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Models with Energy Penalty on Interresidue Rotation Address
Insufficiencies of Conventional Elastic Network Models
Lee-Wei Yang*
Institute of Bioinformatics and Structural Biology, National Tsing-Hua University, Hsinchu, Taiwan; and Department of Chemistry and Chemical
Biology, Harvard University, Cambridge, Massachusetts
ABSTRACT In this study, I present a new elastic network model, to our knowledge, that addresses insufficiencies of two
conventional models—the Gaussian network model (GNM) and the anisotropic network model (ANM). It has been shown previ-
ously that the GNM is not rotation-invariant due to its energy, which penalizes rigid-body rotation (external rotation). As a result,
GNM models are found contaminated with rigid-body rotation, especially in the most collective ones. A new model (EPIRM) is
proposed to remove such external component in modes. The extracted internal motions result from a potential that penalizes
interresidue stretching and rotation in a protein. The new model is shown to pertinently describe crystallographic temperature
factors (B-factors) and protein open4closed transitions. Also, the capability of separating internal and external motions in
GNM slow modes permits reexamining important mechanochemical properties in enzyme active sites. The results suggest
that catalytic residues stay closer to rigid-body rotation axes than their immediate backbone neighbors. I show that the cumu-
lative density of states for EPIRM and ANM follow different power laws as functions of low-mode frequencies. When using
a cutoff distance of 7.5 Å, The cumulative density of states of EPIRM scales faster than that of all-atom normal mode analysis
and slower than that of simple lattices.
INTRODUCTION
The Gaussian network model (GNM) (1–3) and the aniso-
tropic network model (ANM) (4) are twowidely used elastic
network models (ENMs) that have received 1000þ citations
in the past decade for their simplicity and pertinent descrip-
tion of experimental data on equilibrium protein dynamics
(1,5–9). GNM was inspired by Flory’s mathematical treat-
ments on polymer flexibility where a given polymer chain
vector ~ri is considered Gaussianly distributed over its
mean position (10). The probability density function of
the ith polymer chain is given as Wd(D~ri) ~ exp{�3(D~ri)

2/
2<(D~ri)

2>} (2,10). In GNM, the Gaussian assumption
holds for the position vector ~ri of the ith residue in the
protein (1,2). The potential of GNM was found to assume
the form

EGNM ¼ ðg = 2Þ
XN
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where D~rj is the deviation of the Ca atom of residue j from
its position at equilibrium. This equilibrium position, the
mean position about which the atom fluctuates, is readily
available from solved protein structures. H is a Heaviside
step function and Rc is a cutoff distance (hereafter, cutoff).
~rij and ~r 0

ij are the instantaneous and equilibrium distance
vector connecting position i to j, respectively. g is Hooke’s
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spring constant (1,2). On the other hand, a more widely used
form of ENM, the ANM (4), assumes a potential as follows:

EANM ¼
XN
i; j¼ 1

g

2

�
Lij � L0

ij

�2
H
�
Rc �

���L0
ij

����¼ g

2
DRTHDR; (2)

where L0ij is the linear departure between the Ca atoms of
residue i and j at equilibrium; Lij is their departure at a given
instant; H is the Hessian matrix, which is the second deriv-
atives of the potential; DR is the position deviation vector
for all the Ca atoms in the system; and N is the total number
of residues in the protein. (See details in the Supporting
Material.)

The vectorial changes in interatomic distances penalize
GNM potential in one (or both) of two circumstances: 1),
when there is a change in the length of interatomic distance,
or 2), when the vector of~r 0

ij rotates regardless of whether the
distance j~r 0

ij j is changed. ANM potential, on the other hand,
arises only when the distance between i and j changes (12).
As noted clearly in the Supporting Material, vibrational isot-
ropy in the GNM is a natural consequence of its energy
form. In other words, GNMs provide the size but not the
directionality of atom fluctuations, which has limited their
applicability in studies of protein dynamics. For example,
GNM modes do not describe observed conformational
changes (e.g., by x-ray crystallography), although they
have the potential, by penalizing both interresidue stretching
and rotation, to advantageously model protein dynamics in
a crowded environment, such as in the crystals. This
reasoning is indirectly supported by the evidence that
GNM predicts the size of the temperature factors (B-factors)
better than ANM does (12–18).
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In addition, it was recently shown by Thorpe that GNM is
NOT rotation-invariant (11). Thorpe argues that GNM
potential penalizes not only internal rotation but also
rigid-body rotation (external rotation). Here, I provide alter-
native derivations via the use of force and torque defined by
a given ENM potential to show that the ANM is both trans-
lation- and rotation-invariant, whereas the GNM is only
translation-invariant (see Supporting Material and Fig. 1).
Thorpe’s results indirectly suggest that the external rotation
could have been blended into the GNM modes.

In this study, I devise a method to quantify the content
of rigid-body rotation contained in each of the GNM modes
(or eGNM modes; see below). I am able to remove those
external contributions and subsequently propose to our
knowledge a new model. This model describes observed
conformational changes as well as ANM and outperforms
ANM in its predictability for isotropic data.
THEORIES AND METHODS

Expanded GNM (eGNM)

Since GNM is not rotation-invariant, its modes would inevitably contain

motions from rigid-body rotation. I therefore would like to characterize

how much rigid-body rotation is contained in each of the GNM modes.

To elucidate this, I first rewrite the GNM potential in its matrix-vector

form such that

EGNM ¼ ðg=2ÞDRTðG5IÞDR
¼ ðg=2Þ�DXTGDXþ DYTGDYþ DZTGDZ

�
; (3)

where DR is a 3N-dimensional column vector and DX, DY, and DZ

are N-dimensional column vectors such that DRT ¼ (Dx1,Dy1,Dz1,Dx2,Dy2,

Dz2 . DxN,DyN,DzN) and DXT ¼ (Dx1,Dx2.DxN). The subscripts are the

residue index. G is an N � N connectivity matrix, in which the off-diagonal

elements, Gij, equal �1 if i has contact with j within a cutoff distance and
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FIGURE 1 A three-point system described by GNM and ANM poten-

tials. Every pair of nodes is within the range of a contact cutoff. Solid lines

outline the system in equilibrium and dotted lines indicate the system in

motion at a given moment. (a) For the system in rigid-body translational

motions, the Drij for each pair is zero, which leads to a torque tGNM ¼
�Pi

P
j g(rij

0 � Drij) ¼ 0 (see Supporting Material); both GNM and

ANM potentials remain zero. (b) For an internal bending/rotation motion,

Dr13 is parallel to r13
0, resulting in r13

0 � Dr13 ¼ 0. On the other hand,

r12
0�Dr12 and r23

0�Dr23 generate opposite torques with equal magnitude

and are therefore canceled out, resulting in a zero tGNM. However, GNM

potential penalizes the positional changes of all three pairs (due to the

change in linear separation and internal rotation), whereas ANM potential

penalizes only the 1-3 pair (due to the change in linear separation only). (c)

All three pairs generate torques rij
0 � Drij in the same direction, contrib-

uting a net, nonvanishing torque, tGNM, to the system undergoing rigid-

body rotation. GNM potential penalizes such external rotation, whereas

that of ANM does not. The torque tANM for ANM remains zero in all these

three cases (rotational invariance).
zero otherwise (1,2). The diagonal elements, Gii, can be represented by

Gii ¼ �PN
j¼1,jsi Gij. G5I is a 3N � 3N matrix comprises N � N

super-elements, each of which is a 3 � 3 matrix for pair ij. The super-

element ij takes the values GijI, where I is a 3 � 3 identity matrix. Note

that the isotropy of the GNM model, <DXDXT> ¼ <DYDYT> ¼
<DZDZT>, is a natural consequence of the GNM potential (see Supporting

Material for details). However, when GNM was first introduced (1),

Gaussian distributions of residue positions were assumed a priori according

to Flory’s assumption on Gaussian distributions of polymer chain lengths

(9). The potential of GNM (Eq. 1) was deduced later (3). Here the elements

in G5I are the second derivatives of the EGNM and therefore G5I is the

Hessian for GNM potential (see the Supporting Material for the derivation).

Given the Hessian, it can be shown that

<DRTDR> ¼ ðkBT=gÞðG5IÞ�1

¼ ðkBT=gÞ
X3N
k¼ 4

ð1=lkÞVkV
T
k ; (4)

where G5I ¼ P3N
k¼1 lkVkVk

T; l and V are the eigenvalues and 3N-d

eigenvectors, respectively, of the eGNM Hessian. Since eGNM is transla-

tion-invariant, the first three eigenvalues (k¼ 1–3) are zero (see Supporting

Material for details). Despite having identical physical essence, this presen-

tation is different from that of the published GNM convention, where the

covariance is of size N � N due to the threefold degeneration (1–3). The

3N � 3N covariance herein would be helpful in examining the content of

rigid-body rotation in each of the normal modes. Herein, this presentation

is named expanded GNM (eGNM).
Characterizing and removing external motions
contained in eGNM modes: construction
of an anisotropic model with energy penalty
on internal rotation

Note that every three eGNM modes share the same eigenvalue (threefold

degenerate). Let us view cVk as a pseudo-velocity vector for all the residues

so that the pseudo-velocity for residue i is c[Vk,3i�2 Vk,3i�1 Vk,3i], where c is

(kBT/g)
1/2. The prefix pseudo is used because cVk has the unit of length, not

length over time. The timescale for a given mode is proportional to the

quantity 2p(1/glk)
1/2 if the eigenvectors are mass-weighted (12,20.

However, given the purpose of this study, the real timescale of each indi-

vidual mode is not important to the final results (see the following). For

a given mode k, a psudo-angular momentum, Lk, specific to this mode

can be defined as

Lk ¼
XN
i¼ 1

miri � cUk;i ¼ Iuk; (5)

where Uk is a N �3 matrix in which the row vector Uk,i ¼ [Vk,3i�2 Vk,3i�1

Vk,3i]; mi is the mass of residue i; uk is the angular velocity; I is the 3 � 3

moment of inertia tensor whose nine entries are defined as Ik0 l ¼
PN

i¼1

mi(jrij2dk0 l � rik0 ril), where k0,l run on x, y, and z; ri ¼ (rix, riy, riz) is the

vector to the mass i about which the tensor is calculated; and dk0 l is the

Kronecker d. From Eq. 5, we know that uk ¼ I�1Lk. Hence, a new pseudo-

velocity that contains no contribution from the rigid-body rotation can be

obtained such that

U0
k;i ¼ Uk;i � ð1=cÞuk � ri: (6)

The term (1/c)uk � ri is the rigid-body rotation experienced by residue i.

Rearranging U0
k,i (i ¼ 1–N), I obtain a 3N-dimensional column vector

V0
k ¼ [U0

k,1 U
0
k,2 /U0

k,N]
T. According to this new treatment, I can recom-

bine the external-rotation-excluded eGNM modes to obtain
Biophysical Journal 100(7) 1784–1793
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<DRDRT> ¼ ðkBT=gÞ
X3N
k¼ 4

ð1=lkÞV0
kV

0T
k : (7)

The resulting covariance contains no contributions from rigid-body

translation and rotation. This can be evidenced by further diagonalizing

the lefthand side of Eq. 7. The resulting six zero eigenvalues and trivial

modes represent the rigid-body translation and rotation. I call this the

energy penalty on internal rotation model (EPIRM). According to the

mathematical treatment given above, it is clear that incorporating the time-

scale into cwould not have changed the final results, since c is later factored

out.

The introduced method would suggest partitioning ENMs into three

basic categories based on their physical nature. GNM potential penalizes

interresidue stretching, rotation, and rigid-body rotation. GNM modes

contain external rotation and internal motions. EPIRM stems from using

identical potential with GNMs, but the contamination of external motions

is removed from its normal modes. ANM potential penalizes interresidue

stretching only and its modes contain purely internal motions.
The correlation between experiment and theory
(Pearson correlation coefficient)

CorrGNM;EPIRM or ANM ¼
XN
i¼ 1

�
DBexp;i

�ðDBtheo;iÞ
�

 XN
i¼ 1

�
DBexp;i

�2!1=2�
 XN

i¼ 1

ðDBtheo;iÞ2
!1=2

;

(8)

where DBexp;i and DBtheo;iare the deviation of the experimental and pre-

dicted B-factors, respectively, from their mean values for residue i.
RESULTS AND DISCUSSIONS

Quantification of the rigid-body rotation blended
into the eGNM modes

The content of external rotation in the kth eGNM mode can
be characterized as jVk � V0

kj/jVkj (Fig. 2). Note that Vk,
Biophysical Journal 100(7) 1784–1793
V0
k, and Vk � V0

k form a right triangle in the hyperdimen-
sional space, where Vk is the hypotenuse (Fig. 2, inset). As
shown in Fig. 2, the first three internal GNM modes (corre-
sponding to the 4th to 12th eGNMmodes shown in the inset)
have >30% contribution from external rotational motion,
which is especially prominent in the first two modes
(>60% motional magnitude comes from the rigid-body
rotation). The external contribution drops to <10% for
modes >28 (approximately the 9th GNM mode).
EPIRM and GNM have commensurate
predictability for temperature factors

It would be interesting to see how well these three types of
ENM would explain the experimental data on equilibrium
fluctuations of atoms observed in structurally resolved
proteins. Many studies have shown that GNM better
describes temperature factors (B-factors) than does ANM
(12,14-17). However, it is not clear whether the superior
predictability of GNM is conferred by external rotation
motions contained in its modes. The B-factor is a function
of positional variance such that Bi ¼ (8p2/3) <(DRi)

2>
(1–6,13-18). <(DRi)

2> can be readily obtained from
Eq. 4 for GNM, Eq. 7 for EPIRM, and Eq. S18 for ANM
(see Supporting Material and Atilgan and Durell (4)).
Note that all the internal modes of these ENMs are used
to compare with Bi – N-1 modes for GNM, 3N-3 modes
for EPRIM and 3N-6 modes for ANM. Only the degrees
of freedom of Ca atoms are considered in this study. As
shown in Table 1, GNM and EPIRM have about the same
predictability, 0.591 and 0.590, respectively, when outper-
forming ANM (0.500) by ~20% (0.1/0.5). Since EPIRM
modes contain no external motions, the identical perfor-
mance of the two models suggests that the rigid-body rota-
tion included in the GNM modes does not account for the
superior predictability of GNM compared to ANM. Rather,
the extra energy penalty on internal rotation in GNM, which
is missing in ANM, should have been the main contributing
FIGURE 2 The ratio of external rotation

blended in each of the eGNM modes as a function

of the mode index for myoglobin (1a6m, 151 resi-

dues). (Inset) Zoom-in figure for the first 60 low

modes. Note that every three eGNM modes corre-

spond to one GNM mode. For instance, modes 31

to 33 correspond to the 10th GNM mode. In

eGNM, the first three modes are translational

modes, led by zero eigenvalues. (Innermost inset)

Relation between Vk, V
0
k, and Vk � V0

k forms

a right triangle.



TABLE 1 Correlation of B-factors and predictions by simple

models for a set of 30 proteins

PDB ID

No. of

residues CorrGNM CorrEPIRM CorrANM

1e44 180 0.587 0.586 0.410

1eai 602 0.650 0.656 0.647

1ega 585 0.562 0.563 0.503

1ep9 320 0.671 0.669 0.668

1gk1 1350 0.631 0.655 0.309

1gpw 1359 0.471 0.468 0.279

1hi9 1370 0.453 0.456 0.319

1i1r 468 0.464 0.507 0.302

1i8t 734 0.777 0.774 0.752

1job 162 0.745 0.738 0.686

1kiy 708 0.640 0.630 0.620

1kkh 317 0.401 0.397 0.059

1l5j 1724 0.583 0.575 0.546

1lbq 710 0.713 0.704 0.690

1lq8 1431 0.632 0.627 0.597

1n26 299 0.530 0.516 0.504

1nbw 1436 0.563 0.557 0.485

1nd6 1369 0.732 0.724 0.683

1o9h 249 0.459 0.473 0.233

1oe0 792 0.694 0.693 0.651

1oia 176 0.695 0.694 0.421

1okr 242 0.507 0.518 0.331

1ot5 956 0.677 0.675 0.653

1q19 2000 0.578 0.568 0.574

1qgo 257 0.527 0.512 0.489

1ql6 281 0.642 0.634 0.594

1qpo 1704 0.627 0.620 0.60

1spp 221 0.581 0.585 0.567

2gsa 854 0.319 0.318 0.308

2tdx 139 0.613 0.605 0.521

Mean 0.591 5 0.020 0.590 5 0.019 0.500 5 0.031

The 30 nonhomologous proteins are a subset of a previously reported repre-

sentative set (36). They share no sequence identity (<30%) or structural

homology (Ca RMSD >10 Å). The proteins are resolved by x-ray crystal-

lography with a resolution of %2.4 Å and an R-factor of %0.3, containing

no membrane or small (N < 40) proteins. The mean 5 standard errors

values are listed in the bottom row of the table. Here, a uniform 15-Å cutoff

is chosen for the three models to ensure equal sparsity in Hessians. The

means drop slightly to 0.57 for both GNM and EPIRM if a cutoff of 7.5 Å

is used. Corr, correlation between predictions of physical models and the

experimental observables; PDB, Protein Data Bank.
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factor (see Fig. 1 b). Another high-resolution protein set also
confirms the same superiority of GNM and EPIRM, as
compared with ANM, in reproducing isotropic B-factor
data. (See Table S1 in the Supporting Material for more
details.)
EPIRM and ANM have commensurate
predictability for anisotropic displacement
parameters

The isotropy breaks down in EPIRM as rigid-body rotation
is removed from each of the eGNM modes. Therefore, it is
tempting to examine how well EPIRM and ANM would
describe anisotropic fluctuation data, herein the anisotropic
displacement parameters (ADPs) that are also available to
x-ray-determined structures when solved at a very high reso-
lution (<1 Å). A high-resolution set taken from our earlier
study (14) reveals that EPIRM and ANM share an identical
predictability for ADPs, averaging correlations of 0.504 and
0.515, respectively (Table S1). Overall, EPIRM shows no
compromised predictability for isotropic B-factors com-
pared to GNM, whereas it outperforms ANM by a notable
margin. Furthermore, the data here suggest that EPIRM
describes anisotropic data no less well than ANM despite
the introduced anisotropy seen mainly at the lowest EPIRM
modes. GNM, on the other hand, cannot give any aniso-
tropic descriptions at all.
The shape of the profile of internal motions rather
than that of external motions accounts for
predicative power of ENMs for B-factors

B-factors contain the contribution from static disorder,
protein rigid-body external motions, anisotropy of a crystal,
and thermal fluctuations of atoms. Therefore, the validity of
a straightforward comparison between ENM-predicted
internal motions and observed B-factors cannot be appre-
hended intuitively (B-factors are not from direct observa-
tions but from fitting parameters of theoretical models,
which are optimized to best describe the experimental
diffraction intensity). Nevertheless, a normal-mode refine-
ment study may have provided convincing evidence to
justify such direct comparison. In the work by Kidera
et al., total fluctuations of atoms, optimized to fit diffraction
intensity, were decomposed into decoupled internal and
external components (19). The contribution of internal
vibrations to B-factors was modeled by all-atom normal-
mode analysis (NMA) (20), whereas that of external
motions was modeled by the translation, libration, screw
(TLS) model (19,21). The residue fluctuations, plotted as
functions of residue index, are shown in Fig. S2. Although
external motions were shown to have a larger contribution
than internal ones to the size of total fluctuations, the shape
of the profile of total fluctuations was predominantly deter-
mined by the contribution from the internal motions.
External motions, on the other hand, gave a relatively flat
profile (featureless) (19).

When using the Pearson correlation coefficient (see
Methods) to rate the similarity between profiles, Kidera
et al. found that the correlation between observed B-factors,
computed by model D100F43E, which best interprets the
diffraction intensity, and internal motions, derived from
NMA, approached 0.8 (19). A fact that is mathematically
trivial yet worth noting is that the correlation coefficient
does not vary with the absolute size of the two profiles being
compared. The correlation is high as long as the shapes of
the two profiles are similar. Such mathematical assessment
of B-factors to validate given physical models of interest
has been widely used (1–7,12–15). (For further details, see
the Supporting Material.)
Biophysical Journal 100(7) 1784–1793
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Reasons why external motions contained in GNM
modes do not improve GNM predictability
for B-factors

EPIRM and ANM modes are internal and GNM modes are
contaminated with rigid-body rotation. As pointed out
earlier, the rigid-body rotation contained in the GNMmodes
does not contribute to a better or worse agreement with
B-factors. The main reason is that the external contamina-
tion is small, contributing only 10% of the total fluctuations,
according to the protein set used in Table 1. In addition, the
shape similarity between B-factor profiles and external rota-
tion is low (0.440 using the set in Table 1) compared to that
between B-factors and internal fluctuations (0.590; also
see Fig. 3 for the shape similarity between profiles). This
result is consistent with the earlier notion that a featureless
profile of external motions does not improve the Pearson
correlation between predicted overall fluctuations and
observed B-factors (Fig. 3). However, care must be taken
to distinguish TLS-derived external fluctuations and
external motions contained in GNM modes. In Kidera’s
work, the absolute size of rigid-body translation and rotation
can be derived from the TLS model, whereas the external
motions in GNM modes are merely rigid-body rotations of
which the absolute magnitude is unknown. Hence, the
external motions derived from GNM cannot be used directly
to refine external contributions in B-factors without
involving other theoretical treatments (19,21).

There have been considerable efforts to improve the
B-factor predictability of ENMs including finding high reso-
lution protein structures for the study (14-16), strengthening
the springs connecting local contacts (16,22), incorporation
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FIGURE 3 The B-factors of Ca atoms in a myoglobin (1a6m) are plotted

as a function of the residue index (thick solid line). The total, internal

(EPIRM), and external (eGNM) fluctuations (thin solid, broken, and dotted

lines, respectively) are normalized using a scaling factor to equate the areas

enclosed by B-factors and by the total fluctuations of eGNM. Note that the

relatively featureless profile of external fluctuations is in the bottom of the

figure. In this particular example, the total, internal, and external fluctua-

tions have correlation coefficients of 0.651, 0.663, and 0.536 with the

observed B-factors.
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of more than one atom to represent a residue (23), taking the
spring constants as distance-weighted (17,24) and consid-
ering lattice vibration and/or crystal contacts with adjacent
asymmetric units (15,18,25,26). However, the purpose of
this study is to reveal the different physical nature in
ENMs and to propose to our knowledge a new model that
addresses the insufficiencies in GNM and ANM. B-factors
are used to simply benchmark those models. Although fully
aware that incorporating crystal contacts in the model would
increase the correlation, I did the comparison between
ENMs using proteins in their isolate forms. The reason is
that models that perform well using isolated forms of
proteins are shown to perform well also when taking into
account the crystal contacts or other specific modifications
in ENMs. This is supported by studies such as Riccardi’s
(15) and Kondrashov’s (16). In the former, GNM predicts
B-factors better than ANM by the same margin when
proteins are used in either isolated or crystalline forms
(15). The latter study shows that chemical network
modeling outperforms GNM by the same margins for three
groups of proteins containing varied portions of solvent-
exposed residues (16). On the other hand, the B-factor
predictability increases for all ENMs when a set of 30 struc-
tures of ultrahigh (<1 Å) resolutions is used, yet GNM and
EPIRM still outperform ANM by statistically significant
margins (see the CorrI data in Table S1).
EPIRM and ANM explain positional distributions
of NMR conformers with equivalent excellence

To eradicate concerns arising from the crystalline environ-
ment, it is tempting to examine how the models describe
protein dynamics sampled in the solution state. I compare
ENM predictions against positional distribution of Ca atoms
for a set of 64 NMR ensembles used in a previous study
(27). Each NMR ensemble comprises 8–50 conformers
and the root-mean-squared deviation (RMSD) distributions
of Ca atoms in a given ensemble can be computed. The
detailed approach is to be found in the footnote of Table
S2 and also in Yang et al. (27). Basically, the overall size
of the distributions, as well as the variance in each of the
x-, y-, and z-directions, can be computed from the NMR
conformers. The observed distributions are then compared
with the magnitude of Ca fluctuations predicted by ENMs
to obtain correlations. Average correlations for GNM, EP-
IRM, and ANM over the 64 ensembles are 0.746 5 0.017,
0.737 5 0.017, and 0.728 5 0.020, respectively, when
overall sizes of the distributions are used for comparison
(Table S2). The correlation averages drop to 0.643 5 0.019
and 0.657 5 0.018 for EPIRM and ANM, respectively,
when all the directions of Ca variance are considered. In
either scenario, EPIRM and ANM perform equally well
and do better, by a margin of ~15%, than when they are
used to predict for proteins in the crystalline state (see the
second paragraph in the Results section).
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EPIRM and ANM have commensurate
predictability for open4closed conformational
transitions

Although the contamination of external motions is small
when considering the superposition of all the GNM/
eGNM modes (~10%; see previous section), the external
motions are found to be heavily blended in the slowest
GNMmodes, as evidenced in Fig. 2. These modes are robust
and believed to be critical to functional conformational
changes in biomolecules (3,4,7,8,13,19,24). I am therefore
highly motivated to examine how these modes are different
in different approximations and how valid they are in inter-
preting observed conformational changes between different
functional states of proteins.

I take a previously reported set (28) of unbound (open)
and inhibitor-bound (closed) conformations of the same
proteins, determined by x-ray crystallography, and then
examine how well ENMs predict these open4closed
conformational transitions when open conformation is
used as the input structure. Let us define the correlation
between the mode k and observed open4closed conforma-
tional changes a as ak ¼ Wk,a/jWkj/jaj (7,28), where the
mode vector Wk is Vk for eGNM (Eq. 4), V0

k for EPIRM
(Eq. 7), orV00

k for ANM (see Eq. 19 in the Supporting Mate-
rial). BothWk and a are 3N-dimensional vectors. I am inter-
ested in knowing which modes are most relevant to given
open4closed transitions and how ak compares among
different ENM approximations.

As the best single mode is concerned, EPIRM predicts
conformational changes as well as does ANM (0.57 vs.
0.60; p ¼ 0.616) and outperforms eGNM (0.46) (Table 2).
The average difference between EPIRM and eGNM is
TABLE 2 Correlations between dominant modes and open4close

Protein Length Open/closed RMSD (Å)

EP

ak* (k*

Calmodulin 138 1cll/1ctr 14.7 0.56 (1

Diphtheria toxin 523 1ddt/1mdt 15.6 0.65 (1

LAO binding 238 2lao/1lst 4.7 0.46 (1

Enolase 436 3enl/7enl 0.9 0.38 (1

Adenylate Kinase 214 4akeB/1e4vA 6.9 0.71 (1

Thymidylate synthase 264 3tms/2tsc 0.8 0.48 (1

DHFR 159 5dfr/4dfr 0.9 0.45 (1

Citrate synthase 855 5csc/6csc 2.8 0.75 (1

Yhdh 320 1o89A/1o8cB 1.7 0.62 (1

Actin-related protein 398 1k8k/1tyq 1.1 0.64 (1

Average 0.57 5 0.03

PDB codes of structures used for open/closed conformation and their RMSDs a

underlined). In the parentheses, k* denotes the internal mode with the highest

a (see definition of ak in the main text); a1–5 is the cumulative contribution of

in this table are obtained when open structures are used as the input for ENM calc

in Table S3. Care should be taken that every three EPIRM or eGNM modes sh

means that the highest correlation can be found in one of the three modes 4–6; k*

indicating rigid-body translation. As for ANM, k*¼ 1 is the seventh mode obtain

modes 1–6 are trivial modes for rigid-body translation and rotation.
confirmed by paired Student’s t-tests revealing a p-value
of <0.001, as is the average difference between ANM
and eGNM, with p ¼ 0.013. It is interesting that the
most functionally relevant mode is found to be the
slowest internal mode in all the studied cases according to
EPIRM. On average, conformational changes can be
described by the 1st EPIRM modes, 2.5-th ANM modes
and 1.5-th eGNMmodes. These global modes are collective,
spanning large amplitudes at limited cost of potential
energy increase, and are known to facilitate functional
conformational changes in proteins even in the absence of
substrates/ligands that stabilize a selected functional state
(7,8,13,28-30).

Besides finding the best single mode that gives the highest
correlation with observed conformational changes, I also
want to evaluate the ENMs by examining the same effect
in a robust subspace spanned by a handful of collective
normal modes (31). The cumulative contribution of the first
five modes to structural changes (denoted as a1–5) are shown
in Table 2. EPIRM and ANM again have statistically iden-
tical performance (averaging 0.70 and 0.74, respectively, in
correlation) and outperform eGNM by a statistically signif-
icant margin (0.61 on average).
Active sites are located closer to rigid-body
rotation axes than their adjacent neighbors
in the primary sequence

Accumulated evidence supports the notion that global
motions of proteins are important for their biological func-
tions. ENMs, in this regard, are excellent tools for exploring
these global motions. We have previously shown that a
d transitions in the three ENMs

IRM ANM eGNM

) a1–5 ak* (k*) a1–5 ak* (k*) a1–5

) 0.78 0.48 (6) 0.72 0.46 (1) 0.70

) 0.78 0.48 (1) 0.69 0.52 (1) 0.71

) 0.56 0.76 (1) 0.94 0.40 (6) 0.49

) 0.43 0.32 (1) 0.40 0.28 (1) 0.36

) 0.82 0.79 (1) 0.94 0.59 (1) 0.71

) 0.59 0.44 (6) 0.46 0.43 (1) 0.57

) 0.59 0.62 (1) 0.69 0.32 (1) 0.50

) 0.82 0.89 (3) 0.89 0.71 (1) 0.81

) 0.84 0.46 (3) 0.78 0.40 (1) 0.65

) 0.74 0.73 (2) 0.87 0.52 (1) 0.64

9 (1.0) 0.70 0.60 5 0.059 (2.5) 0.74 0.46 5 0.040 (1.5) 0.61

re listed in the third and fourth columns, respectively (chain identifiers are

correlation (indicated by ak*) with the observed conformational changes

the lowest five internal modes to a, such that a1–5 ¼ ðP5
k¼1a

2
kÞ1=2. Results

ulations. Corresponding results obtained from closed structures are available

are the same eigenvalue (threefold degenerate). Hence, k* ¼ 1 for EPIRM

¼ 2 corresponds to modes 7–9, and so on. Modes 1–3 are the trivial modes

ed from (Hessian) matrix diagonalization; k*¼ 2 is the eighth etc., whereas

Biophysical Journal 100(7) 1784–1793
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mechanochemical coupling exists between enzyme active
sites and the dynamics hinges revealed by the slowest
two GNM modes (32). We found that catalytic residues
tend to have low mobility and smaller fluctuation size
compared to their backbone neighbors (32). The concept
of such coupling was later developed into a predictor for
enzyme active sites (8). As pointed out earlier, slowest
GNMmodes are heavily contaminated with rigid-body rota-
tion. The capability developed in this study to separate
external from internal motions in the slowest two GNM
modes argues for a reexamination of the mechanochemical
couplings found in these enzymes. It would be interesting to
see whether the relative low mobility of catalytic residues
can be found in both internal and external components. If
such is the case, the result may imply that enzymes locate
their catalytic chemistry not only at the internal bending
centers but also near the axes of rigid-body rotation.

I examine two previously studied hydrolases, rhinovirus
3C protease (1cqq) and ricin hydrolase (1br6), whose cata-
lytic sites have been experimentally identified (32,33). The
active sites defined herein not only bind the substrates but
also directly catalyze the enzymatic reactions (32,33). For
the rhinovirus 3C protease, it can be found that three out
of the four active sites, D71, G145, and C147, are exactly
at the local minima (dynamics hinges) when the total fluctu-
ations are drawn as a function of residue index (Fig. 4 a).
Another catalytic residue, H40, is close to but not exactly
at one of the minima. D71 and C147 are found to situate
at the minima in both internal and external fluctuation
profiles (Fig. 4, b and c). However, G145 becomes a tad
off the minima when the motions are decomposed into the
internal and external. Overall, the catalytic residues are
positioned at or near the minima in all of the three profiles,
where G145 seems to be further pacified compared to its
local neighbors when the joint effect of internal and external
components is considered.

As for ricin hydrolase, the catalytic residues Y80, V81,
E177, and R180 are found at the dynamics hinges, whereas
G121 and Y123 enjoy moderate mobility. This is true for the
total and internal fluctuation profiles (Fig. 4, e and f). An
interesting finding was that all six catalytic residues are
found to reside at the local minima in the external fluctua-
tion profile (Fig. 4 g). The results suggest that active sites
tend to dwell in proximity to the axes of rigid-body rotation
(see Fig. S5). This mechanochemical requirement for
enzyme active sites is as important as, if not more important
than, the need for them to stay at the bending or twisting
centers in proteins (32). Dynamically silent catalytic resi-
dues could be essential for enzymes to perform fast and
precise chemical reactions. Further systematic investiga-
tions will help in drawing stronger conclusions about the
importance of colocalization of active sites and axes of
rigid-body rotation. However, our preliminary analyses of
these two hydrolases are meant to help further studies in
a similar vein.
Biophysical Journal 100(7) 1784–1793
Cumulative density functions of EPIRM and ANM
have different scaling exponents

Although ANM and EPIRM confer similar predictability for
open4closed conformational transitions, their cumulative
densities of states (CDS) appear to follow different power
laws as functions of mode frequencies (see below). Here, I
define CDS up to the frequency

ffiffiffi
l

p
as G(

ffiffiffi
l

p
) ¼ (1/N)

R ffiffi
l

p

d
ffiffiffi
l

p
g(

ffiffiffi
l

p
) and G(

ffiffiffi
l

p
) ~ (

ffiffiffi
l

p
)b, where g(

ffiffiffi
l

p
) is the mode

density function, the number of modes/frequency range
divided by all the degrees of freedom in a protein. Accord-
ing to a set of 30 high-resolution protein structures
(Table S1), the scaling exponents b found for EPIRM are
2.37 5 0.039 and 3.42 5 0.062 at cutoff distances of
7.5 and 10 Å, respectively. On the other hand, b values for
ANM are 2.51 5 0.076 and 3.70 5 0.099 at cutoff
distances of 10 and 15 Å, respectively (the latter is close
to the reported value 3.96 when a 16 Å cutoff is used
(15)). The results are consistent with Riccardi’s data that
the increased cutoffs raise the b value (15).

The elevated b can be explained by the distribution
changes in g(

ffiffiffi
l

p
) when the cutoff distances increase. As

we can see in Fig. 5, a–f, when cutoff distances increase,
the long tails of the mode density distributed in the low-
frequency regimes in the histograms disappear and swarm
into the central bins that have been highly populated. This
is true for both EPIRM and ANM. The distributions further
skew to the high-frequency regime as a cutoff of 15 Å is
used. Let us consider the following. G(

ffiffiffi
l

p
) is calculated

for the lowest modes (the slowest 4–10% of all the available
modes; see Fig. 5 legend), and the counts should be accumu-
lated much faster for a centralized g(

ffiffiffi
l

p
) distribution than

for a distribution with a long hanging tail in the slow
regimes. The use of a large cutoff results in a blueshift of
the modes and centralizes the distribution (Fig. 5, a–f).
This is because a large cutoff engages a considerable
amount of contacts for residues even at the loops, which
are otherwise minimally coordinated and demonstrating
collective low-frequency motions. In other words, enhanced
networking of residues not only blueshifts the entire spec-
trum but also attenuates local geometrical features, hence
a centralized frequency distribution.

It is clear that that G(
ffiffiffi
l

p
) is curvier for EPIRM than for

ANM if an identical cutoff (10 Å) is used (Fig. 5, g and h).
Thus, EPIRM is found to give a larger b value than does
ANM (3.42 vs. 2.51; the latter is comparable with Riccardi’s
result of 2.14 (14)). The b value for EPIRM goes down to
2.37 when a cutoff of 7.5 Å is used. We reasonably assume
that ANMwould give a b of<2.37 if ANM could be applied
using a cutoff of 7.5 Å (it actually cannot, since a cutoff as
small as 7.5 Åwould result in numerical instability of ANM
where solving the Hessian matrices can result in >6 zero
eigenvalues). Previous studies from all-atom ENM (9) and
NMA using a standard force field (34) have shown that
G(

ffiffiffi
l

p
) scales as 2. Here, the data suggest that a cutoff
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FIGURE 4 (a–c) The total (a), internal (b), and

external (c) fluctuations of the slowest two GNM

modes (or the slowest six eGNM modes) are

plotted as functions of residue index for rhinovirus

3C protease (1cqq). The amplitudes of the fluctua-

tions are scaled such that the most mobile residue

in a given fluctuation profile has the value of unity,

which is also the visible maximum in the ordinate

of every panel (32). Open circles denote the loca-

tions of the active sites H40, D71, G145, and

C147. (d) The relative amplitudes of the total (solid

line), internal (broken line), and external (dotted

line) fluctuations of the slowest two modes are

plotted against the residue index. The most mobile

residue in total fluctuations, S128, spans the full

scale of the ordinate. (e–h) Physical quantities as

described in a–d, but for ricin hydrolase (1br6).

Active sites Y80, V81, G121, Y123, E177, and

R180 are represented by open circles, and their

spatial distributions in relation to the rotation

axes identified from the first two eGNM modes

are shown in Fig. S5.
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of %7.5 Å for EPIRM and GNM can be adequate to have
a CDS scale slightly faster than 2 but slower than 3, the
scaling for a simple lattice (9,35).
CONCLUSIONS

To conclude, employing the same potential as GNM’s,
EPIRM has the power of predicting directionality of residue
motions, which addresses the fundamental insufficiency of
the GNM. EPIRM has been shown to predict ADPs, posi-
tional distribution of NMR conformers, and open/closed
transitions as well as ANM does. On the other hand, EPIRM
and GNM are better able to reproduce B-factor profiles by
penalizing interresidue rotation in addition to interresidue
stretching, as done in conventional models such as ANM.
In addition, the technique I develop here to separate internal
and external motions in the slowest GNM modes reveals
a possible mechanochemical requirement for enzyme active
sites—they are located in proximity to the axes of rigid-
body rotation.

A possible future extension of the model will be to
strengthen the backbone contacts (16,22) and/or take
Biophysical Journal 100(7) 1784–1793



FIGURE 5 (a–f) Mode density functions g(l1/2), the number of modes/frequency range divided by the total number of residues in myoglobin (1a6m), are

plotted for EPIRM (a–c) and ANM (d–f) using cutoff distances from 7.5 to 15 Å. Here, the number of bins is one-third of the total number of protein residues.

(g and h) G(l1/2), the cumulative mode density functions, are plotted for the slowest 10% of the EPIRMmodes (g) and the slowest 4% of the ANMmodes (h)

at a fixed cutoff distance of 10 Å. Data points are obtained from the 30 high-resolution structures listed in Table S1. All the fitting correlations betweenG(l1/2)

and lb/2 for the proteins examined are found to be >0.98.

1792 Yang
different weighting schemes for interactions between resi-
dues (17,24). By considering these, all the off-diagonal
superelements of eGNM Hessian have to be weighted.
Hessian is solved and the external rotation will be again
removed from each of the normal modes. The functional
forms and/or relevant parameters to describe interresidue
interactions can be optimized against data such as the
density of states obtained from the detailed force field
(22), mode spread in low-frequency region (24), B-factors/
ADPs (16,17), positional distribution of atoms solved in
solution states (28), and/or observed functional conforma-
tional changes of a given protein. Overall, this study
provides an interesting viewpoint regarding how ENM
potential can be alternatively designed and how the resulting
Biophysical Journal 100(7) 1784–1793
normal modes can be rationally pruned to address funda-
mental insufficiencies of conventional ENMs.
SUPPORTING MATERIAL

Three tables, five figures, and additional equations are available at http://

www.biophysj.org/biophysj/supplemental/S0006-3495(11)00251-7.
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