle in contact with the tissue to obtain spatially-resolved diffuse 
reflectance spectra, enabling simultaneous analysis of the spatial and the spectral information 
of collected photons. The fiber package design consisted of a source fiber and a dense fiber 
bundle provides not only the flexibility in choosing regions of interest to be analyzed but also 
high spatial-resolution imaging capability which has the potential to detect heterogeneities in 
optical properties of the tissue. For example, using a source fiber in the center of a detection 
fiber bundle and analyzing radially-resolved reflectance spectra could estimate tissue optical 
properties along various directions. Compared with the previously reported noncontact 
imaging configuration, the proposed method does not need to consider the point spread 
function of the imaging system because of the high spatial resolution provided by the 
microscope objective [19]. In addition, the effect of uneven tissue surface on measured 
reflectance intensities needs to be taken into account for the noncontact imaging approach 
[35]. To investigate this potential issue, we performed an experiment on solid tissue phantoms 
consisted of polystyrene beads in Agar by raising the distal end of the fiber package above the 
phantom surface and keeping the gap between the fiber surface and the phantom filled with 
water. The difference between the reflectance measured with the fiber at a height of 0.7 mm 
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and the average reflectance measured with the fiber at the phantom surface was less than one 
standard deviation of 5 repeated measurements at the phantom surface. This suggests that 
correction for slightly uneven tissue surfaces is not necessary in future clinical applications of 
the proposed method. 

Based on the results of fitting the simulated data, we demonstrated accurate extraction of 
optical properties of two-layered media. The performance of analyzing simulated diffuse 
reflectance spectra of multiple SDSs versus single SDS is shown in Table 1 and benchmarked 
against a previous study by Liu and Ramanujam who used a scaling MC-based inversion to 
quantify the bottom layer optical properties and the top layer thickness from simulated diffuse 
reflectance spectra of a single SDS = 1.5 mm [30]. RMSE% of our study in µa(λ) and µs'(λ) of 
the bottom layer and thickness of the top layer in the wavelength range of 360–660 nm were 
8.1%, 1.8% and 4%, respectively. The values are all smaller than those reported in the 
previous study, which were 9.5%, 5.9% and 9.6%, respectively. We note that the accuracies of 
extracting input parameters are affected by a number of factors that may differ in different 
studies but are not directly related to the performance of the inverse model itself. The range 
and shape of wavelength-dependent µa(λ) and µs'(λ) and number of unknown parameters are 
prominent examples. For MC-based methods, the number of useful photons to represent the 
detected signal is crucial to the model’s accuracy due to stochasticity of the MC method. 
Since none of the factors is in favor of our study, we conclude that fitting diffuse reflectance 
spectra measured with multiple SDSs is advantageous over fitting the diffuse reflectance 
spectrum measured with a single SDS. Although in this study we used fixed size and pattern 
for the detection regions, different combinations of SDSs and wavelength range could be used 
in the inversion process to further optimize fitting results [36]. 

Spatially-resolved reflectance of a turbid medium contains information of photons going 
through different depths in the medium. Thus it has the potential to be used for detecting 
optical properties of different layers. Table 3 compares the proposed method with studies 
reported by other groups on the accuracies of quantifying all optical properties (µa1, µs1', µa2 
and µs2') in two-layered tissue models with known thickness of the top layer [25,27,28]. For 
practical applications of DRS techniques, the thickness of the top layer could possibly be 
measured by other techniques such as optical coherence tomography. The performance of the 
proposed method is evidently better than other studies with the exception of µs1' compared 
with Ref [25]. We note that Ref [25] used a top layer thickness of 4 mm and a wavelength of 
650 nm; the much thicker top layer might contribute to the insensitivity of the reflectance to 
changes in µs2' and large errors in extracted µa2. In addition, with the top layer thickness 
restricted to be within 25% of the true value, quantifying all 5 parameters including top layer 
thickness of a two-layered model resulted in errors of 23.5%, 1.2% and 83.6% for µa1, µs1' and 
µa2, respectively [25]. Results of the proposed method, as listed in Table 2, showed that 8 
parameters (C, A, k of the top layer, fHb, StO2, A, k of the bottom layer and d) of a two-layered 
model were accurately determined. Higher accuracies achieved by the proposed method could 
be mainly attributed to the consideration of both spectral and spatial information of the input 
data in the inversion process as opposed to the other studies analyzing spatially-resolved 
reflectance at a single wavelength. Photons with different wavelengths have different optical 
properties and penetrate to different depths. By measuring a wealth of depth-sensitive 
information through hyperspectral imaging, the possibility that different tissue optical 
properties result in similar reflectance spectra is slim. We want to emphasize two key features 
which made the inversion procedure successful. First, applying spectral constraints based on a 
priori knowledge of the spectral dependencies of tissue optical properties reduces the number 
of free parameters and improves the stability of curve fitting results. Second, the scaling 
method enables efficient analysis of large data sets (100 wavelengths at each of the 8 or 9 
SDSs) using accurate and flexible MC-based models. 
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Table 3. Comparison of methods used and errors (%) in quantified optical properties of 
two-layered tissue models with the thickness of the top layer known. 

Source of 
data 

Inverse model Reflectance source 
Noise 

level (%) 
µa1 µs1' µa2 µs2' 

This study 
Iterative based on 

scaling MC 
Spatially-resolved 

reflectance 
5 6.0 4.3 4.7 1.4 

Ref [28] 
Two-layered 

diffusion equation 
Spatially-resolved 

reflectance 
1 <10 <5 <30 12–20 

Ref [27] 
Two-layered 

diffusion equation 
Spatially-resolved 

reflectance 
2 14.5 8.1 29.3 9.1 

Ref [25] 
Planar photon 

density wave model 
Spatially-modulated 
reflectance imaging 

Phantom 
data 

17.2 1.2 99.5 21.2a 

aµs2' stays within 5% of initial guess. 

There are several assumptions and limitations in this proof of concept study, many of 
which can be readily addressed. First, in phantom experiments both µs and g are functions of 
wavelength while in the scaling MC code g is a constant. We set values of µs'(λ) in accordance 
with Mie theory, which may cause large errors in reflectance at short SDSs where diffusion 
approximation fails. In addition, the phase function of polystyrene beads is different from the 
Henyey-Greenstein phase function used in the MC code. For future applications on 
quantitative in vivo measurements for diagnostic purposes, other phase functions or additional 
absorbers could be used to better model light transport in specific tissues of interest. Second, 
the performance of the proposed method on accurately extracting optical properties of two-
layered tissue models were only demonstrated with simulated data. Evaluation of the proposed 
method using solid two-layered phantoms is ongoing. Third, in the current implementation of 
the inversion method scaling of photons is done in line with the main MC code and the fitting 
process needs to run a new MC simulation each time it iterates. In the future all the photon 
trajectory information of the baseline MC run will be saved in the memory and available to 
subsequent scaling calculations. We expect to improve the efficiency of the inversion process 
by at least one order of magnitude. Forth, the NA of the detection fibers is ignored in the 
current scaling MC code to improve computational efficiency. The effects of NA could be 
easily taken into account by modifying the MC code and the variance of MC simulations 
could be kept low by increasing the number of photons. Fifth, the refractive indices of the two 
layers in the tissue model must match in order for the layered scaling algorithm to work. 

In conclusion, quantification of optical properties of two-layered turbid media by 
analyzing steady-state spatially-resolved diffuse reflectance spectra with an iterative inversion 
procedure based on fast scaling MC simulation was successfully demonstrated on simulated 
data. The forward scaling MC code was validated with a conventional MC code which in turn 
was validated with the MCML method. The inversion procedure was validated with 
experimental data measured from homogeneous liquid phantoms by using a custom-built 
hyperspectral imaging system. Results of analyzing simulated diffuse reflectance spectra 
using the proposed method showed great potential for quantifying optical parameters of two-
layered soft tissues, which could be applied to gather diagnostically useful information about 
epithelial microstructures and stromal microstructures, vasculature and oxygenation status. 
We believe that further development of this method could facilitate applications of steady-
state diffuse reflectance spectroscopy on noninvasive interrogation of superficial stratified 
tissues for various clinical applications in the future. 
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