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ABSTRACT

We further investigated the statistical features of the
three classes of Escherlchia coligenes that have been
previously delineated by factorial correspondence
analysis and dynamic clustering methods. A phased
Markov model for a nucleotide sequence of each gene
class was developed and employed for gene predic-
tion using the GeneMark program. The protein-coding
region prediction accuracy was determined for class-
specific Markov models of different orders when the
programs implementing these models were applied to
gene sequences from the same or other classes. It is
shown that at least two training sets and two program
versions derived for different classes of E.coli genes
are necessary in order to achieve a high accuracy of
coding region prediction for uncharacterized
sequences. Some annotated E.coligenes from Class I
and Class Ill are shown to be spurious, whereas many
open reading frames (ORFs) that have not been
annotated in GenBank as genes are predicted to
encode proteins. The amino acid sequences of the
putative products of these ORFs initially did not show
similarity to already known proteins. However, con-
served regions have been Identified in several of them
by screening the latest entries in protein sequence
databases and applying methods for motif search,
while some other of these new genes have been
identified in independent experiments.

INTRODUCTION

Recent progress in Escherichia coli genome sequencing has made
possible a more precise characterization and classification of
E.coli genes and proteins (1-4). In 1991 Medigue and co-workers
explored the set of E.coli genes using factorial correspondence
analysis and dynamic clustering methods (5). This statistical
analysis suggested the division of E.coli gene sequences into
three classes that differ not only in the statistical but in the
biological sense as well. Class I genes, with intermediate codon

usage bias, maintain a low or intermediate level of expression,
although some genes may occasionally be expressed at a very
high level in environmentally triggered (rare) conditions. Class II
genes, which have a high codon usage bias, are highly expressed
under exponential growth conditions. Genes from Class IH, with
low codon usage bias, mainly belong to plasmids and insertion
sequences; this class also includes genes coding for fimbriae,
major pili, many membrane proteins, restriction endonucleases
and lambdoid phage lysogeny control proteins. Many Class III
genes can be expressed at a fairly high level, but their weakly
biased codon usage pattern does not reflect the proportions in the
distribution of E.coli tRNAs under exponential growth conditons
(5-8).
The results obtained by Medigue et al. (5) show that there is no

single variable, like codon adaptation index (9), that would
unambiguously indicate to which class a given E.coli gene
sequence belongs. At least two variables are necessary for this
purpose (see Fig. 1 in ref. 5).

In this work, we explore the statistical patterns existing in E.coli
gene sequences by incorporating gene classification into a
broader context of the gene identification problem (see ref. 10 for
review). We define a model ofa gene sequence foreach gene class
as an artificial nucleotide sequence with a specific oligonucleo-
tide composition generated by a phased inhomogeneous Markov
model.
When these models, together with homogeneous Markov

models for non-coding sequences, were used in the GeneMark
gene identification program, the accuracy of coding potential
prediction by GeneMark was high enough to identify several
'genes' annotated in GenBank as spurious and to predict a
number of new genes in unannotated sequences. These findings
explain the apparent high error rates previously observed with
GeneMark.

MATERIALS AND METHODS

Sequence data

For deriving gene class-specific Markov models, we used E.coli
DNA sequences of 812 genes from Class 1, 281 genes from Class
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II and 158 genes from Class IH (a total length of731 550, 232 431
and 102 003 nt, respectively) that had been defined by Medigue
et al. using clustering of the codon frequency vectors in a
61-dimensional space (11-13). The list of gene names and the
nucleotide sequences can be retrieved by anonymous FTP from
the directory /pub/genemark/ecoli3 at amber.biology.gatech.edu.
For testing the effects of various parameters of the program on

gene identification, the sequences were divided into sets of
non-overlapping fragments of identical length. As shown previ-
ously (14), the reasonable range ofwindow lengths for GeneMark
analysis is between 48 and 144 nt. The accuracy of discriminating
between coding and non-coding DNA fragments does not sharply
depend on their length; therefore we present here the results
obtained with 96 nt fragments (96 nt is the default window length
used in the GeneMark e-mail server (14). Three sets of
protein-coding 96 nt fragments, designated as Cod_i, i = 1,2,3
were compiled from gene sequences of the three classes.
A set of apparently non-coding regions was compiled from the

non-redundant E.coli sequence database EcoSeq6 (15) by
excluding annotated coding regions. All unannotated sequences
longer than 100 nt were pooled into a non-coding set, 359 279 nt
in length, and subsequently divided into two non-overlapping
data sets designated Set 1 (193 578 nt) and Set II (165 701 nt). The
sequences were assigned randomly to Set I or Set II; therefore,
statistical properties of these sets were assumed to be identical.
Similar to the protein-coding case, we compiled two sets of 96 nt
non-coding fragments designated NonCod_i, i = 1,2. Thus, the
samples of 96 nt fragments, Cod_i, i = 1,2,3 and NonCod_i, i =
1,2, used for testing GeneMark performance were derived from
three non-overlapping sets ofgenes and two non-overlapping sets
of non-coding regions employed for GeneMark training. The
accuracy of GeneMark program for various combinations of
training and testing sets was assessed (see results below).

The GeneMark method

The GeneMark algorithm has been described in detail previously
(14,16,17). The algorithm has been designed to distinguish
between three types ofDNA sequences, namely: (i) protein-coding
sequence (gene); (ii) non-coding sequence that is the complement
ofa coding sequence (gene shadow); or (iii) non-coding sequence
whose complement also is non-coding. Inhomogeneous, phased
Markov models are used to describe genes and gene shadows and
ordinary Markov models are used for non-coding sequences
(18-21). Given the sequence of a fragment S, an a posteriori
probability for S to belong to one of the above three categories is,
according to the Bayes theorem,

P(modellsequence) - P(sequencelmodel)P(model) 1
E P(sequencelmodel)P(model),

where P(model) is the a priori probability of one of the above
sequence categories. The formula (1) is used to determine the
probability values pi, i = 1,...,7, (1pi = 1) for S coding for a protein
in each of the six possible reading frames or for S being a
non-coding region (14). Ifone ofpi, i = 1,...,6 is >0.5, the fragment
S or its complement is identified as a protein-coding region in the
respective reading frame. If p7> 0.5 or if none of pi, i = 1,...,6 is
>0.5, S and its complement are predicted to be non-coding. Note
that the decision rule required that any one of the pj, i = 1,...,6 was
greater than the threshold, rather then some combination of these

or in complementary strands has so far been detected in E.coli
(16,17 and unpublished observations) and accordingly, Formula
1 treats events of protein coding in the six possible frames as
mutually exclusive.

Accuracy of gene prediction

The parameters of class-specific phased Markov models of
different orders (from 0-6) were determined for the three classes
of E.coli genes, as well as for the three respective sets of gene
shadows. The parameters of an ordinary Markov model for a
non-coding region (up to the sixth order) were determined from
the Set_1 of E.coli non-coding sequences.
A version ofthe GeneMarkprogram is defined by three models,

namely those for a gene, a gene shadow and a non-coding region;
in each case, three models of the same order were used. We
designate different GeneMark versions as GMd_ECOi, where d
refers to the order of the models, d = 0,1,2...,6 and i refers to the
gene class used for training. The accuracy of prediction as a
function of the model parameters was analyzed at a single step of
the algorithm dealing with an isolated DNA fragment of a given
length. The false negative error rates were determined for each
program version using control sets of true coding fragments
Cod_i, i = 1,2,3, which, therefore, include the set of fragments
derived from the original training set of genes. The error rate
obtained for such a 'pseudo-control' set gives a convenient
reference point. The false positive error rates were determined
using control sets of non-coding fragments NonCod.j, j = 1,2.
Upon evaluation of the performance of several program versions,
two versions, namely GM5_ECOl and GM4_ECO3, were
chosen and used to score known E.coli genes as well as
unannotated ORFs (>101 nt) found in intergenic regions.
The GeneMark score for a gene (or ORF) is computed as the

average value of a posteriori probabilities for each of the 96 nt
window covering the gene (ORF) sequence with a step of 12 nt.
This choice of scoring function was shown to be robust with
respect to variations in the step length. For the classifiers
GM5_ECO1 and GM4_ECO3, the score distributions were
obtained for known genes and apparently non-coding ORFs. The
score threshold for identifying an ORF as a gene was set at 0.4 for
each of these two classifiers (see below). If both scores are <0.4,
the ORF in question is identified as non-coding.

Database searches for sequence similarity

The ORFs identified by GeneMark were translated into proteins
and the resulting amino acid sequences were used to screen the
non-redundant protein and nucleotide databases at the National
Center for Biotechnology Information (NCBI, NIH) using the
programs BLASTP and TBLASTN, respectively (22,23). The
SEG program was used to filter the query sequences to remove
low complexity (compositionally biased) segments that produce
spurious results in database searches (24). The results produced
by theBLAST searches were screened for conserved motifs using
the programs BLA (25), CAP and MoST (26).

RESULTS AND DISCUSSION
False negative error rates: some gene models work for
another gene class better than for their own

Figure la-c shows the false negative rates for the GeneMark
versions trained on Class I, II and HI, respectively, as a function ofvalues, as no significant overlap between genes in the same strand
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Figure 1. False negative error rates produced by GeneMark programs derived from the three gene classes (in groups related to one and the same taining set). (a) The
error rates computed by GMd_ECOl programs of different Markov model orders d = 0,1,2,...,6. Three curves correspond to control sets Cod i, i = 1,2,3, representing
the three E.coli gene classes. The models derived from the Class I gene failed to recognize gene fragments from Class mII but work for Class LI genes even better than
for the initial training set. (b) As in a forGMd_ECO2 programs, d = 0,1,...5. The models derived from Class LI genes are good for identification of Class II genes only.
(c) As in a for GMd_ECO3 programs, d = 0,1,2,...,4. The programs using the Class III gene models of orders 2 and 3 are satisfactory predictors for genes from all
classes. Fragments of Class II genes are again predicted even better than fragments from the initial training set. (d) The false positive error rates computed by
GMd_ECOi programs, i = 1,2,3; d = 0,1,...,max(i), for control set NonCod_2. Three curves correspond to the three training sets of genes. These results are similar
to those obtained for fragments from the pseudo-control set NonCod_I (data not shown).

the Markov model order. Each program version was applied to
three control sets Cod_i, i = 1,2,3. Typically, the errorrate decreases
sharply when the model order increases from 0 to 2, after which it
continues to go down slowly. The lowest error rate usually
corresponds to the second highest model order as discussed below.
One may expect a model trained on a certain class of genes to

be most accurate when applied to a pseudo-control set that
contains objects from the original training set. However, the
program trained on Class I genes misidentified Class H gene
fragments in <4% of the cases for model orders 2-5; these rates

are lower than those obtained for the pseudo-control set (Fig. la).
This observation suggests that programs trained on Class I genes
can be used with equally high accuracy to identify both Class I
and II genes comprising almost all 'native' Ecoli genes. As
shown in Figure lathe GM5_ECO1 program correctly identifies
96% of the 96 nt sequence fragments from the 'native' E.coli
(Class I and Class II) genes.
The program versions trained on Class II genes failed to

identify gene fragments from Class III (Fig. lb). The fragments
from Class I genes were recognized poorly as well.
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If the program is trained on Class ml genes, then (for orders .3)
gene fragments from Class I are identified with about the same
accuracy as gene fragments from Class HI (pseudo-control set),
yielding 22 and 20% error rates for the orders 2 and 3, respectively
(Fig. Ic). The fragments from Class II are again recognized with a
better accuracy, namely with an error rate of only 15%, than
fragments from the pseudo-control set derived from Class HI genes.

Obviously, Class H gene fragments are easy targets for
identification by GeneMark program trained on any other set of
E.coli genes. The Class H genes, however, are not a good choice
for a training set for GeneMark (Fig. lb). In contrast, Class Im
genes are a difficult target for recognition by the programs trained
on other gene classes (the error rates are shown by the dashed
curves in Fig. la and b) but the program trained on Class III genes
performs satisfactorily for genes from other classes (Fig. lc).
Judging from Figure 1 (a-c), the lowest chance for a true E.coli

gene fragment to be identified as non-coding is when both
GM5_ECO1 and GM4_ECO3 are applied, which is indeed the
strategy used in the E.coli genome sequencing project (G.
Plunkett III, pers. comm.).
A noticeable increase in the error rate is observed in interclass

comparisons for the Markov model highest orders. This increase
relates to the difference in oligonucleotide composition between
different gene classes that is most pronounced for longer
oligonucleotides (i.e. higher order models).

It has to be indicated that the steady decrease of the error rate
observed for pseudo-control sets does not necessarily mean that the
models are getting better and better. For the highest model orders,
this tendency appear to be an artifact known as 'overfitting', which
is observed when a model is trained and tested at the same set of
objects. In such a case, the parameters (transition probabilities) that
are determined for the given taining set fit ideally the test objects
(sequences), while the model would not necessarily fit the objects
of the same class that were not included in the taining set. Indeed,
an independent analysis of the GeneMark accuracy using cross-
validation (J. Kleffe, K. Hermann and M.B., unpublished) has
shown that the accuracy of each GeneMark program, when it is
trained and tested on the same gene class, slowly deteriorates
starting from a certain Markov model order, namely, the fft order
for Class I and the fourth order for Class Hand Class HI. Obviously,
the larger the size of the training set the higher the Markov model
order that gives the best prediction accuracy.

Surprisingly, the programs of order 2, 3 and 4 trained on Class
III genes outperform the same order programs trained on Class II
genes for Cod_I test set (Fig. lb and c). This observation suggests
that the statistical pattern of the highly expressed Class II genes
that presumably have evolved from the homogeneous pool of
ancestral E.coli genes has less in common with 'native' Class I
gene sequences than the latter have with the pattern typical of
horizontally transferred Class Im genes. One may speculate that
in the course of evolution, the horizontally transferred Class Ill
genes have converged to the E.coli 'native' pattern, whereas Class
II sequences have diverged significantly from the ancestral
pattern due to the selection for the elevated level of expression.

False positive error rates. What is the actual false
positive rate?

As indicated in Materials and Methods, the set of non-coding
sequences was compiled from unannotated intergenic regions.

experimentally validated non-coding regions is needed to define
a reliable set for program training as well as for testing and
determining the false positive error rate. The difficulty with
compiling a sufficiently large set of such sequences prompted the
use of the poorly characterized set of unannotated regions which
serendipitously resulted in interesting findings.
As shown in Figure Id, the apparent false positive error rates

are quite high, from 10 to 24%, for each program version
regardless of the training set and the model order. The significant
observation is that, as shown in Figure 1 d, false positive error rate
computed for the programs trained on Class I sequences increases
with the increase of the model order from 0 to 2. This tendency
contrasts the decrease ofthe false negative rates observed with the
same programs (Fig. la-c). Such a decrease is expected since the
higher order models (but not the highest considered in the
experiment) should better describe statistical patterns of DNA
sequences and should produce lower error rates. This controversy
suggested a re-examination of the control sets of presumably
non-coding regions and subsequenfly evidence was obtained that
these sequences include unannotated protein-coding regions
(discussed below in more detail). The presence of unnoticed
coding regions may also explain the clear decrease in the false
positive error rates observed for the highest model orders (Fig.
ld). This decrease may be accounted for by the tendency of the
highest order programs to classify an increasing fraction of true
coding sequences which do not belong to the training set, as

non-coding (Fig. la-c). Thus, 'false positive' errors due to the
presence of unannotated coding sequences will be increasingly
suppressed by the high order models.
We attempted to evaluate the lower bound of the false positive

error rate under the assumption that all ORFs in unannotated
regions predicted by GeneMark as coding are true genes. In this
case, the predicted coding sequences should be excluded from
training and test sets ofnon-coding regions. When such a reduced
set of non-coding sequences was used, the false negative error

rates did not change noticeably, whereas the false positive rate
dropped down to 1% for the GM5_ECO1 program and to 5% for
the GM4_EC03 program (data not shown). In order to reliably
determine the actual false positive error rate, a systematic
experimental testing of the GeneMark predictions is required.

Prediction of complete protein coding regions in E.coli
DNA sequences

The results of the accuracy testing allowed us to choose the
GeneMark versions GM5_ECOl and GM4_EC03 as the two
complementary versions performing best for the whole set of the
E.coli sequence data. The above discussion pertains to a single
step ofthe algorithm. This case is rigorously tractable mathemati-
cally and the threshold of 0.5 is naturally used. For the case of the
sliding window technique, when GeneMark probability functions
are calculated at each step and their average (the GeneMark score)
is used for prediction, an adequate threshold has to be determined
from simulations.
Unannotated ORFs (longer than 101 nt) found in intergenic

regions were extracted from 461 non-overlapping contigs
comprising the EcoSeq6 database. Figure 2 shows that the
distribution of gene lengths and the distribution of lengths of
unannotated ORFs overlap significantly in the range from 100 to
450 nt. Thus, statistical analysis of ORFs in this length interval is

This approach obviously is imperfect as a robust set of particularly important.
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The GeneMark scores were calculated (see Materials and
Methods) for the complete genes from the three classes and for the
set of unannotated ORFs using the two programs mentioned
above. Inspection of the score distributions suggests the use of a
threshold of 0.4 to identify expressed ORFs. This threshold, if
GM5_ECO1 program is used, allows one to identify Class I and
Class II genes with false negative errors rates of 0.1 and 0.9%,
respectively. In contrast, this program has a high error rate in
identifying Class III genes: 44.6% (Fig. 3a). The program
GM4_EC03 has higher error rates for Class I and II genes (2.4
and 2.7%, respectively) but a much lower error rate of 11.9% for
Class Ill genes (Fig. 3b). When the two classifiers are used in
parallel, an ORF is considered as non-coding if both scores are
< 0.4. It can be shown, assuming that Class III genes constitute
1/5 ofE.coli genes, that the false negative rate of such a combined
strategy is not >3.1%.
The threshold of 0.4 resulted also in 10.1 and 11.3% false

positive error rates for GM5_ECO1 and GM4_EC03 trained
programs, respectively. These relatively high error rates triggered
a detailed analysis of unannotated ORFs in EcoSeq6 (29). About
350 of these ORFs had a score >0.4 with at least one of the two
chosen GeneMark versions. More than one half of these ORFs
showed significant sequence similarity to proteins present in
sequence databases and for many of these putative proteins, a
function could be predicted (16,17; see also 27,28).

Re-evaluation of gene and ORF annotation in GenBank

For 126 ORFs that have been identified as probable coding
regions using GeneMark, the initial sequence similarity searches
performed in January, 1994, have provided no support. However,
our latest analysis performed in January, 1995 indicated that
among these 126 predicted expressed ORFs, most of which were
relatively short partial gene sequences, 54 have already been
identified as putative genes by completion of the ORF sequence
and findings of indirect evidence for expression, for example
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Figure 3. Cumulative histograms of the GeneMark scores for each class of
genes and for unannotated ORFs. (a) The scores were computed by
GMSECO1 program. Three rising curves correspond to three gene classes.
The descending curve is the cumulative histogram for ORFs' scores (the
summation is made from right to left). (b) The same as in a with the exception
that the scores were computed by GM4_EC03 program.

significant ORF length and presence of ribosomal binding sites.
For another 14 ORFs, the function of predicted proteins has been
demonstrated experimentally; and eight predicted proteins
showed significant similarity to proteins that have been added to
the sequence databases lately (Table 1). Thus, 50 predicted new
genes are still awaiting validation and, given the apparent high
accuracy of the GeneMark prediction, they seem to be plausible
subjects for direct experimental analysis (Table 2).
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Table 1. Table 2.

FEGION TYPEOF GENETYPE BEST HIT/ CPDOO.HLU±8A OONSERVED F1CEDIEGSION TYPEOOF ENETYE REGIONI TYPEOF GENETYPE
ACESSION I SEGMENT/ PFEOTED PVALUE HIT/ MOTIF FUNCTION ACCESSION / 5B1EGMEN PRICTIED ACCESSION 6/ SEGMEor PREDICTED
SNIOSPFK)T CSIZE P VALUE 5eN5SPRO OFFSIE SWEVSPFROT ORFSIES
NAME (AA) NAME (AA) NIAME (AA)

pabREkdmA complete N G3B:M22078 none unknown
M28605/K02673 192 (K.ermgenee) end-act C F pal-lysT complete F
yens 1.10E-5O

X08035 04 X05796 250
endeerS C F GB_C9TRXIB4 YN02 YEAST ATP bonding ATPass invoooed In YraoYoF
X05017 00 (C.burnetti) (S.crevnioae) site'l DNA replcatSon;
YceJ 0.60E-23 8.20E-05 distantly related to DnaX agp..end complete N ppsA-.ydiA complete N

M33807 75 MOOl1O 74/frameshift
YocJ YIGO

hemnHybaC C/complete N GBOAFAGBO&0 UPSORAT lieane
D90590 59/319 (A.eutrophuel (Rattus sp.) end-ansB N prceond C N
Yb~C frameshif 1.70E-22 9.eoE-20 M34234 45 D500674 39/trameshift
emrnrIend C N GB:HSA07BO91P2 ?unknown o Yb

M86657116? ~~~~~~~~~~~~~~~~~~~ansElBeod C N priC-.apt complete N
YgeG 2.70Et11 M34234/M34277 05 D13058 116

rpoD-end C N SMAAACGIC nonon unknownYgNbN
J01687 32 (S.maemecenol cazS_calE complete F end..prC complete F
Yg5F Il1e9E-04 J01507/V01500 50 D13958 53

zwflend N F YNiJISEOnPE none unknown D10483/X73004 YSb4M
M55005 123 (C.pertrlrgensl YaaV
YewK frameshift 1.30E-13

end..cysC N N peeA-.kgtP complete
end-pyrF C N G3:SCU16783-1 GB:SCU16783-1 Zn finger DNA b0n00g M74586 e1 M58899/X53027 900
M23250 02 lS.nereoleael (Scerenisee) YgbE M
YdM 5.20E-04 5.20E-04

cysSJolD complete N purIEend C N
ybdD-ond C N GB9:CFU09771-3 none dehtydrogeneas X56234/X59293 173 M19657 g
X52904 01 (C.tnootdiil D10588 YSEF
YbHl 6.50E-04

endnArdA complete N YDBEKEDUL none unknown
K02672 150 (E.oo1i) cysS_folD C/complete N end-reoN C N
YfaL frameohlfi 8.600004 X00234/X09293 70/frameshlft Y00357 Be

end-ttdA N N YAPCJEOOL none HTH motO transcription D10580 YIlE
M16194 40 1E.coli1 regulator YSEJ
Ygie 1.00E-02 end-rdmL C N

dcmeand C N 015860 57
end-msyB complete F Y1D&ECDU nome unknown X13330 70 YdtdG
X50030 07 (E.coll) YsdJ
YceK 1.900E-02

dsd-ytdA complete F end-r4mL complete N
J1011603 71 X158B0 55
VOd YdcH

The Tag of the intergenic region where the predicted expressed ORF is located eedtjdoG N N snd ebmA N N
M75029 ~54 X54153 89

is assigned based on downstream or upstream gene names. If an intergenic YddG YOH

region is located at the 5' end of a EcoSeq6 contig, it is designated tepAjee complete N soB_tBopA complete N

end_Gene_namer (Gene-name is the name of the nearest annotated J020M 134Y5dN4755
downstrean gene). If an intergenic region is located at the 3' end of a EcoSeq6 trneond N N end_epeD C/complete N

contig, it is designated Gene name end (Gene_name is the name of the D13334 35/49 J0804/D28562 103/120

nearest annotated upstream gene). An ORF is predicted as expressed if at least tur_fidA complete F ep.F_kdE complete F

one of the scores, computed by GM5 ECOI program (Class I score) or by Mu92 4M645a

GM4.ECO3 program (Class III score), is >0.4. This highest score defines the
&-rA Ncmlt Wtr

type of the predicted gene, that is native (N) or 'foreign' (F). If both scores are M13449/U18655 41/OS M12114 102

>0.4, N is assigned if Class I score> Class III score and F is assigned if Class VOOYcF
III score > Class I score + 0.15. Otherwise, no class designation is assigned V028 42~Pet PX03891 9O,frmPsifte
(gray area). This is a simplified rule derived from the analysis of the distribu- YdM YewF
tions of scores computed for known native and foreign genes (M.B. and lepeod complete F yal8-queA Complete P
K.E.R. unpublished observations). The position in the putative new protein Yv y

(N-terminal, C-terminal or complete) and the number of residues are indi- knaA"pQ N/gxtension N end-ybaD N N

cated for amino acid sequence; extension indicates that predicted ORF has l0626826famsnAX835s
been extended due to the new sequence data with the first number showing OlaAgipO complete P eo&_ybhB N N
the initially predicted length and the second number showing the new total K02672 e8 .101038 38
length; the cases of apparent frameshift are noticed. The similarities were

leu_end N N end4yccA, N Nfound by screening the non-redundant protein sequence database as imple- 006331 85X0473
mented at NCBI in January 1995. Ybel YccK

1The conserved motifs comprising an ATP-binding site are predicted to be in eoc_narL C N ycfAjpln complete F
013360 112 001805 125

the N-termlinal portion of YcaJ, upstream of the segment for which the amino ydJp Ydt(
acid sequence is available. endonedA N N yct8.ond C/extension N

K02872 85 009307 58/231/lrameshlftt2The observed similarity is with a human cDNA which however, originates YW CMS
from a collection that is apparently heavily contaminated with bacterial

ednd opee Nedyd

sequences (31), therefore, the origin of this sequence remains uncertain. K02672 237/frameehlft 013330 130
The similarities were found by screening the non-redundant protein sequence YWYeS

sod-nrdA complete N end-yfiB C Fdatabase as implemented at NCBI in January 1995. K27 8faehf osa7
YWK YVON

ogteond C N ygf8..esr complete N
Y004O5 57 D00281 100

Thedistributio~~~nof Ge,neMark sconres for these 126 ORFs, -omAC-15 39
computed using the GM5_ECO1 and GM4_EC03 programs, is J153
shown in Figure 4. The 54 genes that already have been
completely sequenced and classified as coding for hypothetical The designations are as in Table 1.
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(a)

YciM'
YRE9_BACSU
SMS_ECOLI
Zn protein rat
SOL_DROME
consensus

47 RYRCQKCGFTAYTLYWHCPSC
7 KFICQSCGYESPKWMGKCPGC
8 AFVCNECGADYPRWQGQCSAC

543 REMCDVCDTTIFNLHWVCPRC
138 RWVCHACGTDNSSVTWHCLIC

... C . .. .. U.. C .C

P37572
P24554
S28499 PIR
P27398

(b)

HTH domain

YgiP'
YAFC_ECOLI
TDCA_ECOLI
YDHB_ECOLI
consensus

11 LQVLVEIVHSGSFSAAAATLGQTPAFVTKRI
8 LAIFVSVVESGSFSRAAEQLGQANSAVSRAV P30864

12 LVVFQEVIRSGSIGSAAKELGLTQPAVSKII P11036
7 LEVVDAVARNGSFSAAAQELHRVPSAVSYTV P37598

L.UU. ... UGSU .AA.L.. ...V U

Figure 5. Conserved amino acid sequence motifs in putative new proteins
predicted by GeneMark. The multiple alignment blocks containing the
conserved motifs were generated from BLASTP outputs using the CAP
program (26). The position of the first aligned residue in each protein sequence
is indicated by a number. The SWISS-PROT or PIR accession numbers are
shown in the rightmost column. (a) Zn finger motif in the putative protein
YciM'. The two conserved pairs of cysteines are highlighted by bold type; U

1.0 indicates a bulky hydrophobic residue. (b) Helix-turn-helix motif in theputative protein YgiP. Amino acid residues that are conserved in most of the
HTH proteins are shown by bold type.

Figure 4. Distribution of GeneMark scores for 126 new genes. The x axis
represents the score computed by GM5_ECO1 program, y axis represents the
score computed by GM4_EC03 program. The quadrant x < 0.4, y < 0.4 is
empty since a threshold of 0.4 was applied.

proteins, the eight genes whose existence has been corroborated
by sequence similarity and those 50 that remain to be confirmed,
are distributed uniformly in this plot. Thus it appears that there is
no significant difference in the statistical properties of these three
categories of sequences. Interestingly, of the 14 genes whose
products have been identified experimentally, 13 have scores
>0.4 with both programs. Perhaps this clustering may be due to
the correlation between GeneMark scores and the expression
level which is reflected in our observation that Class II genes have
high scores with programs trained on both Class I and Ill genes.
Obviously, the products ofhighly expressed genes are more likely
to be identified experimentally.

Putative new genes detected by both GeneMark and sequence
similarity searches. As discussed previously, combining coding
potential prediction methods such as GeneMark with sequence
similarity analysis provides an effective strategy for identification
of new bacterial genes (16,17). Predictably, in the sequence set
studied in this work, the fraction of new GeneMark predictions
that could be corroborated through sequence conservation was

low. Nevertheless, these cases included interesting new genes and
illustrated the problems arising when partial protein sequences

are used for database screening (Table 1).
As GeneMark typically identifies parts ofgene sequences coding

for relatively short protein fragments, the likelihood of detecting
statistically highly significant similarity to other proteins is
relatively low (17) and using a combination of straightforward
database screening with search for conserved motifs (25,26) is
particularly important. Two findings of putative new proteins with
highly conserved, functionally characterized motifs are illustrated

in Figure 5. In both of these cases, the sequence similarity detected
using BLAST was not striking (Table 1) but the finding that the
conserved regions in YciM' and YgiP contained a Zn finger motif
and a helix-turn-helix motif, respectively, still allows one to make
functional predictions. Both of these putative new proteins
probably are involved in the regulation of gene expression.
Prediction of a new Zn finger protein is of particular interest as
E.coli encodes only a few proteins of this class which is ubiquitous
in eukaryotes. Even though YciM' showed the highest similarity
to the E.coli protein Sms and its homolog from B.subtilis, the new
protein is likely to have a different domain organization as the
detected partial sequence is from the C-terminus of YciM', in
contrast to Sms which contains the Zn finger at its N-terminus (see
Fig. 8 in ref 29).

In some instances, when a partial sequence only shows similarity
to uncharacterized proteins from the database and the alignments
do not contain any conserved motifs, further rounds of database
search with the sequences selected at the initial step still allow one
to predict the function. This was the case of the putative protein
YcaJ' whose C-terminal part was similar to uncharacterized
putative proteins from Citrobacter and yeast (Table 1). An
additional database search with these sequences combined with the
identification ofconserved motifs resulted in a clear prediction that
YcaJ is an ATPase distantly related to the dnaX gene product and
possibly involved in DNA replication (data not shown).

Getting rid of 'very hypothetical' genes. Given the very low false
negative rate of GeneMark, we examined those E.coli genes that
scored unusually low with both GM5_ECOl and GM4_EC03
and whose products did not show similarity to other proteins. This
analysis revealed that six 'genes' from Class I are complementary
to other genes that have been biochemically characterized and
have been clearly identified by GeneMark, in contrast to their low
scoring complementary counterparts (Table 3). We believe that

0

ci0U

0.4 0.6
Class I score
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Figure 6. The GeneMark graph for the cyaA downstream region. (a) The plot produced by the GM5_ECO1 program as implemented at Georgia Tech E-mail server.

Four regions are indicated by gray bars: the 3' end of cyaA gene in the +3 frame (left); the cyaYin the -2 frame; the short ORF in the +3 frame; the 5' region of dapF
gene in the +3 frme (right). (b) The plot produced by the codon usage based algorithm suggested by Staden (30) and implemented in the DNASTAR software package.

this result indicates that these ORFs residing on complementary
strands are not genes.

Table 3.

Proteins encoded by spurious genes Proteins encoded by genes on complementary strand GenBank accession nos

VHP in dcm 3' region DNA-cytosine methyltransferase X13330

VHP 13.8 kDa in phn operon phnP protein D90227

VHP 12.5 kDa in phn operon Phosphate transort ATP-binding protein D90227

VHP encoded by cysX Protein encoded by cysE U00039

HP encoded by cyaX HP encoded by cyaY X66782

HP FWD1566 HP encoded by yejD P33918

In particular, a spurious gene designated cyaX has appeared in
the E.coli genomic sequence containing cyaA and dapFgenes and
the intergenic region between them (1). There is an ORF located
in the -2 frame (cysY) and a longer overlapping ORF in the +3
frame (cysX) as shown in Figure 6a. Both ORFs have a codon
usage characteristic for E.coli genes, so it was not easy to
discriminate between these competitive ORFs by the method
based on codon usage (Fig. 6b). The longerORF initially has been
thought to be the actual gene and has been predicted to encode a

hydrophobic protein. However, the GM5_ECO1 program identi-
fied the expressed ORF in the -2 frame (Fig. 6a) with the score
of 0.90. The score by GM4_ECO3 is 0.72. The respective scores

for CyaX were 0.05 and 0.09. Strong evidence has been obtained
later to support this prediction. First, the sequence comparison
with several enterobacterial counterparts has shown that their
cyaX regions are interrupted by termination codons. Secondly,
experiments measuring expression of a fusion of lacZ gene with
the cyaA downstream region indicated that it is from the
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complementary strand that a gene, tentatively named cya]Y is
expressed. Finally, the putative cyaY protein had the same length
in Erwinia chrysanthemi and Yersinia intermedia, and in each of
these species included -70% identical amino acids with the E.coli
protein (P. Glaser, A. Roy and A. D., unpublished observations);
more distantly related putative proteins could be identified among
uncharacterized nucleotide sequences from Pasteurella haemo-
lytica and Pseudomonas aeruginosa (E. V. K., unpublished
observations).
Among Class III genes, there are 19 that had a score <0.4 with

both GM5_ECO1 and GM4_EC03. For 13 of these genes,
biochemical functions have been identified, and five others
belong to the HP and VHP categories. In this case, we cannot put
forward as strong doubts as for Class I genes since the score
calculated by the GM5_ECO1 program for Class III genes is
often below 0.4.

CONCLUSIONS
Our results show that there is no single training set which would
be suitable for efficient recognition by GeneMark method of all
E.coli genes. At least two training sets and two program versions
derived for different classes of E.coli genes are necessary.

Detection of Class III genes is most difficult. These genes can
be easily overlooked if inappropriate parameters for the gene-
predicting program are used. Class III genes are likely to be
recognized with an acceptable accuracy only by a program that
has been trained on a representative sample of genes from the
same class. This observation substantiates the conclusion by
Medigue and co-workers that Class III is mostly comprised of
genes that are exchanged horizontally (5). This class represents
a significant fraction of the E.coli chromosome, perhaps as much
as one fifth; at least some of these genes may undergo continuous
exchange with other microbial genomes.
This work logically extends our previous reports (16,17) by

demonstrating the complementarity of approaches to gene
identification by both DNA and protein sequence analysis.

Note

The protein sequences translated from ORFs listed in Tables 1 and
2 can be obtained by FTP from the directory:
/pub/genemark/ecoli3 at amber.biology.gatech.edu.

The programs GM5_ECO1 and GM4_EC03 can be used via
Georgia Tech e-mail server (genemark@ford.gatech.edu). The
program versions for B.subtilis, S.typhimurium, Kpneumonia,
M.tuberculosis, M. leprae, Mcapricolum and several other proka-
ryotic and eukaryotic species are accessible via this server as well.
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