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ABSTRACT

We have implemented aggregation and correlation toolbox (ACT), an
efficient, multifaceted toolbox for analyzing continuous signal and
discrete region tracks from high-throughput genomic experiments,
such as RNA-seq or ChIP-chip signal profiles from the ENCODE and
modENCODE projects, or lists of single nucleotide polymorphisms
from the 1000 genomes project. It is able to generate aggregate
profiles of a given track around a set of specified anchor points,
such as transcription start sites. It is also able to correlate related
tracks and analyze them for saturation–i.e. how much of a certain
feature is covered with each new succeeding experiment. The ACT
site contains downloadable code in a variety of formats, interactive
web servers (for use on small quantities of data), example datasets,
documentation and a gallery of outputs. Here, we explain the
components of the toolbox in more detail and apply them in various
contexts.
Availability: ACT is available at http://act.gersteinlab.org
Contact: pi@gersteinlab.org
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1 INTRODUCTION
There is now an abundance of genome-sized data from high-
throughput genomic experiments. For instance, there are ChIP-chip,
ChIP-seq and RNA-seq experiments from the ENCODE (ENCODE
Project Consortium, 2007) and modENCODE (modENCODE
consortium, 2009) projects. There are also genome sequence data
that can be used to generate tracks measuring sequence content,
such as the densities of single nucleotide polymorphisms (SNPs)
from dbSNP (Sharry et al., 2001) and the 1000 genomes project. In
most cases, the representations of these data take the form of either
signal tracks that describe a genomic landscape or distinct region
tracks that tag portions of the genome as active. The aggregation and
correlation toolbox (ACT) provides a powerful set of programs that
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can be applied to any experiments producing data in these formats.
The ability to analyze multiple genomic datasets is important, as
demonstrated by tools like Galaxy (Giardine et al., 2005). ACT
provides a unique set of functionality that complements existing
methods of analysis.

2 THE ACT TOOLBOX: OVERVIEW
ACT facilitates three main types of analysis:

Aggregation: in many scenarios, it is useful to determine the
distribution of signals in a signal track relative to certain genomic
anchors (Fig. 1, aggregation). For example, it has recently been
reported that the contribution of each transcription factor binding site
to tissue-specific gene expression depends on its position relative
to the transcription start site (TSS) (MacIssac et al., 2010). It is
thus useful to aggregate binding signals of transcription factors
at a certain distance from the TSSs of all genes (the anchors). In
general, this type of aggregation analyses helps identify proximity
correlations and functional relationships between the signals and
anchors. In the ENCODE pilot study (ENCODE Project Consortium,
2007), it has been used to demonstrate positional relationships
between chromatin features and TSSs.

Correlation: it is also useful to consider how multiple-related
signal tracks are correlated with each other. For example, a
previous study (Zhang et al., 2007) demonstrated, using whole-track
correlation methods, that there was a consistent relationship among
transcription factors as judged by their signal profiles across several
ChIP-chip experiments. By providing a means of correlating signal
tracks with each other,ACT allows for initial comparison of different
experiments to see which are more similar or related than others
(Fig. 1, correlation).

Saturation: another important type of analysis is determining
the number of experimental conditions required to achieve a high
genomic coverage of the biological phenomenon under study. For
example, using ChIP-chip or ChIP-seq experiments, one could
identify a set of transcription factor binding sites from a human cell
line. When the experiment is repeated using another cell line, some
additional binding sites could be identified. How many cell lines
need to be considered in order to reach the point of saturation, so
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Fig. 1. Uses of ACT using signal tracks from various sources. Signal around
all TSSs is aggregated to give an average signal profile, for example of
Baf155 binding around TSSs (Encode Project) (aggregation). Figure made
in Excel (correlation). Multiple signal tracks are correlated to show which
tracks are more or less related to each other. In the selected example, a
heatmap of the SNP track correlation between four individuals (dbSNP)
leads to a dendogram of their phylogenetic relationship. Figure made using
Web ACT. Each additional signal track increases the number of base pairs
covered (saturation). When the addition of signal tracks is considered in all
possible combinations, the average increase in coverage, with error bars,
can be visualized by a saturation plot. In the example, data are taken from
individuals from dbSNP [with additional genomes from Ahn et al. (2009),
Bentley et al. (2008), Drmanac et al. (2010), Kim et al. (2009)]. In each
box plot, the top and bottom pink bars correspond to the maximum and
minimum normal values, the top edge, middle line and bottom edge of the
box correspond to the top 25 percentile, median and bottom 25 percentile,
the black dot is the mean, and red circles are outliers. Figure made using
ACT downloadable saturation program.

that few new binding sites would be identified by extra experiments?
ACT produces plots that help answer this type of question.

3 DETAILS AND USE CASES
ACT is available as a suite of downloadable scripts corresponding
to the aggregation, correlation and saturation components of the
toolbox. The tool is intended for Linux/Unix users with Java and
Python. In addition, it is useful to have R for output visualization for
the aggregation and correlation tools. There is also a compendium of
other versions of the tool components written in different languages
and with varied functionality. For some types of analysis, there
are web components for demonstration purposes on small datasets
with built-in visualization features. However, because most whole-
genome signal tracks are too large to upload via standard Internet
connections, users are recommended to download the toolbox and
run it locally. As performing these calculations on whole-genome

data can be especially time intensive, the version of the tools
presented here has been designed to run efficiently on large datasets.

Aggregation: the aggregation component is designed to take a
signal track (.sgr or .wig) and an annotation track (.bed) as input,
and compute the average signal over a certain number of base
pairs upstream and downstream of (i.e. a fixed radius around)
the annotations. In other words, signal values are taken from the
region surrounding each annotation, and averaged over the number
of annotation anchors provided. The base pair resolution of the
aggregation can be specified by the number of bins (narrower bins
give more data points and therefore finer granularity). Results of
such calculation can be plotted as in Figure 1 (aggregation). ACT
also provides features such as computing the standard deviation,
median and quartiles that can be viewed as a boxplot, as well as
scaling aggregation over regions such as areas between transcription
start and end sites or within exons so that all of the aggregate signals
within those regions fall into a fixed number of bins. In this case,
bin size is dynamically computed for each region so that the same
number of bins cover regions of different sizes.

Correlation: the correlation analysis takes a set of active genomic
regions (.bed) such as a SNP track or a genomic signal track (.wig).
It then divides genomic coordinates into bins and gives each bin a
value corresponding to the mean or maximum signal values which
fall within the bin, or assigns value based on the number of ‘active
regions’ which fall within the bin. A final correlation matrix is
created based on either the Spearman’s, Pearson’s or normal score
correlation between each pair of binned datasets. The results can be
visualized as a heatmap or as a phylogenetic tree using programs
such as PHYLIP (Felsenstein, 1996). One version of the correlation
tool uses parallelization to decrease the pro-gram’s overall running
time. This component was written largely in Java. Examples of
correlation output based on SNP tracks and ChIP-chip data are
shown in Figure 1 (correlation).

Saturation: we provide an efficient implementation of saturation
plot generator. Each input file corresponds to one dataset (e.g. one
new individual, in .bed format), and each line in a file specifies a
genomic location that has the biological phenomenon under study
(e.g. tagged SNPs). The saturation plot shows, with each new dataset
(x-axis), what percentage of genomic base pairs are covered (y-axis).
The program considers the various combinations in which tracks can
be added so that the increase in base pair coverage is a range of values
based on all the files in the input. The resulting plot is output in PDF
format (Fig. 1, saturation), in which a series of boxplots depicts
increasing base pair coverage, where the boxplot at each position m
on the x-axis shows the coverage values of all combinations of m
conditions. Boxplots that approach a horizontal asymptote indicate
that the coverage has reached saturation. Our implementation makes
use of special data structures to avoid redundant counting. It
normally takes less than a minute to generate the plot for up to
30 input files each with a few thousand lines. To handle more files
and files with more lines, the tool also provides an option to compute
the coverage of a random sample of the input file combinations.

4 DISCUSSION
There are number of additional analyses that can be done to fine-
tune the output of ACT. For instance, it is possible to use the online
genomic signal aggregator (GSA), which assigns each genomic
position to the nearest anchor in order to reduce the artifacts caused
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by the subsets of anchors clustering together, to handle tightly
clustered anchors. Also, aggregation can be used in conjunction
with genome structure correction to determine if the enrichments
of a given signal with respect to anchor points are significantly
relative to the non-random positioning of the anchors (ENCODE
Project Consortium, 2007). This correction takes into account the
fact that a ‘random’ distribution of anchors on the genome arises
from a distinctly non-uniform distribution. Practically, this could be
carried out through ACT by comparing the aggregation over anchors
(e.g. TSSs) to that from ‘randomized anchors’, where the latter is
generated by shifting anchor coordinates along the chromosome or
transferring anchor coordinates from a second chromosome to the
one of interest.

Finally, ACT can be used as a starting point for other downstream
analyses. In the instance of RNA-seq data tracks, further analysis
can be conducted with RseqTools (Habegger et al., 2011) to, for
example, determine additional similarities between two or more
highly correlated tracks. The results of correlation analysis, for
instance, can also be fed into downstream principal component
analysis, allowing for grouping of coregulating factors with their
coregulated sites. This would simply involve diagonalization of the
output correlation matrix from ACT. Saturation analysis can also be
used to inform future experimental design.
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