
[11:55 5/4/2011 Bioinformatics-btr099.tex] Page: 1135 1135–1142

BIOINFORMATICS ORIGINAL PAPER Vol. 27 no. 8 2011, pages 1135–1142
doi:10.1093/bioinformatics/btr099

Systems biology Advance Access publication March 2, 2011

Connectedness of PPI network neighborhoods identifies
regulatory hub proteins
Andrew D. Fox1,∗, Benjamin J. Hescott1, Anselm C. Blumer1 and Donna K. Slonim1,2,∗
1Department of Computer Science, Tufts University, Medford, MA 02155 and 2Department of Pathology, Tufts
University School of Medicine, Boston, MA 02111, USA
Associate Editor: Burkhard Rost

ABSTRACT

Motivation: With the growing availability of high-throughput protein–
protein interaction (PPI) data, it has become possible to consider how
a protein’s local or global network characteristics predict its function.
Results: We introduce a graph-theoretic approach that identifies key
regulatory proteins in an organism by analyzing proteins’ local PPI
network structure. We apply the method to the yeast genome and
describe several properties of the resulting set of regulatory hubs.
Finally, we demonstrate how the identified hubs and putative target
gene sets can be used to identify causative, functional regulators of
differential gene expression linked to human disease.
Availability: Code is available at http://bcb.cs.tufts.edu/hubcomps.
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1 INTRODUCTION
The availability of high-throughput protein–protein interaction (PPI)
datasets (Giot et al., 2003; Ito et al., 2000; Lehner and Fraser,
2004; Li et al., 2004; Rual et al., 2005; Uetz et al., 2000) has led
to investigations into network structure (Goh et al., 2002; Jeong
et al., 2001; Wuchty, 2004). Although interactome data for most
experimental organisms is incomplete, initial analyses suggested
that interaction networks are typically scale free (Goh et al., 2002),
consisting of a relatively small fraction of highly connected ‘hubs’
and many nodes of low degree. This assumption has more recently
been called into question (Manna et al., 2009; Tsai et al., 2009), but
interest in the functional role of high-degree proteins persists.

In particular, many attempts have been made to infer function
from network structure (Jeong et al., 2001; Sharan et al., 2007;
Yu et al., 2007). One such approach is to characterize the relative
importance of hubs in protein interaction networks. Hubs have
been shown to be more likely than random proteins to be essential
(Jeong et al., 2001). Another approach relies on the notion of
‘betweenness’ (Girvan and Newman, 2002), which characterizes
nodes by how often they occur on the shortest path between
two other nodes in the graph. Bottlenecks identified in this way
are even more likely to be essential than their degree would
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suggest (Yu et al., 2007). Abstraction of global connectivity by the
formation of ‘guilds’ of genes has also been used to predict protein
function (Alterovitz and Ramoni, 2006).

Here, we propose using PPI data to identify sets of putative
regulatory proteins. To do so, we model noisy and incomplete PPI
data using a probablistic graph. We then assess the connectedness of
the graph neighborhood of each highly connected, or hub, protein,
and we compute the likely number of connected components in
that neighborhood. Specifically, we show that we can bound the
likelihood of disconnecting each PPI neighborhood, and that doing
so separates likely regulatory hubs from hubs that are merely highly
connected participants in protein complexes. Although our approach
could be applied to all proteins in the network, we choose to focus
on highly connected proteins so that the PPI neighborhoods are
sufficiently large.

Our work allows us to identify candidate regulators whose
interactions may determine responses to changing conditions or
environmental stimuli. Finding such ‘bifurcation points’ may
provide novel insights into the molecular mechanisms of cellular
behavior. However, unlike the work of Ernst et al. (2007), which
identifies bifurcation events from dynamic, time-series expression
data, our approach uses static protein interaction data to identify a
set of proteins that are key decision makers in a dynamic setting.

We also distinguish our work characterizing neighborhood
connectivity from the related notion of the clustering coefficient
(Watts and Strogatz, 1998), which measures the density of edges
in the network neighborhood of a node. While our measure deals
with similar data, we show that our focus on the structure of the
neighborhood produces different results. Our approach also differs
from that of measuring node ‘betweenness’ in that we rely only on
the immediate neighborhood of the candidate regulatory protein,
whereas the betweenness of a node may be heavily influenced by
the global structure of the network. In addition, our method includes
a probabilistic model of noise in the PPI data and identifies not only
regulators but also multiple candidate target sets for each. In this
way, our work is perhaps more akin to that of Kim et al. (2008), who
examine the functional characteristics of hubs with single versus
multiple binding interface sites. However, that approach relies on
the availability of structural information (Kim et al., 2006), whereas
ours uses only the protein interaction network.

In addition to providing general insights into functional network
analysis, our method is easily applied to the interpretation of
gene expression data. Analysis of microarray experiments typically
produces lists of differentially expressed genes (Slonim and
Yanai, 2009). Functional analyses of these lists are now standard
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procedure (Draghici, 2003), but they generally do not distinguish
between the molecular changes responsible for causing a disease
phenotype and those that are downstream consequences of the
phenotype. Here, we demonstrate how our identified hubs and their
putative target gene sets can be used to identify causative, functional
regulators of differential gene expression. Our work may therefore
provide new insights into the molecular causes of disease states and
may help in identifying new therapeutic targets.

2 METHODS

2.1 Definitions and intuition
We consider a probabilistic model of a PPI network that incorporates the
noisy and incomplete nature of the data. We represent the network as an
undirected weighted graph. The vertices of the graph are proteins and the
edges represent interactions between pairs of proteins. The weight of an edge
in the graph is the likelihood or probability of an interaction between the
pair of proteins connected by that edge. Interactions for which there is some
experimental evidence can be assigned a weight reflecting our confidence
in the interaction evidence. Edges not listed in any interaction database are
given low but non-zero weights in our model, representing the possibility
that their non-interaction is due to a false-negative result or that the pair was
simply never tested. Note that we do not incorporate directions of interactions
into our model, though we do address the directed nature of some PPI assays
in our data-filtering step, described below.

The degree of a protein is the number of interactions in the PPI network.
In the graph model, this is the number of edges connected to the vertex
representing that protein. We call a protein a hub if its degree is in the top
25% of all degrees in the network, excluding zero-degree nodes. Formally,
we represent a PPI network by an undirected weighted graph G= (V ,E,W ),
where the vertex set V represents the proteins, edge set E represents the
set of interactions between pairs of proteins, and edge weights W represent
confidence scores for each interaction.

For a particular protein x∈V , we define the PPI Neighborhood (or just
Neighborhood) of x, N(x), to be the subgraph of G whose vertex set consists
of all of x’s interaction neighbors and the edges in G between them. Formally,
N(x)= (Vx,Ex,Wx), where Vx ={v∈V |(x,v)∈E},Ex ={(v,v′)∈E|(x,v)∈E
and (x,v′)∈E}, and Wx are the weights on the edges in Ex . Note that the
neighborhood graph of a protein x does not include x itself.

The idea of our method is to look at the PPI neighborhood of each hub
in the yeast proteome, and to distinguish those whose neighborhood graphs
form a single connected component (single-component hubs) from those
whose neighborhood graphs disconnect into multiple connected components
(multi-component hubs). Figure 1 shows an example of a single-component
hub and a multi-component hub with two components. This approach
identifies a set of hubs in the PPI network (the multi-component set) that
appears to be enriched for molecular decision points governing cellular
response to changing conditions.

We could have simply considered the protein interaction graph to
be the set of all pairs of PPIs listed in any interaction database. This
would correspond to setting all the large edge weights to be 1 and
deleting the edges with weights near 0. In that case, finding the connected
components in each graph would be simple, but the resulting analysis
would not account for the noisy nature of PPI datasets. Under the
probabilistic model, our goal is to determine the expected number of
components in each neighborhood graph. This problem is equivalent to
finding the expected number of connected components in a random graph
in which each edge has a different edge probability, i.e.

∑
s∈P(E) W (s)∗

number of components in graph with edge set s, where P(E) is the power
set of E, and W (s) is the product of all the edge weights for the edges in s
and of 1− the edge weights for all edges in E\{s}.

Unfortunately, calculating the expectation exactly is not feasible for
large graphs. Instead, we propose an efficient method to find the most

Fig. 1. Neighborhoods (unshaded nodes) of two high-degree proteins
(shaded). (a) All of the hub’s neighbors are well connected to each other. (b)
A multi-component hub. The hub’s neighbors are grouped into two highly
connected components. This structure suggests the possibility that the two
groups of neighbors might be active under different conditions.

Fig. 2. A potential cut in a complete graph on four vertices, corresponding to
the partition {{a},{b,c,d}}. The probability of this partition is (1−w1)(1−
w2)(1−w3). Conversely, the probability that at least one edge crosses the
cut is 1−(1−w1)(1−w2)(1−w3). Since we are considering at least two
components, the probabilities w4,w5,w6 are not required for the calculation.

likely partitioning of the graph. This allows us to distinguish likely single-
component from likely multi-component hubs.

2.2 Calculating likely connected components
To discover the number of likely components, we begin by finding likely cuts
in the graph. We start with a complete graph, G, with edge weights between
0 and 1, with the weight of each edge reflecting the estimated probability
that the edge exists in the graph. A cut, Ci,j , in the graph is a partitioning of
the vertices into two disjoint sets Vi and Vj . We say that an edge in the graph
crosses the cut if it connects an element of Vi with an element of Vj . The set of
all edges crossing a cut Ci,j can be used to determine the probability that the
graph is composed of at least two components, Gi and Gj . (Here, Gi and Gj

are subgraphs restricted to vertices and edges on the set of vertices Vi and Vj ,
respectively.) Note that this differs slightly from the standard technique for
finding connected components in a graph, detailed by Hopcroft and Tarjan
(1971).

Figure 2 shows an example of a cut on a small graph. We define the cost
of the cut as the probability that no edge crosses the cut. For the example in
Figure 2, the cost is (1−w1)(1−w2)(1−w3). We use a recursive algorithm
to determine the number of likely components in a graph. Specifically,
we recursively partition G into two subgraphs Gi,Gj by finding the most
likely cuts. We terminate the recursion when the probability of the entire
partitioning is no longer greater than a threshold value 0< t <1.

We run the algorithm on every hub protein to determine the number of
likely components. First, we do so without recursion to identify the single
most likely partition. If the partition probability p> t, we assume the partition
occurs and begin recursing; if it is not, we stop and conclude that the
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neighborhood graph in question is more likely a single component. It is
this first step that separates hubs into single- and multi-component hubs.

For multi-component hubs, we continue the recursion until the total
partition probability is no longer greater than t. The resulting partitions
describe disjoint sets of genes that we hypothesize are likely to be regulated
by these multi-component hubs under different cellular conditions. In our
experiments, we choose the threshold t =0.5, which intuitively separates
those hubs whose neighborhoods are more likely to consist of multiple
components from those whose neighborhoods are more likely to contain
a single component. The results are relatively insensitive to varying this
parameter, as described in the Supplementary Material.

To find the most likely cut at each step, we use a minimum cut algorithm.
In order to use the standard algorithms, we need to perform a transformation
on the weights. This transformation is necessary as the graph edge weights
represent the probability that two nodes are connected. Hence, the edge
weights are not additive as in the standard formulation of the minimum cut
problem, but multiplicative. This is a similar transformation to that used by
Sharan et al. (2005) to find conserved protein complexes.

Let PE be the probability that some edge in the set E exists. For example,
consider a cut that has two edges e1 and e2, with weights w1 and w2. The
probability that there is some edge crossing the cut is P{e1,e2} =1−(1−
w1)(1−w2). For a set C containing arbitrarily many edges, this becomes:

PC =1−
∏

ei∈C

(1−wi) (1)

To make the probabilities additive, we apply a logarithmic edge weight
transformation to each edge in the original graph G, creating a new
graph G′ that adheres to the standard min-cut formalism. The edge weight
transformation is given by:

T (w)=−log(1−w) (2)

Because, in this domain, the minimum of the product of edge weights in G
corresponds to the minimum of the sum of edge weights in G′, the minimum
product cut in G′ is equivalent to the minimum cut in G. We can now use
any standard minimum cut algorithm on G′.

In this study, we use the algorithm of (Stoer and Wagner, 1997). We
chose this algorithm because it calculates the minimum graph cut directly
rather than computing max-flow residual graphs that are not required for
this partitioning problem. This direct min-cut computation is significantly
faster than other max-flow algorithms and the resulting speedup is especially
pronounced on the complete graphs that are the focus of this study.

2.3 Data selection, filtering and graph weighting
To test our approach, we downloaded PPIs in Saccharomyces cerevisiae
from the BioGRID (Stark et al., 2006), IntAct (Hermjakob et al., 2004) and
MINT (Zanzoni et al., 2002) online databases and combined them to form
a single large dataset containing 5328 proteins. To improve the reliability of
the data (Scholtens et al., 2008), we built a directed interaction graph for each
assay method, with directed edges (b,p) indicating the roles of each protein
as (b)ait or (p)rey where appropriate. We define the baitrank for a protein p
for assay type a as the fraction of proteins having (non-zero) out-degree less
than p’s out-degree for assay a. The preyrank is defined analogously on the
in-degree. If a given out-degree or in-degree is zero then the corresponding
baitrank or preyrank is undefined.

We determined that assay type a was inconsistent for protein p if both p’s
baitrank and preyrank were defined and |baitrank(p)−preyrank(p)|>0.1.
Under these conditions, we removed data from that assay type for protein p.
After this filtering, degrees were estimated naively from the remaining data.
Approximately 28% of the data were removed, reducing the dataset from
72 586 interactions to 52 471.

Next, we needed to choose weights for the PPI graph edges. Ideally,
edge weights would reflect our best estimates of the false-positive and false-
negative rates for the experimental data. Unfortunately, this too is a matter of
ongoing debate, with some authors arguing (D’haeseleer and Church, 2004;

Hart et al., 2006) for very high false-positive rates, and others claiming that
the false-positive rates are quite low for large subsets of the data, but that
false-negatives are more prevalent (Yu et al., 2008). Such a noise model could
potentially include a different probability for each experimental method and
source, stronger probabilities for edges derived from multiple independent
data sources, and a way of incorporating individual interaction confidence
scores, which are available in some, but not all, of our source databases.

For simplicity, however, we instead chose a relatively simple model that
incorporates the recent claims of Yu et al. (2008). We give weight we =0.9
to all PPI edges that survived our filtering process and weight wn =10−3

to all edges missing from the filtered dataset. A sensitivity analysis (see
Supplementary Material) on parameters we and wn shows that our algorithm
is only minimally sensitive to changes in these parameters, suggesting that
this simple noise model is sufficient for our purposes.

3 RESULTS AND DISCUSSION

3.1 Separation of single- and multi-component hubs
Running just a single pass of our algorithm on all yeast hub proteins
and plotting the most likely partition probabilities for each hub’s
neighborhood separates the hubs into two groups as shown in
Figure 3. The hubs on the right have neighborhood graphs that are
more likely to contain two or more components, while the hubs
on the left have neighborhood graphs that most likely contain just
a single component. We will test the hypothesis that these multi-
component hubs are regulatory hubs, meaning that they are more
likely to play a regulatory role or to represent functional decision
points for the cell. We also hypothesize that the single-component
hubs are more likely to be participants in large complexes without
necessarily playing a regulatory role.

Figure 4 shows a histogram of the total number of components
into which the neighborhood graphs are recursively partitioned
(before reaching a combined partition probability below 0.5). The
median component size is 4 and the average is 10.9. As expected,
most graphs contain only a small number of components—the
maximum observed number of components found was 8, and the
majority of multi-component hubs have only two components.
(The full list of these hubs and their components is available at
http://bcb.cs.tufts.edu/hubcomps/.)

Fig. 3. Histogram of first partition probabilities of yeast hubs’ network
neighborhoods. We find 430 hubs with partition probabilities ≥0.5,
suggesting that the PPI neighborhood of those proteins is likely to consist
of multiple connected components. The remaining hubs have a low partition
probability, so their neighborhood graphs are most likely connected.
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Fig. 4. Histogram of number of components in the hub network
neighborhoods. Multi-component hubs make up only about a third of the
total, and within that set, most neighborhoods have only a small number of
connected components.

3.2 A new class enriched for regulatory proteins
To test our hypothesis that multi-component hubs are more likely
to perform a regulatory role, we performed a functional analysis
looking for enrichment of Gene Ontology (GO) terms, using
the NCBI’s DAVID software (Dennis et al., 2003; Wang et al.,
2009). The multi-component hubs, when compared with the full
set of yeast hubs, were significantly enriched (Benjamini–Hochberg
adjusted P < 0.05) for multiple regulatory and decision-making
functions, including the GO Biological Process terms ‘response
to stimulus’, ‘cytoskeleton organization and biogenesis’, ‘response
to stress’, ‘regulation of cell cycle’, ‘anatomical structure
development’ and ‘cell communication’ among the top 20. (See
http://bcb.cs.tufts.edu/hubcomps/ for the full DAVID results.) In
contrast, the single-component hubs are not enriched for any GO
terms at the 0.05 threshold, but the top 20 hits [with significant EASE
P-values (Hosack et al., 2003)] include several terms related to
ribosomal function, ‘ribonucleoprotein complex’ and ‘protein–RNA
complex assembly’.

We compared this distinction to other known indicators of
function. First, we examined what fraction of the single-component
and multi-component hubs are known to be essential yeast genes
[from the Stanford Yeast Deletion Web pages (Winzeler et al.,
1999)]. We found that the single-component hubs were actually
more likely to be essential; the difference (381 of 902 versus 132 of
430) was statistically significant (P<6×10−5, Fisher’s exact test).
We next examined the intersection of our two sets with the class
of high-betweenness proteins (top 25% ‘bottlenecks’) described by
Yu et al. (2007). Bottleneck nodes are also defined with respect to
the graph theoretic properties of the interaction network, but their
identification depends on the structure of the entire network rather
than the strictly local neighborhood property that we consider. While
our multi-component hubs contain more bottlenecks (230 of 430
versus 405 of 902) and this difference is significant (P<5×10−3,
Fisher’s exact test), only about half (∼53%) of the multi-component
hubs fit the ‘bottleneck’ definition.

Furthermore, our multi-component hubs are not simply those
of highest degree. Specifically, the Pearson correlation between
the number of components and the hub degree is −0.11, and the
Spearman’s correlation is −0.25, suggesting that in fact there is a
slight trend toward the highest degree nodes being single-component

Fig. 5. Distribution of single-component and multi-component hubs with
regard to clustering coefficient of their neighborhood subgraph. Clustering
coefficient alone is unable to separate the two classes of hubs our algorithm
identifies.

hubs. A boxplot showing this trend appears as Supplementary
Figure S1.

We next compared our distinction to that of ‘party’ and ‘date’
hubs proposed by Han et al. (2004). A ‘party’ hub is one whose PPI
neighbors have expression patterns that are correlated with each
other across multiple conditions, while ‘date’ hubs’ neighbors have
less-correlated expression patterns. Of the limited number of hubs
originally classified in that paper, approximately equal fractions of
date hubs appeared among each of the single- (40 of 93) and multi-
component (14 of 34) hub groups, a difference that is not statistically
significant.

Another criterion that can be used to classify protein network
neighborhoods is the clustering coefficient (Guan et al., 2008; Tanay
et al., 2004). The clustering coefficient of a node (protein) is simply
the number of edges existing between neighbors of the node as a
proportion of the number of edges that could possibly exist (i.e. in
a complete graph).

While the clustering coefficient metric takes into account the
density of the network neighborhood, it does not capture the
important concept of separability that indicates a possible bifurcation
point. Figure 5 shows the clustering coefficients of the single-
and multi-component hub sets. While the small percentage of
hubs with the very highest clustering coefficients are single-
component hubs, the two distributions overlap to the extent
that it is impossible to classify the hubs as single- or multi-
component by their clustering coefficients alone. As an indication,
the maximum possible classification accuracy achievable using a
clustering coefficient threshold (CCT ) to putatively separate the two
classes is 73%. Varying the CCT in the range [0,1] gives a family of
classifiers which we analyze using receiver operating characteristic
(ROC) analysis. The area under the ROC curve (AUC) for this family
of classifiers is 0.76. For comparison, a perfect classifier has an
AUC =1.0 and a random classifier has an AUC =0.5.

3.3 Regulatory hubs implicated in gene expression
analysis

Next, we consider whether our approach might help in identifying
regulatory proteins controlling differential gene expression under
different conditions. The results from the previous sections suggest
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that the multi-component hubs may indeed be bifurcation points that
choose between different pathways.

One possible way to use this information in gene expression
analysis would be to identify a list of differentially expressed genes
and then refine it by focusing on just those genes whose protein
products are also multi-component hubs. However, even if a hub is
acting as a bifurcation point between alternative phenotypes, there
is no reason to expect to see differences at the transcriptional level.
Many other mechanisms, including phenotype-specific binding or
post-translational modifications, are at least as likely.

Therefore, we take an alternative approach. We assume only that a
regulatory hub’s neighbors from some affected component are likely
to demonstrate coherent differential expression patterns. Using this
method, we can infer which proteins are the regulators even when
they themselves do not exhibit differential expression.

We use our connected components to define multiple gene
sets associated with each regulatory hub. If there is indeed a
phenotypically relevant bifurcation point associated with that hub,
we would expect to see expression of the genes in one or more
of these gene sets exhibiting coherent changes correlated with
that phenotype. There are many computational methods currently
available for detecting coordinated expression changes in predefined
gene sets, even when the individual expression changes are relatively
subtle (Barry et al., 2005; Goeman et al., 2004; Kong et al.,
2006; Mansmann and Meister, 2005; Subramanian et al., 2005;
Tian et al., 2005). In this study, we choose to use the Gene Set
Enrichment Analysis (GSEA) software from the Broad Institute
(www.broad.mit.edu/gsea/) (Subramanian et al., 2005) to identify
coherent expression changes.

3.3.1 Yeast drug resistance To illustrate our approach, we
searched for publicly available gene expression datasets reflecting
yeast response to an external stimulus whose effects were somewhat
well understood by independent analyses. We found one such
example in a public data set (GEO dataset GSE7188) (Goebl et al.,
2007) describing yeast response to gentamicin, an antibiotic drug.
This work is related to a paper by the same authors (Wagner et al.,
2006) that assesses the effects of gentamicin on the survival and
growth rates of various yeast deletion strains. The availability of the
latter work provides independent corroboration of conclusions from
the gene expression study.

We therefore used GSEA to analyze differential expression
between the four gentamicin-treated yeast samples and their
untreated controls. We initially created gene sets for each of 1080
components identified in the neighborhoods of the 430 multi-
component hubs. Following suggestions by GSEA’s authors for
obtaining statistically significant results, we removed all gene sets
with fewer than 7 genes, leaving 304 gene sets. (For statistical
significance in GSEA, we required a gene-permutation-based FDR
below 0.05, because there were insufficiently many replicates in the
dataset to allow the use of phenotype permutation and a more relaxed
FDR cutoff.)

Gentamicin is known to be active in the cell’s ER and Golgi
apparatus, primarily killing target cells by interfering with bacterial
protein synthesis (Berg et al., 2002). Furthermore, it is thought to
cause structural damage to both the membrane-bound organelles
(e.g. mitochondria) and the Golgi apparatus (Takumida and Anniko,
1996) in some tissues, causing drug-related toxicity. Wagner et al.
(2006) showed that loss of vacuole protein sorting (VPS) proteins,

especially members of the HOPS or Golgi-associated retrograde
protein complexes, increases a strain’s gentamicin sensitivity.

Of the 32 proteins with neighboring connected components that
were significantly downregulated in the gentamicin-treated samples
(FDR < 0.05), 23 are ribosome related, including 9 ribosomal
proteins and 9 other proteins that are known to be required for
ribosome synthesis or function. In addition, this set includes three
proteins that are known to play a role in the DNA damage
response: CKA1, CDC28 and MEC3. No genes showed a significant
FDR-adjusted P-value for upregulation in the gentamicin-treated
samples. However, of eight genes whose neighborhood components
showed moderate upregulation (nominal P < 0.05), the three with
the strongest GSEA-normalized enrichment score included the
vacuole-related proteins VPS35 and DOA4/UBP4 as well as the
ER/golgi-related protein UBP3. UBP3 is known to play a role
in resistance to similar drugs [rapamycin (Kraft et al., 2008) and
bleomycin (Moore, 1980)], and VPS35 has genetic interactions with
proteins known to decrease gentamicin sensitivity (Stark et al.,
2006).

While these results suggest that proteins such as VPS35 may also
affect gentamicin sensitivity, the limited significance of these results
is due in part to the small number of samples available. However, few
yeast experiments feature large numbers of replicates of the same
strains and treatments. We hypothesize that, for interpreting human
clinical data featuring larger numbers of samples (which effectively
serve as replicates with the same clinical phenotype), this approach
might be more effective.

3.3.2 Human disease analysis We created a similar dataset using
human PPI data, following the same methods as the yeast dataset.
This resulted in a total of 775 multi-component hubs and 1478
single-component hubs. However, because the human interactome
is much less complete than that for yeast (Hart et al., 2006), the
majority of the components in this dataset turned out to be too small
for use in GSEA or other gene set methods.

One potential solution for the relative paucity of direct human
PPI data is to use interologs (Yu et al., 2004) to map PPIs from
other species to the human interactome. However, this approach
is known to have intrinsic limitations (Evlampiev and Isambert,
2008). In particular, the conservation of interologs even between
highly homologous sequences is known to be relatively low (Brown
and Jurisica, 2007), a fact that can be partly explained by divergent
evolution of paralogous genes and partly by the inherent limitations
of experimentally derived PPI data (assay noise and variation,
condition-specific interactions, etc.).

However, our previous work on degree conservation suggests
that individual PPIs are preferentially conserved between hub
proteins, beyond what would be expected due to simple sequence
conservation (Fox et al., 2009). Therefore, we augment the
human PPI data by adding interologs from model organisms
(Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila
melanogaster), but only those that are conserved with the highest
confidence. We picked degree thresholds for each of the three species
such that the probability of interaction conservation is at least 90%.

We then constructed a human interaction network from the
resulting combination of human experimental and high-confidence
interolog data. This dataset includes 2302 multi-component hubs
and 3406 single-component hubs, indicating that using orthology
to map PPIs to human from the higher coverage model organisms
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can improve protein-level coverage in the human interactome
significantly.

In a GO enrichment analysis of these sets, the set of
single-component hubs was most significantly enriched for the
terms ‘macromolecular complex’ (adjusted FDR < 10−11) and
‘protein complex’ (adjusted FDR < 10−7). The set of multi-
component hubs was significantly enriched (adjusted FDR < 0.05)
for a range of functions, including ‘regulation of transcription’,
‘regulation of metabolic process’, ‘ion binding’ and ‘nervous system
development’.

We applied the multi-component gene sets as above to analyze
data from three previously available gene expression experiments
(data included in the standard GSEA download) from diverse human
clinical contexts: peripheral blood and bone marrow samples from
patients with acute myeloid leukemia (AML) or acute lymphoblastic
leukemia (ALL) (Armstrong et al., 2002); smooth muscle from
individuals with type II diabetes compared with samples from
controls with normal glucose tolerance (Mootha et al., 2003);
and a range of cancer cell lines with either wild-type or mutant
forms of p53 (www.broadinstitute.org/gsea/datasets.jsp). For all
three of these analyses, we used the exploratory significance cutoff
(FDR < 0.25) suggested by the GSEA documentation for datasets
with at least seven samples for each phenotype (Subramanian et al.,
2005).

On the leukemia dataset, a target gene set of RBBP4 was the
most significantly downregulated in AML (FDR q-value of 0.15).
RBBP4, or retinoblastoma-binding protein 4, has previously been
shown to be differentially expressed in AML samples (Bradbury
et al., 2005; Casas et al., 2003). It is thought to play a role in
regulating cell morphology and ras activity (Scuto et al., 2007), and
it is has been demonstrated to promote tumerogenicity in thyroid
cancer cells (Pacifico et al., 2007). Histone deacetylase activity
of the RBBP4/HDAC1-containing MTA1 complex has additionally
been shown to result in patterns of transcriptional repression (Yao
and Yang, 2003) linked to carcinogenesis (Kim et al., 2003), and
many ongoing clinical trials are looking at the role of HDAC
inhibitors in treating AML (Shipley and Butera, 2009). Our results,
therefore, suggest that this regulatory protein may be implicated in
the pathogenesis of acute leukemias.

In the diabetes expression data, the most significantly
downregulated gene set (adjusted FDR of 0.13) in the diabetic
patients is a set of genes in the neighborhood of the
MafA transcription factor. MafA is one of the most important
transactivators of insulin gene expression (Kataoka et al., 2004)
and is known to bind the C1/RIPE3b1 activation element within
the insulin gene promoter region (Matsuoka et al., 2003; Olbrot
et al., 2002). The recent claim that MafA is a potentially important
therapeutic target for diabetes (Kaneto et al., 2005) is therefore
supported by our analysis.

Finally, we analyzed the P53-mutant expression data and found
that two genes, PIN1 and MPPE1, had target gene sets significantly
upregulated in the mutant samples. MPPE1 encodes a widely
expressed metallophosphoesterase involved in DNArepair (Vuoristo
and Ala-Kokko, 2001). Relatively little is currently known about this
gene’s functional role or links to disease. Although the precise role
of PIN1 is still hotly debated (Yeh and Means, 2007), it has been
reported to regulate and/or stabilize no fewer than 10 other key
proteins involved in cell cycle control and oncogenesis (including
P53, JUN and NF-κB) (Lu et al., 2009; Yeh and Means, 2007).

Elevated PIN1 expression has been associated with AML, and PIN1
has itself been suggested as a possible target in some forms of
AML (Pulikkan et al., 2010).

We next compared our GSEA results for all three datasets
to a standard differential expression analysis. We identified
the genes differentially expressed between the two classes via
t-tests with Benjamini–Hochberg adjusted FDR below 0.05 [using
GenePattern (Reich et al., 2006)]. We then compared these to the
multi-component hubs implicated by the gene set analysis. None of
the top three implicated proteins discussed above, and indeed none
of those implicated with a GSEA FDR < 0.25 in any of the gene
sets, were among the list of differentially expressed genes. This is
particularly of interest in the leukemia dataset, where nearly half of
the genes in the dataset were differentially expressed between AML
and ALL, but RBBP4 was not among them. Even with more relaxed
standards of GSEA significance, the majority of the implicated
multi-component hubs are not themselves differentially expressed
(see the Supplementary Materials for more details).

In all three of the datasets we examined, significantly dysregulated
gene sets implicate putative regulatory proteins with functional
roles related to the phenotypes being studied. We conclude that
our interolog-augmented classification of human proteins offers a
valuable collection of gene sets that may be of use in interpreting
clinical expression data and providing valuable insights into the
mechanism and treatment of human disease.

4 CONCLUSIONS
We have observed that the likely connectivity of a hub protein’s PPI
neighborhood identifies a new class of hubs enriched for regulatory
function. This signal is evident despite the likelihood that noise
may affect the exact number of components identified for some
proteins. This class appears distinct from other network structure-
based characteristics of proteins such as degree, betweenness
and clustering coefficient. Other methods for inferring dynamic
functional role tend to rely more on temporal data. Here, we see
that important insights into functional dynamics can be observed
from protein interaction data that reflects a particular snapshot of
what we know to be a dynamic interaction network.

Our results are also consistent with results of Koyutürk et al.
showing that statistically significant dense subcomponents in PPI
networks have high functional coherence and often capture protein
complexes (Koyutürk et al., 2007). Our single-component hubs
typically represent dense components under their model and are
also enriched for complex-related functions. It would be interesting
to extend their dense subcomponent model to identify a multi-
component hub analog. It would also be interesting to investigate
the impact of other subgraph decomposition methods on our results.

Although initially unexpected, the fact that single-component
hubs are more likely to be essential than multi-component hubs
is also consistent with previous findings. Yu et al. have shown that
while bottlenecks in stable, permanent interactions are more likely
to be essential, this is not true for ‘transient’ bottlenecks—those
that interact with different complexes at different times (Yu et al.,
2007). This is precisely the set of proteins we expect to be enriched
among the multi-component hubs: those that regulate response
by interacting with different proteins under different conditions.
Thus, the fact that we see more bottlenecks yet less essentiality in
multi-component hubs supports our hypothesis that we have indeed
identified such a class of proteins.
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The application of our results to interpreting gene expression
data provides a new approach to solving a long-standing problem
in the field—that of determining the molecular causes of the
observed expression changes. This approach works even if the
gene in question is not itself differentially expressed. Future work
could, therefore, investigate linking sequence variation in regulatory
genes with coordinated expression changes in one or more of their
neighboring components.

Other future work should include extending these results and
methods to other organisms and updating the results as interactome
databases grow. In addition, more attention could be focused
on interpreting the nature and putative functional roles of each
individual component of the multi-component hubs.

Finally, we note that this approach can be used in any organism
for which reasonable amounts of PPI data are available or can be
inferred. Given our recent results showing that the high degree
of hub proteins is preferentially conserved (degree conservation),
and and that degree-conserved hubs are more likely to retain their
network neighbors and functional roles throughout evolution (Fox
et al., 2009), it is possible that we might be able to find important
regulatory proteins using this strategy even in organisms where the
PPI map is far from complete.
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