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ABSTRACT

Motivation: Paired-end whole transcriptome sequencing provides
evidence for fusion transcripts. However, due to the repetitiveness of
the transcriptome, many reads have multiple high-quality mappings.
Previous methods to find gene fusions either ignored these reads or
required additional longer single reads. This can obscure up to 30%
of fusions and unnecessarily discards much of the data.
Results: We present a method for using paired-end reads to find
fusion transcripts without requiring unique mappings or additional
single read sequencing. Using simulated data and data from tumors
and cell lines, we show that our method can find fusions with
ambiguously mapping read pairs without generating numerous
spurious fusions from the many mapping locations.
Availability: A C++ and Python implementation of the method
demonstrated in this article is available at http://exon.ucsd.edu/
ShortFuse.
Contact: mckinsel@ucsd.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
The discovery of chimeric transcripts emerging from different and
potentially distant genes has introduced another layer of complexity
to the genome (Gingeras, 2009). Additionally, the importance of
fusion transcripts in the genesis and progression of cancer is
becoming increasingly apparent (Mitelman et al., 2004; Perner et al.,
2008; Yu et al., 2010a). Fusion transcripts may be the product
of trans-splicing, the joining of two different transcripts emerging
from distinct and often distant genes. This is especially common
among lower eukaryotes (Krause and Hirsh, 1987; Sutton and
Boothroyd, 1986) where trans-splicing is part of normal transcript
processing (Rajkovic et al., 1990). However, trans-splicing has also
been observed in higher eukaryotes, including humans (Horiuchi and
Aigaki, 2006). Additionally, fusions may be produced by adjacent
genes yielding a single, joined RNA product, creating a read-through
transcript (Akiva et al., 2006). Fusion transcripts can also result
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from genomic rearrangement that brings together two once distant
regions of the genome. Probably the best known example of this type
of fusion is BCR-ABL1, a product of a chromosomal translocation
(Shtivelman et al., 1985) found in many hematologic cancers and a
successful drug target (Druker et al., 2001). In addition, a growing
list of fusion genes are being found in both hematologic and
solid tumors that are the product of genomic lesions or trans-
splicing (Edwards, 2010). Thus, the study of fusion transcripts has
implications clinically as well for our basic understanding of the
genome.

The development of high-throughput sequencing methods such
as RNA-Seq (Wang et al., 2009) has offered an opportunity to
hasten a fuller characterization of the transcriptome (Carninci,
2009), including the identification of fusion transcripts. Maher et al.
(2009a, b) demonstrated the potential of the technology by applying
transcriptome sequencing to several tumors and cancer cell lines.
Using two different sequencing protocols, they were able to detect
known fusions such as TMPRSS2-ERG (Tomlins et al., 2005) in
a prostate cancer cell line and BCR-ABL1 in a leukemia cell line.
Additionally, they identified and experimentally confirmed multiple
previously unidentified fusions. Later, Berger et al. (2010) carried
out similar work on the melanoma transcriptome, finding 11 novel
fusions.

Alongside these biological discoveries has been the development
of computational tools and frameworks for the detection of fusion
transcripts from RNA-Seq data. Ameur et al. (2010) developed a
method for joining partial alignments of single RNA-Seq reads to
find splice junctions and gene fusions. Upon application of the
method to a public dataset, they found hundreds of examples of
transcripts that apparently spanned different chromosomes but were
doubtful that many were genuine fusion genes. Hu et al. (2010)
created a probabilistic method for aligning RNA-Seq read pairs that
uses expectation–maximization (EM) to find maximum-likelihood
alignments. They showed that paired-end reads better cover splice
junctions than single reads and that their method can reliably identify
splice junctions. Then, by augmenting their approach with long
single reads, they were able to identify 18 gene fusions in two cancer
cell lines.

Common to all of these efforts has been the requirement that a
fusion transcript be supported by reads that map uniquely to the
genome or transcriptome. Maher and colleagues required single
best-hit mappings to the genome or mapped short, 36 nt Illumina
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Fig. 1. A read pair that maps to a fusion between genes A1 and B1 may also
map to homologous genes, leading either to spurious fusion candidates or
the elimination of read pairs supporting a true fusion from consideration.

paired-end reads to sequences derived from ∼230 nt Roche 454
reads. Berger et al. (2010) required paired-end reads to map uniquely
and at least one end of a read to unambiguously map to a junction
between exons. Ameur et al. (2010) required each partial alignment
for each read to be unique. Hu et al. (2010) considered fusion
discovery with short paired-end reads infeasible and found putative
fusions with uniquely mapping 75 nt single reads. These strategies
highlight a key difficulty in the analysis of transcriptome sequencing
data: the transcriptome is filled with repetitive and similar sequences,
and many reads cannot be unambiguously mapped to a reference.
Some of the repetitiveness is attributable to known repeat families
such as the Alu repeat sequence, which can be found both in 5′-
and 3′-UTRs as well as occasionally in coding sequence (Yulug
et al., 1995). Additionally, many genes are part of gene families or
have paralogs or expressed pseudogenes and thus share sequence
homology with other parts of the transcriptome. Reads mapping to
these genes or regions of these genes will often map well to other
loci.

Ambiguously mapped reads are a concern for all transcriptome
sequencing analyses and have previously been addressed by
discarding them (Carninci et al., 2005) or by proportionately
allocating them over the different positions to which they
map (Faulkner et al., 2008; Mortazavi et al., 2008). However,
this issue becomes more prominent for gene fusions because
combinations of mappings are considered. Consider, for example, a
fusion between a pair of genes, A1 and B1. It is possible that a read
pair that maps to this fusion will also map to paralogs of each gene,
say A2 and B2. If all of these mappings were accepted as true, then
three spurious fusions would be called (Fig. 1). If the read pair was
discarded because of its ambiguous mappings, evidence for the true
fusion would be disregarded. As we detail below, our simulations
indicate that these ambiguously mapping reads are present in up to
30% of the possible gene fusions, underscoring the significance of
the problem.

In this article, we propose a method to discover fusion transcripts
that exploits ambiguously mapping RNA-Seq read pairs, does not
require additional long, 75 nt or greater, single read sequencing and
decreases the occurrence of mapping artifacts. We begin by mapping
read pairs to the transcriptome independently without imposing
any unique-mappability criterion. We then find pairs which do not
map to the same gene and build a set of possible gene fusions
from the mappings of each read. Next, we employ a generative
model of RNA-Seq data that utilizes mapping qualities and insert
size distributions to resolve any ambiguous mappings. After the

convergence of the EM technique used to find maximum-likelihood
transcript abundances, we perform a final partial expectation step
for the discordantly mapping read pairs to find optimal fusion
assignments for pairs that span fusion junctions. In this way, rather
than discarding ambiguously mapping read pairs or allowing them to
overstate the number of fusions present, we find the best supported
fusions by using the mappings of all the reads in the dataset, the
quality of those mappings and the implied insert sizes of read pairs
that span a fusion site. This allows our method to more sensitively
detect gene fusions than if ambiguously mapping read pairs were
discarded.

We have implemented our method on simulated data generated
from fusions between genes with very high similarity to other
genes to demonstrate that our method can resolve the ambiguous
mappings to find the correct fusions when it is possible to do
so. We then implemented it on reads derived from neoplastic and
hyperplastic prostate tissue and recovered the known TMPRSS2-
ERG fusion along with several read-through fusions without finding
many spurious, poorly supported fusions as a result of allowing reads
to have many mappings. Finally, using publicly available data from
several melanoma tumors and cell lines, we find fusion events that
would not be detectable without allowing for multimapping reads
that span the fusion site.

2 METHODS

2.1 Discovery of putative fusions
The first step of our method is to map each read of a pair independently.
We use Bowtie (Langmead et al., 2009) in single-end mode to perform this
mapping against a database of RefSeq transcripts (Pruitt et al., 2007) that
have been prepended with 50 nt of upstream sequence and appended with
string of adenines to account for variation in transcription start site and
polyadenylation, respectively. Filtering the mapping results yields a set of
read pairs that only map discordantly to different genes. Then, to decrease the
possibility of generating inauthentic fusions as a result of SNPs or mapping
or annotation errors, we map these discordant read pairs to the genome and
transcriptome, and we greatly relax the stringency of reported mappings and
allow for many mappings to be reported for each read. For the experiments
in this study, we use the Bowtie flags -l 22 -e 350 -y -a -m 5000. These
flags cause Bowtie to report all mappings for each read, to try as hard as
possible to find valid mappings and to suppress mappings with more than two
mismatches in the first 22 bases, summed quality values at all mismatched
positions greater than 350 or mappings from reads with more than 5000
reportable mappings. With these less stringent mappings, we check if each
pair of reads both map within the genomic bounds of a known gene or within
10 kb of each other in a region of the genome with no annotated genes. This
filtering step decreases the possibility of events such as retained introns or
unannotated transcripts being mistakenly called as gene fusions.

After these filtering steps, we consider each pair of genes to which at least
two read pairs map discordantly with fewer than three mismatches. Our aim is
to determine which exons from each gene should comprise a putative fusion
transcript. Combinations of exons are required to satisfy three conditions.
First, all exons upstream of the junction site in the upstream gene isoform
and all exons downstream of the junction site in the downstream gene isoform
must be included. Hence, in Figure 2 fusion 4, exon 4 from gene A could not
be included without also including exon 3. Second, all exons to which a read
maps must be included. For example, in Figure 2, exons 1 and 2 from gene
A must be included because reads map to them. Third, the implied insert size
of any read pair should not be unreasonably large given the known insert
size used for sequencing. For example, in Figure 2 fusion 4, the insert size of
read pair 3 implied by the inclusion of exons 3 and 4 from gene A may be too
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Fig. 2. Creating fusion genes from discordantly mapping mate pairs. Three
mate pairs map to two different gene isoforms. Fusions 1 and 2 include all
the exons in either isoform covered by reads. Fusions 3 and 4 also do, but
they are rejected because the implied insert size for Read 3 is too large.

large. To decrease the sensitivity of otherwise acceptable exon combinations
to occasional abnormally long insert sizes, we allow one-tenth of read pairs
to violate this third criterion. While there are certain types of fusions that
would not meet these criteria, say a fusion with multiple, similarly expressed
isoforms that vary near the fusion site, we find that these criteria effectively
eliminate many spurious fusions without losing sensitivity to bona fide ones.

Usually, there are multiple combinations of exons from each gene pair
that satisfy the above criteria. To enumerate them efficiently, we find every
pair of RefSeq isoforms from each gene pair that is supported by at least two
discordantly mapping read pairs. For each isoform pair, we build a directed
graph of their exon structures augmented with edges that connect each exon
in the upstream isoform to each exon in the downstream isoform (Fig. 3).
Then, we search for paths from the beginning of the upstream isoform to the
end of the downstream isoform by implementing a depth-limited search:

Algorithm DLS(node,path,reads)
Input: A node representing an exon, a path through the exon graph, and a

set of reads mapping to the exons.
Output: Paths through the exon graph that satisfy the above criteria.
1. if node is in downstream gene and not all reads marked open or closed
2. then return
3. if node is in upstream gene
4. then for read that maps to node
5. mark read as open
6. else for read that maps to node
7. mark read as closed
8. for read marked as open
9. add length of node’s exon to implied read insert
10. if (count of read pairs with insert> max_insert_size) > .1*(count of

reads)
11. then return
12. if node is sink node
13. then output path
14. else for neighbors of node
15. DLS(neighbor, path + node, reads)

DLS is initially called with the root node S, an empty path and the set
of discordantly mapping read pairs for the isoform pair. It then proceeds
through the graph in a depth-first fashion. At each node, it checks if there are
reads mapping to that node and opens or closes each read pair appropriately,
keeping track of the state of each pair independently. If a read maps to a splice
junction, the inner boundary of the mapping is used to determine the exon to
which it maps. When a read maps to an exon, only the appropriate portion

Fig. 3. To nominate potential fusion transcripts, we build a graph from the
exons of each gene isoform in the pair. By adding edges from the upstream
transcript to the downstream transcript, we find paths that account for all read
pairs mapped to the fusion and that respect an upper bound for the insert size
of the read pairs.

of the exon’s length is added to the implied insert size in line 9. The directed
edges of the graph ensure that the first criterion above is met. The second
and third criteria are ensured explicitly in lines 1 and 2 and lines 10 and 11,
respectively. Since the depth of any search path is limited, this procedure
can efficiently discover fusions that meet our desired criteria. In addition, to
better facilitate the detection of read-through transcripts, the 3′ exon of the
upstream gene and the 5′ exon of the downstream gene do not contribute to
the reads’ implied insert sizes. This follows from our observation that these
exons often appear truncated in read-through fusions. Finally, since different
isoforms of the same gene mostly contain the same exons, duplicate exon
sets can be generated by calling DLS on different isoforms. These duplicates
are removed before proceeding to the next step.

2.2 Mapping to augmented reference
After the set of putative fusions are generated, the sequence for each is
generated and added to the original set of transcripts from RefSeq. Then,
the read pairs are mapped to this augmented reference. Unlike the previous
mapping, Bowtie is used in paired-end mode and the default mapping
stringencies are used except that up to 1500 possible mappings for each
paired-end read are allowed. While the addition of the putative fusion
sequences may result in the addition of thousands of additional transcripts
to the reference, the total amount of sequence in the augmented reference
remains smaller than the genome, and the mapping can still be carried out
on a standard desktop computer. After mapping, we proceed, as discussed
below, to ranking fusions based on coverage.

2.3 Model of paired-end RNA-Seq data
We extend the generative model of Li et al. (2010) to develop a probabilistic
model for generating read pairs (Fig. 4). We reason that a read pair is
generated in four steps. First the transcript from which the pair will come,
tn, is chosen. Then the starting point for the upstream read, sn, within that
transcript is chosen; then the end point for the downstream read, en, is chosen.
Finally, errors are introduced and the final read pair is observed. As we only
observe reads, we can consider transcript choice, starting position, ending
position and read error to be hidden variables. The likelihood of a collection
of read pairs, and specific values of the hidden variables can be expressed
as a function of the true transcript nucleotide abundances:

P(R,T,S,E|θ)=
N∏

n=1

P(tn|θ)P(sn|tn)P(en|sn,tn)P(rn|en,sn,tn)

Each term in this equation can be calculated in a straightforward way. The
probability of a transcript t being chosen is the relative nucleotide abundance
of that transcript, that is, the fraction of all nucleotides that are part of that
transcript. Thus, P(tn|θ)=θt . Assuming that each base within a transcript is
equally likely to be the starting point of the upstream read, the probability
of a particular starting point is the inverse of the length of the transcript �t :
P(sn|tn)=�−1

t . The choice of the ending point depends on the distribution of
insert sizes used for sequencing and the starting point. We use d(|sn −en|) to
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Fig. 4. The graphical model of RNA-Seq read pairs. Transcript abundance,
transcript choice, starting position, ending position and observed read are
represented by θ, T, S, E and R, respectively.

indicate the value of the insert size distribution for the distance between the
start and end points, which we empirically determine from the read pairs that
map concordantly. Finally, the probability of a read being observed from a
given transcriptomic locus can be calculated using matches and mismatches
between the read sequence and the reference transcriptome and the quality
values of the bases in the read (Li et al., 2008). We denote this probability
as ε(rn,tn,sn,en).

To expand the probability distribution to N read pairs, we take the product
of values for individual reads.

P(R,T,S,E|θ)=
N∏

n=1

θt,n�
−1
t,n d(|sn −en|)ε(rn,tn,sn,en)

Finally, the probability of our observed variable, the read pairs, given the
transcript abundances can be calculated by summing over the values of the
hidden variables.

P(R|θ)=
N∏

n=1

∑

t′,s′,e′
θt′,n�−1

t′,nd(|s′n −e′n|)ε(rn,t′n,s′n,e′n)

We seek to find the set of transcript abundances, θ, that maximizes this
probability by applying EM to the results of the paired-end mapping to the
reference augmented with the putative fusions.

2.4 EM
For consistency, we use notation similar to that used by Li et al. (2010). Let
Znijk =1 if (tn,sn,en)= (i,j,k). Then, as the first step of the EM algorithm,
we find the expected values of Znijk given the observed reads and the current
estimate of θ.

EZ|R,θ(t) [Znijk]= θ
(t)
i �−1

i d(|j−k|)ε(n,i,j,k)
∑

i′,j′,k′θ
(t)
i′ �−1

i′ d(|j′−k′|)ε(n,i′,j′,k′)
Then, the E-step consists of calculating the log-likelihood weighted by these
values.

Q(θ|θ(t))=
∑

n,i,j,k

EZ|R,θ(t) [Znijk]log(θi�
−1
i d(|j−k|)ε(n,i,j,k))

The values for θ(t+1) are then found by finding the θ that maximizes this
function subject to the constraint

∑M
i=1θi =1 using Lagrange multipliers.

�=Q(θ|θ(t))+λ(
M∑

i=1

θi −1)

∂�

∂θi
=

∑

n,j,k

EZ|R,θ(t) [Znijk]
θi

+λ

Fig. 5. In this simplified situation, maximizing the likelihood function would
set the abundance of the fusion gene to 1 regardless of the relationship
between NA, NB and NF .

Equating all of these terms to zero, we have

θ
(t+1)
i =

∑
n,j,k EZ|R,θ(t) [Znijk]∑

n,i,j,k EZ|R,θ(t) [Znijk]

= 1

N

∑

n,j,k

EZ|R,θ(t) [Znijk]

This procedure is repeated until convergence. We make the probability
calculations tractable by only considering, for each read, the values of t, s
and e reported by short read mapping software and assuming the probability
of the read coming from any other position to be zero.

2.5 Calculating mappings to fusion junctions
After convergence of the EM algorithm, we have an estimate of the
maximum-likelihood abundances for each transcript, including all of the
putative fusion transcripts. These abundances reflect the resolution of read
mapping ambiguity, as demonstrated by the successful elimination of many
spurious fusions in the results below. However, they do not yet account for
potential unevenness of coverage across a given transcript. In particular, they
can be confounded by a fusion transcript with high coverage everywhere but
the fusion site. To illustrate this issue, consider the situation illustrated in
Figure 5. We have three reference transcripts: Gene A, Gene B and a fusion
gene created by concatenating Genes A and B. We also have three sets of read
pairs: NA pairs that map to Gene A and the fusion gene, NB pairs that map to
Gene B and the fusion gene and NF pairs that only map to the fusion gene. For
simplicity, assume that the values of ε(rn,tn,sn,en)=1 and d(|sn −en|)=1
for each mapping of each read pair and the length of both Genes A and B is 1.
Then, the probability of the observed data is

P(R|θ)= (θA + 1

2
θF )NA (θB + 1

2
θF )NB (

1

2
θF )NF

If we further assume that NA =NB and therefore θA =θB, and use the fact
that the sum of the transcript abundances must be 1, we have that θA = 1−θF

2 .
Then, the probability of the observed data becomes

P(R|θ)= (1)NA (1)NB (
1

2
θF )NF

This expression is maximized by setting θF to 1, which sets θA and θB

to zero. So, if there is a single read pair that spans the fusion site in this
scenario, all abundance is transferred to the fusion transcript regardless of
how large NA and NB may be in relation to NF . While this example has been
rather stringently defined for sake of demonstration, a similar situation occurs
whenever NF >0 and NA >>NF or NB >>NF : an unreasonable abundance is
assigned to the fusion transcript based on reads that do not map to the fusion
site. In the context of seeking fusions, this means a fusion between highly
expressed genes supported by a single read pair, perhaps an experimental
artifact, will dominate other putative fusions in abundance. To avoid this,
rather than simply using the maximum-likelihood abundances, we calculate
the sum of the expected values of Znijk for each fusion transcript i for read
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pairs that span the fusion junction to get a probabilistically weighted count
of reads supporting the fusion, Ci.

Ci =
∑

n,j,k

EZ|R,θ(final) [Znijk] for n ∈ pairs spanning junction

This retains the ambiguity resolution described above but focuses the
abundance estimates on fusions.

As a final filtering step to eliminate experimental artifacts, we find the
mean physical coverage, that is, the coverage counting both the reads and
the insert, for the upstream and downstream genes in the fusion separately
and compare each of them to the physical coverage at the fusion site. If
coverage at the fusion site is less than one-twentieth of the upstream and
downstream coverage, we discard the fusion as a probable artifact based on
the same reasoning discussed above. We also discard fusions where all reads
have the sequence of an RNA component of the spliceosome, U1 through
U6, as these are likely produced artifactually as well.

3 RESULTS

3.1 Fusion transcripts generate ambiguous reads
To quantify the prevalence of ambiguously mapping read pairs and
the extent to which discarding them would impact fusion discovery,
we simulated gene fusions by randomly selecting a pair of transcripts
from RefSeq and the exon within each transcript that would serve as
the fusion breakpoint. For each fusion, we generated, with random
errors based on quality scores from an existing dataset, the full set
of read pairs that could span it given a constant insert size. We
then mapped each of these reads and tabulated the number of read
pairs with unique mappings that satisfy default Bowtie mapping
criteria (Langmead et al., 2009). We repeated this for several read
lengths, generating 100 000 simulated fusions for each read length,
while keeping the insert between the two reads at 200 nt.

For each read length, we calculated the fraction of partially
ambiguous fusions and totally ambiguous fusions, that is, fusions
where some, but not all, of the reads supporting them mapped
ambiguously and fusions that only generated ambiguously mapping
read pairs. As expected, the fraction of ambiguous fusions declined
as read length increased. At a read length of 50 nt, nearly 1 in 20
fusions would only be detectable via ambiguously mapping read
pairs (Table 1, Supplementary Table S1). Even at a read length
of 100 nt, over a 10-th of all fusions were able to generate an
ambiguously mapping read pair. These results suggest that even as
read lengths increase, a significant portion of fusions remain difficult
to detect if read pairs are required to map unambiguously.

Table 1. The fraction of totally and partially ambiguous fusions for a range
of read lengths

Read length % Partially ambiguous % Totally ambiguous
fusions fusions

30 30.3 5.7
35 22.4 5.5
40 17.5 5.1
45 14.9 4.8
50 13.4 4.5
75 9.4 3.7
100 7.9 2.9

3.2 Resolving ambiguous simulated fusions
To demonstrate the capability of our method to find gene fusions
between highly repetitive regions of the transcriptome using
multimapping read pairs, we simulated five fusion genes, outlined
in Table 2, derived from possible fusions between genes that share
homology with other parts of the transcriptome. Then, 10 000 pairs
of 40 nt reads were generated from these five fusions using MAQ
(Li et al., 2008) in simulate mode with insert size set to 200 nt.
Sequencing errors and quality values were modeled from an existing
dataset, and the MAQ simulation code was modified to produce
a distribution of different expression levels for each transcript so
performance over a range of coverage levels could be examined.
As a comparison, the coverage levels used in the simulation would
correspond to a range of ∼8 FPKM for MAGED4-MBD3L2 to
80 FPKM for FOXO3-EIF3CL in a 20 M read pair sequencing
experiment. Thus, the simulated coverages provide a reasonable
range on which to evaluate the performance of our method.

Mapping the 10 000 read pairs to RefSeq transcripts yielded
395 pairs that mapped only discordantly. As expected, all these
discordantly mapping pairs mapped to multiple genomic loci and
thus suggested multiple fusion candidates. Each discordant read pair
is mapped, on average, to seven different pairs of genes, and in some
cases mapped to as many as 22. The total number of fusion genes that
would be nominated by naïvely accepting all discordant mappings
was 56 (Supplementary Table S2).

Applying the filtering and fusion discovery process described in
the Section 2.1 yielded 252 putative fusion transcripts. The high
number reflects both the multiple gene pairs to which the discordant
read pairs mapped and the multiple sets of exons from each gene
pair that could be consistent with the discordant mappings.

After allowing the estimate of the maximum-likelihood transcript
abundances to converge, only 12 of the 252 nominated fusion
transcripts had at least two read pairs assigned to its junction site.
Those 12 transcripts represent 7 potential fusion genes (Table 3). All
five of the fusions from which the data were generated are included in
the results. In addition, two spurious fusions are reported. The results
include a fusion between FOXO3 and EIF3C in addition to the true
fusion between FOXO3 and EIF3CL. However, this is not a failing of
the algorithm. The sequences of EIF3C and EIF3CL are very nearly
identical; depending on which isoform of each gene is considered,
they differ at most by several bases at the end of their 3′ exons. So,
every read that maps to the fusion of FOXO3 and EIF3CL also maps
to the fusion of FOXO3 and EIF3C. Rather than discard these reads,
the algorithm simply preserved this unresolvable uncertainty and
divided them between the two fusions according to values obtained
from the probabilistic model. Similarly, SMN1 and SMN2 are nearly
indistinguishable. Thus, using only ambiguously mapping read pairs,
our method recovered the five true fusions, eliminated 49 spurious

Table 2. Simulated fusions

Gene 1 Gene 2 Pair count Pairs spanning fusion

FOXO3 EIF3CL 7152 281
PSG2 PHB 1324 117
FRG1 USP6 803 47
SMN2 CSAG1 434 78
MAGED4 MBD3L2 286 34
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Table 3. Sum of expected values of Znijk for read pairs supporting each
fusion after maximum-likelihood transcript abundance estimation

Upstream partner Downstream partner Supporting read pairs

FOXO3 EIF3C 180.3
PSG2 PHB 117.0
FOXO3 EIF3CL 100.6
SMN1 CSAG1 56.6
FRG1 USP6 46.9
MAGED4 MBD3L2 34.0
SMN2 CSAG1 21.4

Table 4. Prostate neoplasia fusions with sum of expected Znijk values

Upstream partner Downstream partner Supporting read pairs

TMPRSS2 ERG 49.0
AZGP1 GJC3 28.0
TTY14 NCRNA00185 8.0
LOC728606 KCTD1 4.0
ZNF649 ZNF577 3.0
SMA4 GTF2H2B 2.5
LOC100134368 NME4 2.0
SYNJ2BP COX16 2.0
SMG5 PAQR6 2.0
PRKAA1 TTC33 2.0
LOC401588 CHST7 2.0
HARS2 ZMAT2 2.0
UQCRQ LEAP2 2.0
GRHL2 SNTG1 2.0
KLK4 KLKP1 2.0

ones and retained two fusions that are indistinguishable from true
fusions.

3.3 Application to a prostate tissue transcriptome data
We applied our method to two datasets derived from tissue resected
from an individual with prostate cancer. The first dataset consisted
of 18 027 834 pairs of 40 nt reads from neoplastic tissue. The second
was 21 978 463 read pairs from adjacent hyperplastic tissue. Of
the neoplasia read pairs, 18 177 had only discordant mappings
and mapped to 127 102 gene pairs. Of the hyperplasia read pairs,
24 569 had only discordant mappings and mapped to 266 571 gene
pairs. Application of the filtering and fusion discovery process
described above yielded 887 and 746 putative fusion transcripts for
neoplasia and hyperplasia, respectively. After estimating transcript
abundances, only 15 fusion transcripts from the neoplasia data had at
least two reads assigned to its junction site (Table 4). The top result,
a fusion between TMPRSS2 and ERG, is a known recurrent fusion
in prostate cancer (Tomlins et al., 2005). A novel fusion between
GRHL2 and SNTG1 was also reported. These genes lie about 50 Mb
apart on chromosome 8. Intriguingly, there is a short sequence shared
by both sequences at the site of the fusion (Supplementary Fig. S2),
potentially providing a clue to the origin of the chimera (Li et al.,
2009). The remaining results were read-through transcripts present
in existing EST databases (Benson et al., 2008).

Table 5. Prostate hyperplasia fusions with sums of expected Znijk values

Upstream partner Downstream partner Supporting read pairs

AZGP1 GJC3 54.0
SPINT2 C19orf33 6.8
RPL7 LOC100130301 3.0
TMEM203 C9orf75 3.0
DHRS1 RABGGTA 3.0
IRF6 C1orf74 2.0

In sharp contrast to the neoplasia results, the hyperplasia
data showed no evidence of a fusion between TMPRSS2 and
ERG (Table 5). This is consistent with the central role that the
TMPRSS2-ERG fusion is suspected to play in the progression of
prostate cancer (Yu et al., 2010b). Beyond this critical difference,
the results largely mirrored those from neoplasia. There was
one novel read-through transcript reported, RPL7-LOC100130301,
and multiple previously reported read-throughs: AZGP1-GJC3,
SPINT2-C19orf33, DHRS1-RABGGTA, TMEM203-C9orf75 and
IRF6-C1orf74. The large number of potential fusions suggested
by a naïve examination of discordant reads, over 100 000 in each
dataset, underscores the complexity of the transcriptome and the
often muddled nature of experimentally derived transcriptomic
sequencing data. We were gratified that our method was able to
discard nearly all of these inauthentic fusions while retaining those
of biological importance.

3.4 Discovery of novel ambiguous fusions
To demonstrate the ability of our method to make new discoveries,
we analyzed two publicly available datasets. The first was
transcriptome sequencing of a set of melanoma tumors and cell
lines originally published by Berger et al. (2010). The second
was sequencing of Stratagene’s Universal Human Reference RNA
(UHR), a reference composed of RNA from 10 cell lines originally
published by Bullard et al. (2010). Analysis of these data with
our method yielded numerous fusions, including all of the fusions
reported by Berger and numerous fusions known to be present in
UHR including BCR-ABL1, BCAS4-BCAS3 and GAS6-RASA3
(Supplementary Table S3). In addition, we found five fusion
transcripts where some or all of the read pairs mapping to them
also mapped to other potential fusions (Table 6). In each case, the
ambiguity was due to genomic duplications. Some reads mapping
to the MYH6 side of the HOMEZ-MYH6 fusion also mapped to
MYH6’s paralog, MYH7 (Fig. 6). The remaining ambiguous fusions
were due to recent segmental duplications. The fusion between
CPEB1 and RPS17 was clearly a read-through, but was confounded
by the presence of another copy of RPS17 in an upstream segmental
duplication (Fig. 7). KIAA1267-ARL17A was similarly made
ambiguous by multiple copies of ARL17. The fusions between
PPIP5K1-CATSPER2 and TRIM16L-FBXW10 were confounded
by mappings to CATSPER2P1 and TRIM16-CDRT1. The sequence
of each fusion is available in Supplementary Figure S3. These
findings confirm that additional fusions can be detected in tumors
when ambiguously mapping read pairs are included in the analysis.
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Table 6. Fusions found in previously published datasets that are either
partially or completely supported by ambiguously mapping read pairs

Fusion Samples Supporting read Ambiguous read
pairs pairs

HOMEZ-MYH6 UHR 3 2

KIAA1267- ARL17A
M000216 11 11
M010403 11 11
UHR 11 11

CPEB1-RPS17
M980409 3 3
MeWo 5 5

PPIP5K1- CATSPER2
M010403 4 3
M990802 17 13

TRIM16L-FBXW10 M010403 3 3

Fig. 6. The fusion between HOMEZ and MYH6. Three mate pairs support
this fusion, but two also map to a fusion between HOMEZ and MYH7.

Fig. 7. The fusion between CPEB1 and RPS17. A copy of RPS17 lies 2000
bases downstream of CPEB1, but another copy lies 400 kb downstream, as
well.

4 DISCUSSION
In this article, we have demonstrated a method to use discordantly
and often ambiguously mapping RNA-Seq read pairs to identify
fusion transcripts. In doing so, we bring the increasingly
sophisticated methods employed to estimate transcript abundance
in the presence of multimapping reads to the problem of fusion
discovery. In contrast to previously proposed methods for fusion
identification that focus on reads that map to the junction between
two genes (Ameur et al., 2010), our method estimates fusion
transcript abundances by considering physical coverage over the

entire length of the proposed fusion. In addition, it employs several
filters to minimize experimental artifacts. Finally, it does not require
that any single read sequence hit the point of fusion. Instead, it
uses implied insert sizes and known exon boundaries to determine
the most likely point of fusion. This would be a liability if a
fusion transcript contained partial exons, but reported fusions to date
suggest that a vast majority of fusions do indeed involve the joining
of whole exons from different genes, the breakpoints occurring in
introns and the splice sites remaining unchanged (Hahn et al., 2004).

Several avenues for future development are apparent from this
work. Here, we chose to use RefSeq transcripts as the reference
against which reads are mapped. This allowed us to avoid the issue
of reads that map to splice junctions because the splice junction
sequence would be contiguous in the transcript sequence. However,
it prevents us from identifying transcripts that are produced by novel
or aberrant splicing, which is common in cancer (Rajan et al., 2009),
or are significantly altered by RNA editing (Skarda et al., 2009). It
may be fruitful to combine the approach described here with methods
that identify splice junctions and expressed regions of the genome
de novo (Ameur et al., 2010; Trapnell et al., 2009). Additionally,
fusion transcript discovery shares many parallels with the problem
of resolving genomic rearrangements, especially the challenges of
repetitive sequence. The adaptation of the methods developed here
to genomic sequencing may prove useful in this related field.
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