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Abstract: We explore the development and performance of algorithms
for hyperspectral diffuse optical tomography (DOT) for which data from
hundreds of wavelengths are collected and used to determine the concen-
tration distribution of chromophores in the medium under investigation.
An efficient method is detailed for forming the images using iterative
algorithms applied to a linearized Born approximation model assuming
the scattering coefficient is spatially constant and known. The L-surface
framework is employed to select optimal regularization parameters for the
inverse problem. We report image reconstructions using 126 wavelengths
with estimation error in simulations as low as 0.05 and mean square error
of experimental data of 0.18 and 0.29 for ink and dye concentrations,
respectively, an improvement over reconstructions using fewer specifically
chosen wavelengths.
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1. Introduction

Over the past 15 years diffuse optical tomography (DOT) has received considerable attention as
a functional imaging modality for a number of application areas including breast tumour detec-
tion and characterization [1–3] and brain imaging [4, 5]. While initial work with DOT focused
on the recovery of space and time varying maps of the optical absorption and scattering proper-
ties of tissue [6], by moving to instruments in which the medium is probed with multiple wave-
lengths of light, recent systems have demonstrated the ability to recover more physiologically-
relevant parameters; specifically chromophore concentrations of species including oxygenated
and deoxygenated hemoglobin, lipids, and water [7–10]. Although these efforts represent im-
portant advances for moving DOT from the lab to the clinic, there still remains a variety of
challenges in terms of stably and accurately characterizing the distribution of chromophores.

As is well known, the recovery of chromophore concentrations from DOT data requires the
solution of an ill-posed, non-linear inverse problem [3]. Roughly speaking, the physics associ-
ated with the interaction of light and tissue coupled with the ability to collect limited quantities
of data result in an imaging problem that is sensitive to noise in the data and un-modelled phys-
ical processes. This sensitivity manifests itself in a number of ways. The reconstructed images
can be corrupted by various artifacts such as large amplitude, high frequency oscillations [7] or
negative values for quantities such as concentrations that are required to be positive valued [11].
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When reconstructing multiple chromophores, cross-talk artifacts can contaminate the various
images. Cross-talk arises when there are e.g., two chromophores distributed in spatially disjoint
areas, but the reconstruction shows evidence of both species in both regions.

The challenge of ill-posedness is typically addressed in two ways. By posing the image for-
mation problem in a variational context, various regularization techniques [12] can be used to
“discourage” the presence of artifacts in the reconstructed images [13–15] and enforce pos-
itivity of the recovered concentrations; however regularization does not explicitly address the
cross-talk problem. Additionally, much work has been devoted to increasing the quantity of data
available for processing by encircling the region to be imaged with sources and detectors [16]
and by collecting data at multiple wavelengths and modulation frequencies [8, 9].

Augmenting the data set however is not without its difficulties. In some breast and most brain
imaging applications, it is infeasible to place optical sources and detectors around the region
of interest and one is constrained to backscatter and/or transmission type geometries [6, 17].
The collection of additional data exacerbates a second fundamental difficulty associated with
DOT imaging: computational complexity. The nonlinear relationship between the observed data
and the chromophore concentrations requires the use of iterative methods for solving the re-
construction problem. These approaches are based on the underlying physical model of light
propagation through tissue. Because these models must be evaluated many times during each
iteration, as more types of data are acquired (multi-wavelength or multi-modulation frequency),
the computational burden of the algorithms quickly becomes a significant bottleneck. Largely
for this reason most multi-spectral systems collect data at fewer than ten wavelengths [8–10].

In this paper, we demonstrate the utility of hyperspectral diffuse optical tomography (Hy-
DOT) in which data from a great number of wavelengths (here up to 120) are employed to
recover concentration images of multiple chromophores. Of specific interest are problems in
which limited data are available for processing such as breast imaging where the breast is
placed between compression plates [17] or brain imaging where transmission data cannot even
be acquired. For concreteness, the examples in Section 6 focus on the breast imaging prob-
lem. In a typical DOT system three measurement schemes are used for measurements: time
domain, frequency domain, and continuous wave (cw). The cw method, used in this work, is
the simplest, least expensive, and provides the fastest data collection [17].

To address the computational burden associated with the need to model the physics on a
wavelength-by-wavelength basis, we employ the Born approximation. Although the limitations
of the Born model are well documented [18, 19] for the purposes of establishing the utility of
HyDOT, the Born model provides us with a convenient place to start. Indeed extending the effort
to consider the full physical model is relatively straightforward in theory though quite time
consuming in practice due mostly to the need to consider implementation challenges unrelated
to the fundamental issues of interest here; namely establishing the utility of a hyperspectral
data set for DOT. Moreover, the results in this paper indicate that such effort may not even be
necessary. Using experimental data, we demonstrate that the availability of hyperspectral data
in conjunction with a Born model can yield reconstructed chromophore concentrations that
are quantitatively quite accurate and with significantly reduced cross-talk relative to images
obtained using even well-chosen sets of roughly ten wavelengths.

In a bit more detail, the approach considered here is based on a variational formulation of
the image formation problem. The associate optimization functional is comprised of two terms:
one penalizing data misfit in which the Born model is embedded and second Tikhonov-type
smoothness regularization term. Because we regularize the smoothness in the reconstruction
of each chromophore independently, the weight of the penalty associated with each recovered
image must be determined. Here we describe a multi-parameter L-curve scheme for addressing
this issue [20]. To avoid constructing negative-valued concentrations, a positivity constraint is
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enforced. The resulting constrained cost function is known to possess a unique minimum which
should in theory make the reconstruction results independent of how we initialize the optimiza-
tion algorithm. In practice however, the results do depend on initialization. Indeed, though there
may not be local minima for the cost function, the ill-posedness of the problem appears to yield
an objective function that is rather flat in places thereby impeding rapid convergence of the
iterates. Hence, we also provide in this paper an approach to initialization that yields the results
mentioned above.

The remainder of this paper is structured as follows. In Section 2 we discuss the forward
problem for DOT and provide the derivation of the Born model used as the basis for our in-
version. The details of the inverse processing are provided in Section 3 where we specifically
concentrate on the variational formulation, our strategy for solving the associated optimization
problem. In Sections 4 and 5 detail methods used to judge results and for selecting regular-
ization parameters. Section 6 is devoted to presenting simulated and experimental validation
demonstrating image reconstruction showing improved accuracy and reduced cross-talk when
using hyperspectral information. Finally, conclusions and future efforts are provided in Sec-
tion 7.

2. Forward problem

In this paper we restrict our attention to problems in which the transport physics [2] associated
with the propagation of light at wavelength λ through tissue can be adequately approximated
using a diffusion model [21, 22] of the form

(
∇2 +

vμ0
a (r,λ )
D(λ )

)
Φ(r,λ ) =

−v
D(λ )

S(r,λ ) (1)

where Φ(r,λ ) is the photon fluence rate at position r due to light of wavelength λ injected
into the medium, v is the electromagnetic propagation velocity in the medium, μ0

a (r,λ ) is the
spatially varying absorption coefficient, and S(r,λ ) is the photon source with units of optical
energy per unit time per unit volume. For the work in this paper the sources are considered to
be delta sources in space and can be written as S(r,λ ) = S0(λ )δ (r− rs) with S0(λ ) the source
power. Lastly D(λ ) is the diffusion coefficient, given by D(λ ) = v/(3μ ′

s(λ )) where μ ′
s is the

reduced scattering coefficient. We assume that the reduced scattering coefficient is spatially
constant and known, and we focus solely on reconstructing the chromophore concentrations.
Though recent work has demonstrated the possibility of using cw data for the recovery of chro-
mophore concentrations and scattering parameters [10], for simplicity, here we concentrate
exclusively on the problem of recovering concentration information from hyperspectral data. It
should be noted that the first assumption of a known reduced scattering coefficient, and effects
associated with a wrong choice, can be addressed in practice by a preliminary measurement
of scattering properties of tissue. Such measurements of average tissue properties are well-
established with frequency-domain or time-domain techniques and do not constitute a basic
limitation to the proposed imaging approach. The second assumption of a uniform scattering
coefficient is also justified by a much larger contrast (both in terms of value and spectral shape)
typically provided by absorption versus scattering in a large number of cases (cancer, functional
activation, localized hemorrhage, etc.). However, this assumption can also be avoided by esti-
mating space varying scattering properties in addition to chromophore structure. In Section 7
we discuss our ongoing efforts in this area. Finally, we note that Eq. (1) is often written in
the frequency domain with a term jω/D(λ ) included in the parentheses on the left hand side
where ω is the modulation frequency of the light intensity [23]. Here we consider exclusively
problems for which ω = 0 so that the diffusion equation takes the form shown in Eq. (1).
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We consider an infinite medium problem. In medical imaging, measurements are typically
made by placing the source and detector on the tissue surface. Treating such system as infinite
will obviously lead to some discrepancies between theory and experiment. Considering that
wavefronts have the same general shape except near the boundaries and object sensitivity is
unaffected by the boundaries we only do reconstruction with no boundaries [24]. In Section 7
we briefly discuss alterations to our approach needed to deal with finite geometries.

The Born approximation is derived by decomposing μ0
a (r,λ ), as the sum of a constant back-

ground absorption, μa(λ ), and a spatially varying perturbation Δμa(r,λ ). Then Eq. (1) becomes

(
∇2 − vμa(λ )

D(λ )
− vΔμa(r,λ )

D(λ )

)
(Φi(r,λ )+Φs(r,λ )) =

−v
D(λ )

S(r,λ ). (2)

In Eq. (2) the total fluence rate, Φ(r,λ ) is written as the sum of the fluence rate Φi(r,λ ) due
to the source acting on the background medium and a scattered fluence rate, Φs(r,λ ), due
to the inhomogeneities. As explained more fully in Section 4, we assume the data we have
for inversion are in fact samples of Φs. To obtain a linear relationship between the scattered
fluence rate and the chromophore concentrations, we first need a linear mapping between the
perturbations to the material properties and Φs which is derived by subtracting Eq. (1) from
Eq. (2) giving

[∇2 + k2
0(λ )]Φs(r,λ ) =−Δk2(r,λ )Φ(r,λ ) (3)

where k2
0(λ ) =−vμa(λ )/D(λ ) and Δk2(r,λ ) = (v/D(λ ))Δμa(r,λ ). Assuming the availability

of a Green’s function, G(r,r′,λ ) for the operator ∇2 + k2
0(λ ) as is the case for an unbounded

medium as well as range of bounded problems [25], we rewrite Eq. (3) as

Φs(r,λ ) =
∫

G(r,r′,λ )Φ(r′,λ )Δk2(r′,λ )dr′. (4)

Unfortunately, the total field Φ(r,λ ) depends implicitly on Δk2 via Eq. (2) thereby resulting in
a nonlinear relationship between the scattered field and the absorption perturbation. The Born
linearization is achieved under the assumption that the total fluence rate, Φ, appearing in the
integrand of Eq. (4) can be approximated as the incident field, Φi, which satisfies

(
∇2 − vμa(λ )

D(λ )

)
Φi(r,λ ) =

−v
D(λ )

S(r,λ ) (5)

and thus is not dependent on Δk2. Replacing Φ(r,λ ) by Φi(r,λ ) and writing Δk2 = v/DΔμa in
Eq. (4) yields the Born model used in this paper which we write as

Φs(rd ,λ )≈ v
D(λ )

∫
G(rd ,r

′,λ )Φi(r′,rs,λ )Δμa(r′,λ )dr′. (6)

where rd is the location of the detector and (with a small abuse of notation) Φi(r,rs,λ ) is used
here to denote the incident field at position r and wavelength λ due to a delta-source located at
rs.

Equation (4) provides a linear relationship between the scattered fluence rate and the absorp-
tion perturbation. To relate the scattered fluence rate to concentrations of chromophores, Δμa is
decomposed as follows [17]

Δμa(r,λ ) =
Ns

∑
k=1

εk(λ )ck(r). (7)

where Ns is the number of absorbing species for the problem under investigation, εk(λ ) is the
extinction coefficient for the kth species at wavelength λ , and ck(r) is the concentration of
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species k at location r. To obtain the fully discrete form of the Born model used in Section 3,
we expand each ck(r)

ck(r) =
Nv

∑
j=1

ck, jϕ(r) (8)

where ck, j is the value of the concentration for species k in Vj, the jth “voxel”. The ϕ(r) function
is an indicator function where

ϕ(r) =

{
1, if r ∈ Vj

0, if r /∈ Vj.
(9)

After using Eq. (7) and Eq. (8) in Eq. (4) and performing some of algebra we obtain

Φs(rd ,λ ) = a
Nc

∑
k=1

Nv

∑
j=1

v
D(λ )

G(rd ,r j,λ )Φi(r j,rs,λ )εi(λ )ck, j. (10)

We approximate Eq. (4) as the value at the center of each pixel multiplied by the area or volume
of each pixel or voxel, so in Eq. (10) we use a as the area of a pixel. This setup is demonstrated
in Fig. 1(a).
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Fig. 1. (a) The setup of sources and detectors for simulation reconstructions. Same ori-
entation of axes is used for experimental data. (b) Molar extinction coefficients used in
simulations plotted as a function of wavelength.

The computational tractability of the inversion scheme we describe in Section 3 arises from
the linear algebraic structure associated with Eq. (10). We start by defining ck ∈R

Nv as the vec-
tor obtained by lexicographically ordering the unknown concentrations associated with the kth

chromophore and Φs(λ ) to be the vector of observed scattered fluence rate associated with all
source-detector pairs collecting data at wavelength λ . Now, with Nλ the number of wavelengths
used in a given experiment, Eq. (10) is written in matrix-vector notation as

⎡
⎢⎢⎢⎣

Φs(λ1)
Φs(λ2)

...
Φs(λNλ )

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

ε1(λ1)K1 ε2(λ1)K1 . . . εNc(λ1)K1

ε1(λ2)K2 ε2(λ2)K2 . . . εNc(λ2)K2
...

...
...

...
ε1(λNλ )KNλ ε2(λNλ )KNλ . . . εNc(λNλ )KNλ

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

c1

c2
...

cNc

⎤
⎥⎥⎥⎦⇔ Φs = Kc (11)

It should be noted in Eq. (11) that the matrix has elements which are also the matrices Kl . The
(m, j)th element of the Kl matrix is given by the product (v/D(λl))G(rm,r j,λl)Φi(r j,rm,λl),
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where m represents the mth source-detector pair and as before j represents the jth voxel. As-
suming that for a given experiment Nsd source detector pairs operate at all Nλ wavelengths,
then each Kl has Nsd rows and Nv columns so that the whole matrix K is of size NsdNλ ×NvNc.
If, for example, in an experimental setup where Nsd = 57, Nc = 2, and image reconstruction is
done for 1800 pixels, Nv = 1800, and Nλ = 126 results in a K matrix of size 7182×3600.

While for realistically sized problems, it is difficult to store the full K matrix in memory, the
processing methods developed in Section 3 require only the result of multiplying K or KT (the
transpose of K) by appropriately sized vectors. Hence, we need only compute and store the Nλ
matrices Kl as well as the Nλ ×Nc array of extinction coefficients. Then computation of the
product Kc can be carried out using the Matlab-like pseudo-code in Algorithm 1 with a similar
approach possible for evaluating KT Φs.

Algorithm 1 Matlab-like code for computing Kc product

for l = 1 to Nλ do
for k = 1 to Nc do

Φc = Φc + εk(λl)Kk;
end for
Φ = [Φ;Φc];

end for

3. Inverse problem

The image reconstruction method is cast as the solution to a non-negative least squares (NNLS)
optimization problem of the form

ĉ = argmin
c≥0

‖W(Φs −Kc)‖2
2 +‖Lc‖2

2 (12)

where for any vector x, ‖x‖2
2 ≡ xT x is the squared two-norm of x. The first term in Eq. (12)

requires that the reconstructed concentration images yield simulated data that are consistent
with the observations Φ. Following [2], the weight matrix W reflects the structure of the noise
corrupting the data. While a Poisson model is technically the most appropriate for DOT data, as
is frequently done [26] we employ a Gaussian approximation in which independent, zero mean
Gaussian noise is assumed to corrupt each datum. The reason for this is that with a sufficiently
large number of detected photons, the Poisson statistics can be approximated by a Gaussian
distribution [14]. Letting σ2

m denote the variance of the noise corrupting the mth elements of Φ,
W is constructed as a diagonal matrix with 1/σm the mth element along the diagonal. For the
experimental and simulated data the variance is calculated from

σ2
m = Ω(m)10−

SNRm
10 . (13)

where Ω(m) corresponds to the photon count for each source-detector pair. The SNR for each
element of Φ, is then calculated from

SNRm = 10log10(Ω(m)/
√

Ω(m)). (14)

In experimental data
√

Ω(m) is the standard deviation of the Poisson noise distribution.
The second term on the right hand side in Eq. (12) represents the regularization. As discussed

in the Introduction, in this work we use a smoothness-type regularizer in which the amount of
regularization is allowed to vary for each chromophore. Due to sensitivity of the reconstruction
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to the regularization parameters the optimal parameter for one chromophore is not necessarily
the optimal value for another. Separating the parameters for each chromophore allows the re-
construction to optimize it for each chromophore and easily include many different species of
chromophores. Given the structure of the vector c defined in Eq. (11), the regularization matrix
takes the form

L = D(ααα)⊗
[

∇x

∇y

]
(15)

where αααT = [α1 α2 . . . αNc ] is a vector of Nc regularization parameters, D(x) is a diagonal ma-
trix with the elements of the vector x on the main diagonal, ∇x and ∇y are matrices representing
first difference approximations to the gradient operators in the horizontal and vertical directions
respectively, and for matrices A and B, A⊗B is the Kronecker product [27] of A and B.

The NNLS problem is solved by using the lsqnonlin algorithm in MATLAB. This algorithm
uses a trust-region reflective algorithm that employs matrix-vector products instead of having
to compute the value of the sum of squares from Eq. (12) [28]. The K matrix is the Jacobian
matrix of the measurements used in our reconstruction scheme. This allows the algorithm to
interact with the matrix K only through the matrix vector products Kf and KTv, for various
vectors f and v. For the case of DOT NNLS becomes highly attractive for its computational
efficiency when compared to a direct solution of traditional least squares. This is due in part
to the fact that computing KTK can require large amounts of computational overhead. The
number of voxels in a given solution becomes somewhat limited by the necessity of solving the
system defined by KTK or some regularized version thereof. Because of the design of K when
the number of voxels increases, the size of KTK and the computation required for elimination
both increase much more rapidly than with NNLS [29].

As discussed in the introduction a good initial guess is important to obtain a good results. The
approach we use here is as follows. We start by solving Eq. (1) ignoring the positivity constraint
with lsqnonlin and using the the method discussed in Section 4 for determining the optimal
regularization parameters. Setting all negative values in the c vector to zero then provides the
initial guess for the constrained form of the problem. This initialization process allows us to
obtain good results from both simulation and experimental data. Like the unconstrained prob-
lem the constrained problem is solved with lsqnonlin and optimal regularization parameters are
chosen independently in each case.

4. Simulation analysis

Simulations are done to test the effect of hyperspectral information when doing reconstruction
of more than one chromophore in a controlled setting. In this paper we consider 2.5D problems
in which 3D delta-type sources are used to illuminate the medium but we assume the chro-
mophore concentrations vary only in two dimensions, x and y, and are constant in the third, z.
Referring to Eq. (10) and Eq. (11), this implies that the 3D Green’s function and incident field
are used to build the Ki matrices but we need only discretize each chromophore image in two
spatial dimensions. The reader is referred to [30, 31] for additional details.

For the infinite boundary problem considered in this paper we use the free-space Green’s
function which is [2]

G(r,r′,λ ) =
−1

4π | r− r′ |e
jk0(λ )|r−r′|. (16)

Putting this into Eq. (10) gives the following relation between measurement and absorption
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perturbation

Φs(rd ,rs,r j,λ ) = ∑
r j

−e jk0(λ )|rd−r j |

4π | rd − r j |
−e jk0(λ )|r j−rs|

4π | r j − rs |
v

D(λ )
Δμa(r j,λ ) (17)

=
v

16π2D(λ ) ∑
r j

e jk0(λ )(|rd−r j |+|r j−rs|)

| rd − r j || r j − rs | Δμa(r j,λ ). (18)

Then for each delta function source we calculate the incident field everywhere in the domain
using the Green’s function and then the scattered field present at each detector by Eq. (4). It is
assumed that μ ′

s follows Mie Scattering theory. A scattering prefactor Ψ depends primarily on
the number and size of scatterers, and a scattering exponent b depends on the size of scatterers
[32]. This is combined as:

μ ′
s = Ψ

( λ
λ0

)−b
. (19)

The arbitrarily chosen reference wavelength λ0 is introduced to achieve a form of the Mie
model where Ψ has the units of cm−1. In simulations values for Ψ and b are obtained from [33]
for the female breast. Values for μa is calculated from extinction coefficients, which are in the
units cm−1/mM and are obtained from Scott Prahl of the Oregon Medical Laser Center [34].
The concentration in the simulated images are defined in units of molarity or millimol per liter,
mM. The extinction coefficients are shown in Fig. 1(b). The background has HbR concentration
of 0.01 mM and HbO2 concentration of 0.01 mM. In each of the simulated images the target
concentrations have concentration of 0.02 mM.

The alignment of sources and detectors with respect to the simulated images is displayed in
Fig. 1(a). This arrangement of sources and detectors is chosen to represent a common setup in
optical mammography where the breast is compressed between two planes containing sources
and detectors [17]. The source-detector separations were set to 10 cm as is shown in Fig. 1(a).
This is a bit larger than is traditionally used in experimental setups, but the added distance
demonstrates the utility of the approach in generating high quality images. In experimental
measurements we use a shorter distance of 5 cm, discussed in Section 5. In simulations we
reconstruct concentration images of oxygenated and deoxygenated hemoglobin, HbO2 and HbR
respectively. These chromophores are chosen since they mainly cause absorption in breast tissue
[35], and breast cancer tumours have been found to have higher HbO2 and HbR concentrations
than normal tissue [36].

Two different sets of images are created to test the reconstruction. The first set is an image
with a concentration for HbO2 and HbR in separate locations. This is comparable to simulations
in [35] where separate locations for HbO2 and HbR are used to test effects of cross-talk. The
second set is more complicated with concentrations for HbO2 and HbR in the same location
with different target values. This image is more realistic where chromophore concentrations
are usually co-located. These images are shown in Fig. 5 and Fig. 7. Reconstruction is done
for these images to explore effects of adding hyperspectral information to the problem, i.e. the
improvement in quantitative accuracy and the reduction of crosstalk where a concentration of
one chromophore creates a false concentration in an image for another chromophore. The im-
ages are created to test the inverse solution with respect to spectral information, regularization,
cross-talk and accuracy. To avoid the “inverse crime” the data are generated using a 40 pixel by
40 pixel discretization of the x− y plane while reconstruction is performed on a 20×20 grid.

To best understand the utility of a hyperspectral data set, for the simulations we employ the
Born model to generate the data. Though this may not be realistic, it allows us to avoid the
confounding factor of model mismatch in evaluating HyDOT. Moreover, the shortcoming of
this approach are mitigated in Section 6.2 where we consider the processing of laboratory data
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which, obviously, is not the product of the Born model. In a bit more detail, the data we use for
our simulation analysis is computed as

Φ = K
[
c1

c2

]
+n (20)

where c1 and c2 are the simulated concentration images for HbO2 and HbR respectively on
the 40× 40 grid and n represents additive noise. Specifically, as in [2] n is a vector of zero
mean, independent Gaussian random variables with variances σ2

m, defined in Eq. (13), chosen
such that a pre-determined signal to noise ratio (SNR) is achieved. This SNR is calculated from
Eq. (14)

The reconstructed images are evaluated in three ways: through visual inspection, using mean
square error (MSE) as a measure of overall quantitative accuracy for each chromophore and
estimation error. For the kth chromophore the mean square error is computed by using the
following equation

MSEk =
‖ck − ĉk‖2

‖ck‖2
(21)

The estimation error is computed by

e = ‖c− ĉ‖2
2 (22)

This error is calculated when choosing optimal regularization parameters, discussed further in
Section 4.1.

4.1. Using gradient matrix and two parameters

The choice of the optimal regularization parameters is done by inspecting the L-hypersurface,
which are plotted in Fig. 6 for the concentrations images shown in Fig. 5 [20]. To construct the
L-hypersurface we introduce the following quantity

z(ααα) = ‖Φ−Kĉ(ααα)‖2
2 (23)

For a single constraint the L-hypersurface reduces to the conventional L-curve which is simply
a plot of the residual norm versus the norm of the regularized solution drawn in an appropriate
scale for a set of admissible regularization parameters. This allows us to optimize the regular-
ization to compromise between the minimization of these two quantities. For a hypersurface the
optimal regularization parameters then should appear where the curvature is greatest in the sur-
face, in other words in the corner of the surface. This corner in the hypersurface which should
correspond to a point where the error estimation is minimal. This curvature is computed as a
special case of Gaussian curvature [37] from

H =
rt− s2

w4 (24)

where we have
w2 = 1+p2 +q2.

In Eq. (24) each element is a partial derivative of the surface which we write as

p = ∂z
∂α1

, q = ∂z
∂α2

, r = ∂ 2z
∂α2

1
, t = ∂ 2z

∂α2
2
, s = ∂ 2z

∂α1∂α2

Because we know the ground truth for these simulations, it is possible to determine optimal
values (i.e., the one that minimized the mean square error) for α1 and α2. For a simple chro-
mophore concentrations like in the first set, choosing the regularization parameters is an easy
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problem. The reason for separating the regularization parameters in this case is that the MSE
for HbR reaches a lower value for a slightly different parameter than HbO2.

The importance of separating the regularization parameters becomes even more evident when
regularizing more complex concentration sets. When doing reconstruction for more compli-
cated sets the lowest MSE values for HbO2 and HbR occur at two very different values. For
this set the separation of the regularization parameters is very important. Using only one regu-
larization parameter in this set and more complicated ones, would result in a trade off between
reconstructions of chromophores. To reduce that trade off the separation of the chromophores
becomes very important. This separation becomes even more important when dealing with data
sets with low SNR values such as true measurement data.

5. Experimental analysis

In order to validate the simulation results, physical measurements were performed. The back-
ground medium is constructed using milk and water. Milk, with 2% fat, is used due to the
similarities of the optical properties to human skin. Similarly, black India ink and blue food
dye were used to represent two different chromophores. The ink and dye are mixed into the
background of milk and water to achieve μa = 0.029 cm−1, at 600 nm, which is in the range of
optical absorption of the female breast [38, 39].

The absorption spectra for the ink and dye inclusions have the most significant effect in
the 450-700 nm range, shown in Fig. 2. We chose these chromophores because the spectral
shapes of their absorption are similar to those of HbO2 and HbR and have been widely used
in literature [6, 50]. Therefore the 6 specifically chosen wavelengths were selected from this
region where these chromophores had the most significant absorption.
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Fig. 2. Absorption spectra of the ink and dye solutions chromophores used in experimental
measurements. Specifically chosen wavelengths are marked with an asterisk.

In order to obtain multi- and hyperspectral reconstruction values for μa and μ ′
s the back-

ground has to be known. Phase, amplitude and average intensity data are obtained at two wave-
lengths using a frequency-domain tissue spectrometer (OxiplexTS, ISS inc., Champaign, IL) to
estimate the Ψ and b parameters in Eq. (19) as Ψ = 6.5 cm−1 and b = 0.4. This allows us to
have values for μ ′

s at any wavelength [40]. Determining spectrally extrapolated values for the
absorption coefficient is harder. Since μa does not follow a law like μ ′

s, values are estimated
using extinction coefficient data for ink, dye, milk and water. These extinction coefficient are
measured in a standard spectrophotometer (Lambda 35, Perkin Elmer Instruments, Shelton,
CT).

Two phantom inclusions, named set 1 and set 2 are mixed for different absorption contrasts
relative to the background in the range of 3:1 to 1:1. The inclusion in set 1 contains 10%
ink and 90% dye and the inclusion for set 2 contains 70% dye and 30% ink. This range of
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Fig. 3. (a) Absorption spectra for the background, μa, and the inclusion, μa +Δμa, in ex-
perimental set 1, containing 10% ink and 90% dye. (b) Contrast between the background
and the inclusion for experimental set 1.

contrast is in the range of traditional tumour contrasts reported in literature, which have been
close to 3:1 and lower [41]. Reconstructions are done for 126 wavelengths equally spaced over
the whole spectrum and 6 specifically chosen wavelengths as λ = [480, 550, 610, 630, 650,
690] nm. The wavelengths are chosen around the isosbestic point, where the contrast between
the chromophores is the highest and where each chromophore has highest absorption. The
absorption spectra and the contrast over the spectrum for set 1 and set 2 are shown in Fig. 3 and
Fig. 4, respectively.
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Fig. 4. (a) Absorption spectra for the background, μa, and the inclusion, μa +Δμa, in ex-
perimental set 2, containing 70% ink and 30% dye. (b) Contrast between the background
and the inclusion for experimental set 2.

In experimental sets 1 and 2 one cylindrical inclusion containing ink and dye solutions are
placed in the background medium. These inclusions are 25 cm long transparent tubes so that
optical properties are assumed constant along the z-axis. The light source is an arc lamp (Model
No.6258, Oriel Instrument, Stratford, CT) whose emission is first spectrally filtered (400 -1000
nm) to reject ultraviolet and infrared light, and then focused onto a 3-mm-diameter illumina-
tion optical glass fiber bundle, which delivers light with an average illumination power of 280
mW, which translates into a power density of 3.96 W/cm2. A 5 mm diameter collection optical
glass fiber bundle is located at three positions, at x± 1 cm, on the opposite side of the inclu-
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sions (at a y-axis separation of 5 cm) and linearly scanned. Experiments are made with the light
source placed in succession at 8 positions with 1 cm increments for total of 24 source-detector
pairs. The collection optical fiber delivers light to a spectrograph (Model No. SP-150, Acton
Research Corp., Acton, MA), which disperses the light onto the detector array of a charge cou-
pled device (CCD) camera (Model No. DU420A-BR-DD, Andor Technology, South Windsor,
CT). Two exposure times are used for the CCD camera to ensure that approximately the same
number of photons are collected for reconstructions using 6 wavelengths and for 126 wave-
lengths. To this end, two exposure times were used, a longer one of 10 s for the 6 wavelength
case and 500 ms for the 126 wavelength case. Since the goal of this paper is to demonstrate
the improvement of including hyperspectral information we present an ideal case where the
signal to noise ratio is large, thereby providing a best-case scenario for the few-wavelength
reconstruction against which we compare our approach as well as using realistic absorption
contrasts for the inclusions. The spectrograph features a grating blazed at 700 nm with 350
g/mm, resulting in a dispersion of 20 nm/mm at the exit port. The size of the CCD camera
pixels of 26 μm×26 μm results in a spectral sampling rate of two data points per nanometer,
even though the spectral resolution is not as high because of the size of the entrance slit (2 mm)
used to accommodate the large collection optical fiber bundle. From the data we only retain the
wavelength band 650-900 nm where the signal-to-noise ratio is adequate.

In our experiment the incident field is a data set taken before the perturbation is put into
the medium. The scattered field is then computed as a dataset that has the original unperturbed
dataset subtracted from it. For in vivo measurements it is possible to use a priori structural
information from other modalities, e.g. MRI, to estimate the incident field by determining the
optical properties of the assumed piecewise constant chromophore distribution over these seg-
ments. This method has been employed in literature, as in [45]. In that paper the authors used
a very reduced order model to estimate the incident field and then imaged the perturbations
about that model. Some methods avoid estimating the incident field by processing measure-
ment data to generate relative changes measured by the detector. Barbour et. al. employ this
method by computing the temporal mean value of the readings from detectors to be used as
reference values [46]. If obtaining or estimating the incident field proves to challenging in a
practical setting the need to move to a nonlinear inverse model could prove itself useful even
though the computational intensity is higher than for a linear mode.

A comparison of the absolute concentrations, ĉi and relative concentration, ĉr
i to target values

is done to test the accuracy of the reconstructions. The relative concentrations for ink are cal-
culated as

ĉr
ink = ĉink/(ĉink + ĉdye) (25)

and similarly for dye [42, 43]. The relative concentration is calculated from the peak value in
each reconstruction. This allows us to inspect how well our approach manages to separate and
estimate each species of chromophores in the process.

To quantitatively analyse the localization of the reconstruction, we employ the Dice coeffi-
cient to judge how well the reconstruction locate the inclusion for the experimental measure-
ments [48,49]. If S is the reconstructed image and G is the ground truth created for each set the
Dice coefficient between S and G can be defined as

D(S,G) =
2|S∩G|
|S|+ |G| (26)

|S∩G| contains all pixels which both belong to the detected segment as well as the ground
truth segment, so if S and G are equal the Dice coefficient is equal to one, indicating an accu-
rate reconstruction.. To compute the D(S,G) the reconstructed images need to be converted to
binary maps, where reconstructed concentrations are denoted by 1’s. To do this we threshold
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our reconstructed images at 10% to 90% of the maximum value of each reconstructed image
and inspect D(S,G) for each threshold.

6. Results

6.1. Simulations

In Fig. 5 reconstruction results for the first set are shown for 6 wavelengths, λ = [660, 734, 760,
808, 826, 850] nm, which are optimally chosen according to [44] and also for hyperspectral
reconstruction using 126 wavelengths, which are equally spaced over the 650-900 nm range.
In simulations the SNR is set to 40 dB, as it is defined by Eq. (13) and (14). For the 6 wave-
length case the reconstruction of the HbR chromophore almost totally fails. The concentration
is diffused over the whole left half of the region not achieving a good localization. The recon-
struction for the HbO2 is somewhat better but the localization is again not successful. The size
of the reconstructed anomaly approaches the true shape but its actual location is off. The values
of the concentrations in both cases is underestimated by a significant amount. By employing
126 wavelength, equally spaced over the spectrum, the reconstruction successfully localizes the
concentrations and the estimate of the values is close to the ground truth, resulting in the MSE
values of 0.17 and 0.16 for HbO2 and HbR, respectively. It should be noted that crosstalk in
the 126 wavelength case is not noticeable generating a good estimation of the chromophore
concentration.

The optimal choice of regularization parameters is shown on the L-hypersurface in Fig. 6,
using 126 wavelengths, where it is evident that the best parameters used for the reconstruction
shown in Fig. 5 occur at a corner in the hypersurface where the estimation error is minimized.
The optimal values are α1 = 0.1045 and α2 = 0.101 resulting in a estimation error of 0.067.
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Fig. 5. Reconstruction for first set. Middle images are generated with 6 wavelengths and
rightmost images are done with 126 wavelengths. Upper row is for the HbO2 chromophore
and the lower for HbR. Concentration units are in mM.

For the second more complicated set reconstructions using 6 and 126 wavelengths are shown
in Fig. 7. When using 6 wavelengths the reconstruction is diffused and exact localization of the
concentrations is hard to achieve. Noticeably the concentration for the HbO2 is better defined
than for the HbR, where it is almost overshadowed by the concentration in the background.
Increasing the number of wavelengths to 126 the reconstruction is much more accurate, local-
izing the chromophore concentration to the correct areas and reach the target values resulting
in the MSE values of 0.17 and 0.07 for HbO2 and HbR, respectively.

The choice of optimal parameters, for the second set, is done in the same way as for the first
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Fig. 6. (a) L-hypersurface, defined by (23) plotted against regularization parameters. (b)
H curvature, defined by (24), computed for the L-hypersurface. (c) Error estimation sur-
face, defined by (22), plotted against regularization parameters. The optimal regularization
parameters are marked in each case with a red arrow.

set. In this more complex and realistic reconstruction the benefit to separating the regularization
parameters is clear. The optimal choice of parameters is in the corner of the hypersurface which
corresponds to a low estimation error. The optimal values are α1 = 0.14 and α2 = 0.37 resulting
in a estimation error of 0.05.
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Fig. 7. Reconstruction for second set. Middle images are generated with 6 wavelengths and
rightmost images are done with 126 wavelengths. Upper row is for the HbO2 chromophore
and the lower for HbR. Concentration units are in mM.

To emphasize the advantage of the hyperspectral information, the MSE error can be inspected
when different number of wavelengths are used in the reconstruction. In Table 1 the MSE is
shown as a function of wavelengths for different sets of equally spaced wavelengths, except in
the 6 wavelength case where they are optimally chosen according to [44]. In each case optimal
regularization parameters are used to obtain the best reconstruction. This shows that the ben-
efit of hyperspectral information is significant, even though the HbO2 species shows a small
decrease from using 63 wavelengths to 126 wavelengths the benefit for HbR is larger. This is
promising considering more complicated reconstruction schemes which have to take into ac-
count a higher number of chromophores. The Dice coefficients are shown for both simulation
sets in Figs. 8(a) and 8(b). The improvement is evident in both simulation sets, especially for
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Fig. 8. (a) Dice coefficients for the first simulation set as a function of threshold. (b) Dice
coefficients for the second simulation set as a function of threshold.

Table 1. MSE Compared to the Number of Wavelengths used in the Reconstructiona

(a) First simulation set

# λ MSE HbO2 MSE HbR

6 [44] 0.217 0.203
9 0.20 0.20
26 0.18 0.16
63 0.17 0.18
126 0.17 0.16

(b) Second simulation set

# λ MSE HbO2 MSE HbR

6 [44] 0.20 0.11
9 0.18 0.11
26 0.19 0.09
63 0.18 0.09
126 0.17 0.07

aIn each case the number of wavelengths are equally spaced over the spectrum, except in the 6 wavelength case
where they are optimally chosen according to [44].

the first set, where the multispectral reconstructed concentration were diffuse over the medium,.
Combined with the MSE results and the Dice coefficient, hyperspectral information shows sig-
nificant improvement over multispectral reconstructions.

6.2. Experimental validation

Reconstructions of absolute concentrations are shown in Fig. 10. In both cases the hyperspectral
reconstructions show better results than reconstructions using 6 wavelengths. The improvement
from using hyperspectral information is especially notable in the localization of the inclusions
where the reconstruction is diffuse for the 6 wavelength images. When the relative concentra-
tion values are compared in Table 2 in both cases the hyperspectral information estimates the
value more accurately, where the best estimation is highlighted in bold in the table. For ex-
perimental set 2 where the phantom contains 70% and 30% the MSE is 0.18 and 0.29 for ink
and dye respectively. For experimental set 1 the hyperspectral reconstruction shows significant
improvement both in terms of the quantitative accuracy of the recovered relative concentrations
and the localization of the objects as measured by the Dice coefficient. Examining values for the
Dice coefficient, shown in Fig. 9, it is evident that the inclusions are localized better when using
hyperspectral information. In experimental set 1 the localization of the Ink chromophore com-
pletely fails for the multispectral reconstruction, shown in Fig. 9(a), where the hyperspectral
information gives good results. It should be noted that the ink chromophore has an absorption
peak around 580 nm where experimental set 1 has a very low contrast, as is shown in Fig. 3(b).
This causes difficulty in recovering the concentration values. The reconstructions shown in
Fig. 10(a) and 10(c), show that the hyperspectral information results in a better reconstruction
although it is still significantly diffused.
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Fig. 9. (a) Dice coefficients for the first experimental set as a function of threshold. (b) Dice
coefficients for the second experimental set as a function of threshold.

Table 2. Comparison of ĉi and ĉr
i to Target Values for Experimental Resultsa

(a) Experimental set 1, 10% ink and 90% dye

Fig. # λ Species ĉi [%] ĉr
i [%] MSE

10a 6 Ink 1 4 0.64
10a 6 Dye 27 96 0.07
10c 126 Ink 17 16 0.62
10c 126 Dye 88 84 0.07

(b) Experimental set 2, 70% ink and 30% dye

Fig. # λ Species ĉi [%] ĉr
i [%] MSE

10b 6 Ink 56 82 0.18
10b 6 Dye 12 18 0.41
10d 126 Ink 65 61 0.18
10d 126 Dye 41 39 0.29

aBest performance is highlighted in bold.

7. Conclusion

We have shown through simulations and measurements that using hyperspectral information for
the DOT problem can greatly help in creating concentration images of multiple chromophores.
Not only can images be created simultaneously for many chromophores, including information
for tens or even hundreds of wavelength information results in increased accuracy in the image
and reduces cross-talk.

Optimizing the regularization parameter associated with the individual chromophores is an
important element to obtaining a good reconstruction. The effects of changing the regulariza-
tion constants were examined and chosen to get the best reconstruction. Together, these two
factors eliminate artifacts in the image and evoke interest in using this kind of technique for
physical measurements. Simulated reconstructions showed significant improvements of includ-
ing hyperspectral data along with the importance of using multiple regularization parameters
for each chromophore.

Physical measurements were also performed to demonstrate these advantages for actual
measurement data. Although exact values of concentrations were not achieved there is a no-
table improvement shown when using hyperspectral information. Additionally, improved lo-
calization of inclusions was observed for both sets when using hyperspectral information. This
is especially for experimental set 1 in Fig. 10(a) and Fig. 10(c). This emphasizes the advantage
of hyperspectral information when doing reconstructions for more than one chromophore.

In this paper we have demonstrated that the hyperspectral information improves reconstruc-
tions. One area of future work is to explore these gains in a more quantitative manner. Non-
linear forward models can be employed to improve quantitative accuracy, although this would
introduce computational issues. This could be addressed by recycling Krylov subspace informa-
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(a) 10% ink and 90% dye, 6 wavelengths used.
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(b) 70% ink and 30% dye, 6 wavelengths used.
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(c) 10% ink and 90% dye, 126 wavelengths used.
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(d) 70% ink and 30% dye, 126 wavelengths used.

Fig. 10. Reconstruction from both experimental sets, set 1 containing 10% ink and 90%
dye and set 2 70% ink and 30% dye.

tion for the most efficient solution [51]. Under the Born model at least, one way to accomplish
quantitative accuracy is through analysis of the singular value decomposition of the overall K
matrix as is done in [2]. There Gaudette used the singular value spectrum to quantify how the
addition of a second wavelength reduced the ill-posedness of the inverse problem. This method
could be considered for HyDOT although significant numerical challenges would need to be
overcome due to the size of the full hyperspectral K matrix as is discussed in Section 2.

The results are encouraging and demonstrate the potential of HyDOT for multiple chro-
mophore reconstruction. For future work we will also consider spatially varying scattering.
Imaging scattering has some challenges and it has been stated that the cw method lacks the
capability of separating absorption from scattering in the DOT image reconstruction [17, 44],
but it has been shown that preconditioning of data, regularization and use of multispectral in-
formation can separate absorption from scattering coefficient [16] and result in good image
reconstructions. We anticipate considering the use of a level set approach [47] to estimate the
chromophore concentrations as well as scattering properties.
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Performing hyperspectral reconstructions results in longer computational time, therefore it
would be interesting to optimize the code by moving from MATLAB code and implementing it
in a lower level language. This approach could take advantage of hardware acceleration(multi-
core or graphical processing units) to lower computational time. The use of hardware accelera-
tion has shown promise in literature [52, 53].

Additionally, implementing semi-infinite boundaries would be interesting to represent a more
realistic setting. The switch from infinite to semi-infinite boundaries should benefit our method
by generating more accurate reconstructions of different chromophores.
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