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In patients with falciparum malaria, plasma concentrations of cell-derived microparticles correlate with

disease severity. Using flow cytometry, we quantified red blood cell–derived microparticles (RMPs) in patients

with malaria and identified the source and the factors associated with production. RMP concentrations were

increased in patients with Plasmodium falciparum (n5 29; median, 457 RMPs/lL [range, 13–4,342 RMPs/lL]),
Plasmodium vivax (n 5 5; median, 409 RMPs/lL [range, 281–503/lL]), and Plasmodium malariae (n 5 2;

median, 163 RMPs/lL [range, 127–200 RMPs/lL]) compared with those in healthy subjects (n 5 11; median,

8 RMPs/lL [range, 3–166 RMPs/lL]; P 5 .01). RMP concentrations were highest in patients with severe

falciparummalaria (P5 .01). Parasitized red cells produced.10 times more RMPs than did unparasitized cells,

but the overall majority of RMPs still derived from uninfected red blood cells (URBCs). In cultures, RMP

production increased as the parasites matured. Hemin and parasite products induced RMP production in

URBCs, which was inhibited by N-acetylcysteine, suggesting heme-mediated oxidative stress as a pathway for

the generation of RMPs.

In recent years, circulating cell-derived microparticles

(MPs), which expose the phospholipid phosphatidyl

serine (PS), have been identified increasingly in a broad

range of diseases. Membrane PS is usually localized in

the inner leaflet of the lipid bilayer of resting cells, but

upon activation or apoptosis, PS becomes exposed on

the external surface of the cell membrane [1, 2]. The

presence of PS in the outer leaflet facilitates membrane

blebbing and release of MPs with a diameter of ,1 lm

[3]. MPs display the cell surface proteins of the parent

cell, allowing identification of their origin [4]. An in-

crease in MP production has been found in a variety of

conditions, including cardiovascular disease [5], idio-

pathic thrombocytopenic purpura [6], and thalassemia

[7, 8]. MPs play an important role in inflammation,

coagulation, and vascular homeostasis [4, 9]. Malaria is

associated with an increase in the plasma concentrations

of endothelial MPs (EMPs) in proportion to disease

severity [10, 11]. This may result from endothelial ac-

tivation or be a direct mechanical result of cytoadher-

ence of parasitized red cells to the endothelium. The

origin and role of red blood cell–derived MPs (RMPs) in

malaria, which comprise numerically the most impor-

tant fraction of plasma MPs, have not been established.

We quantified circulating RMPs in patients with malaria

on admission and then after antimalarial treatment by

use of flow cytometry and determined whether un-

infected red blood cells (URBCs) or infected red blood

cells (IRBCs) were the main origin of these RMPs. We

investigated a candidate precipitant of RMP production,

hemin, an oxidative Plasmodium falciparum heme

product released at schizont rupture. We also evaluated
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the parasite stage-specific production of IRBC-derived RMPs in

an in vitro culture system.

METHODS

Detection of RMPs in Plasma Samples From Patients With
Malaria

Blood Samples. This study was performed at the Hospital

for Tropical Diseases, Bangkok, Thailand. Blood samples were

collected from 11 healthy subjects, 19 patients with severe fal-

ciparum malaria, 10 patients with uncomplicated falciparum

malaria, 5 patients with vivax malaria, and 2 patients with

Plasmodium malariae infections. Malaria diagnosis was made by

light microscopic analysis of a peripheral blood sample slide.

Severe malaria was defined according to standard criteria [12].

Patients were treated with standard courses of artemisinin de-

rivatives. Blood samples were collected into plastic tubes con-

taining trisodium citrate (1:9 vol/vol) on admission and on days

1, 2, 3, 5, 7, and 14 after the start of antimalarial drug treatment.

Plasma for RMP assessment was centrifuged at 1,500 g for

15 min followed by additional centrifugation of the supernatant

at 13,000 g for 2 min [11]. Routine blood samples collected from

patients hospitalized with trauma (n 5 5) and sepsis (n 5 6)

were assessed as nonmalaria severely ill controls. This study was

conducted as part of a clinical trial conducted at the Faculty of

Tropical Medicine, Mahidol University, and approved by the

ethics committee of the Faculty of Tropical Medicine, Mahidol

University, Bangkok, Thailand.

Quantitation of MPs Using Flow Cytometry. A specific

marker for phospholipid PS (fluorescein isothiocyanate [FITC]–

conjugated annexin V) and phycoerythrin (PE) –conjugated

anti-glycophorin A were used for identification of RMPs.

Plasma (30 lL) was mixed with 2 lL of FITC-conjugated

annexin V (Becton Dickinson Biosciences) and 2 lL of PE-

conjugated anti-glycophorin A (Becton Dickinson Biosciences).

These mixtures were incubated with 16 lL of binding buffer at

room temperature and protected from light for 15 min, after

which they were diluted with 1000 lL of binding buffer and

quantified by flow cytometry (FACsCalibur; Becton Dickinson

Biosciences) within 1 h by use of a modification of a flow-rate-

based assay reported elsewhere [13–15]. RMPs were localized

within region R1 and were distinguished from debris by annexin

V– and glycophorin A–associated responses in the upper right

quadrant (Figures 1A and 1B). The absolute number of RMPs

was calculated using the following formula:

where # 5 (number of prebead RMPs 1 number of postbead

RMPs)/2 and K5 (dilution factor 3 calibration factor)/diluent

volume 5 2.9 3 1025 [15].

RMP Production in an In Vitro Culture of P. falciparum
Parasite Culture. The Thai laboratory strain of P. falcipa-

rum (TM267) was cultured in vitro at 3% hematocrit in Roswell

Park Memorial Institute 1640 medium (RPMI1640; ICN Bio-

medical) containing 10% human AB serum in a 5% carbon

dioxide environment at 37�C, as described elsewhere [16]. To

ensure synchronous parasite cultures, the samples were treated

with 5% sorbitol [17]. Culture supernatant was sampled every 6

h for detection of RMPs, and slides for microscopy were pre-

pared at each time point to assess parasitemia and parasite de-

velopment. Morphological criteria for the light microscopic

assessment of developmental stages of P. falciparum have been

described elsewhere [18].

Assessment of Parasitized Versus Nonparasitized Red Blood

Cells as the Source of RMPs. In contrast to unparasitized

red blood cells (RBCs), parasitized RBCs contain membrane-

associated ring-infected erythrocyte surface antigen (RESA) and

possibly other parasite-derived antigens, which can be identified

by immunofluorescence by use of plasma obtained from im-

mune P. falciparum–infected patients. Thus, MPs derived from

parasitized red cells, and also from cells that have been once

parasitized and then pitted, are RESA positive, and MPs derived

from erythrocytes that have never been parasitized are RESA

negative. RMPs in 5 mL of culture medium were prepared as

described above by 2-step centrifugation [10, 11]. Annexin V-PE

(Becton Dickinson Biosciences; catalogue no. 5165875X) and

Cy5-conjugated anti-glycophorin A (Becton Dickinson Bio-

sciences; catalogue no. 559944) was used to quantify the com-

bined fractions of RMPs as described above. Samples were fixed

with 100 lL of .05% glutaraldehyde for 30 min and then in-

cubated with 100 lL of plasma containing anti-RESA-positive

antibody for 30 min. Five microliters of cell suspension was then

labeled with 5 lL of FITC-conjugated human immunoglobulin

G (IgG; Dako; catalogue no. F0202), 5 lL of PE-conjugated

annexin V, and 5 lL of Cy5-conjugated anti-glycophorin A. This

mixture was subsequently incubated for 30 min at room tem-

perature and protected from light. After incubation, 1 mL of

diluted binding buffer solution (1:10 vol/vol in distilled water)

was added and the sample was analyzed by flow cytometry using

flow-rate-based calibration [15]. The origin of the RMPs was

identified by analysis of the forward scatter and side scatter
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patterns, which denote the RESA-positive IRBC-derived RMPs

as a fraction of the total number of RMPs (Figure 1C). The

fraction of RESA-positive RMPs was calculated using CellQuest

software version 3.3 (Becton Dickinson Biosciences). The con-

tribution of circulating parasitized erythrocytes to the total RMP

concentration was derived as follows: ratio of RMPs produced

by parasitized cells to RMPs produced by unparasitized cells 5

(RESA-positive RMPs/RESA-negative RMPs) 3 (100 2

parasitemia/parasitemia), where parasitemia is a percentage.

This estimate assumes RMPs are derived from the circulating

parasitized and unparasitized erythrocytes, and that there is

no significant contribution from previous generations of

parasitized cells.

Effects of Hemin on RMP Production
A stock hemin solution was freshly prepared at the beginning of

each experiment by dissolving .1 g of hemin chloride (Sigma) in

1 mL of .1 mol/L sodium hydroxide and 9 mL of phosphate-

buffered saline. The hemin solution was then diluted to 12.5, 25,

50, or 100 lg/mL with RPMI 1640 and used immediately. Blood

samples were obtained from healthy human volunteers by ve-

nipuncture into heparinized tubes and centrifuged at 1,100 g

for 10 min at 4�C. Plasma was removed and packed RBCs were

washed with RPMI 1640. After removal of the buffy coat, washed

RBCs were resuspended in hemin in concentrations ranging

from 12.5 to 100 lg/mL with a final hematocrit of 5% in the

presence or absence of 1 mg/mL N-acetylcysteine (Parvolex

injection; 200 mg/mL). RMPs were separated from RBC rem-

nants by centrifugation at 1,500 g for 15 min, and then the

supernatant was further centrifuged at 13,000 g for 2 min.

RMPs were quantitated by flow cytometry using the specific

RBC monoclonal antibody (PE-CD235; Beckman Coulter Im-

munotech) doubled with FITC-conjugated annexin V. Results

are expressed as the median (range) number of RMPs per

microliter.

Statistical Analysis
Statistical analyses were performed using the SPSS statistical

program (version 11.0; SPSS). Non-normally distributed pa-

rameters were compared using the Kruskal-Wallis and Mann-

Whitney U tests. Correlations were assessed by the method of

Spearman for non-normally distributed variables. A P value of

,.05 was considered to be statistically significant.

RESULTS

Quantification of RMPs in Patients with Malaria
A total of 36 patients with acute P. falciparum, Plasmodium

vivax, or P. malariae infection were studied. Baseline clinical

and laboratory characteristics are summarized in Table 1.

Patients with severe malaria had higher peripheral blood

parasitemia (P 5 .01), higher serum aspartate amino-

transferase (AST) levels (P 5 .01), and lower plasma glucose

levels (P 5 .01) compared with those of patients with

uncomplicated malaria (Table 2).

On admission, concentrations of RMPs were increased in all

malaria patients, with a median concentration in P. falciparum

malaria (n 5 29) of 457 RMPs/lL (range, 13–4,342 RMPs/lL),

in P. vivax malaria (n 5 5) of 409 RMPs/lL (range, 281–503

RMPs/lL), and in P. malariae malaria (n 5 2) of 163 RMPs/lL

(range, 127–200 RMPs/lL) compared with 8 RMPs/lL (range,

3–166 RMPs/lL) in healthy controls (n 5 11; P , .001)

(Table 3). The median RMP concentration in patients with

Figure 1. Flow cytometric quantitation of plasma red blood cell–
derived microparticles (RMPs) in blood samples from patients with
malaria. A, RMPs gated by size on a forward scatter and side scatter plot.
B, Only events included within gate M3 were further analyzed for
fluorescence associated with annexin V– and glycophorin A–positive
labeling. C, Analysis of the origin of RMPs with positive staining by anti–
ring-infected erythrocyte surface antigen (RESA) antibodies denoting
a parasitized red cell origin. RMPs were identified as either RESA positive
(M2) or RESA negative (M1).
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trauma was 208 RMPs/lL (range, 85–463 RMPs/lL; n5 6), and

that in patients with sepsis was 175 RMPs/lL (range, 125–205

RMPs/lL; n 5 6).

RMP concentrations in patients with severe falciparum ma-

laria (n 5 19) were higher than in patients with uncomplicated

falciparum malaria (n510), with a median concentration of 535

RMPs/lL (range, 13–4,342 RMPs/lL) versus 276 RMPs/lL

(range, 15–2,150 RMPs/lL), respectively (P5 .01) (Figure 2). In

patients with falciparum malaria, the concentration of RMPs

was correlated positively with the peripheral blood parasitemia

(rs 5 .73; P 5 .01).

After antimalarial treatment, the level of RMPs decreased

rapidly to ,400 RMPs/lL after 24 h and continued to decrease

further between days 3 and 14. Nevertheless, the median RMP

concentrations still remained above reference levels at 14 d after

the start of antimalarial treatment (median, 96 RMPs/lL [range,

9–921 RMPs/lL] for all groups) (Figure 3). The origin of the

RMPs in the plasma of severe malaria patients (N 5 5) was

investigated. If the contribution of previous generations of

parasitized cells and schizont rupture is ignored, and if RESA-

positive RMPs are assumed to come from the circulating

parasitized erythrocytes, then each parasitized erythrocyte

contributed a median of 13 (range, 4–68) times more MPs than

each unparasitized cell.

Release of RMPs During Parasite Development
RMP concentrations were assessed every 6 h in the supernatant

of a synchronized P. falciparum in-vitro culture (N 5 5) and

analyzed in relation to parasite stage of development. RMP

production in vitro increased as the parasites matured, with

lower-level production in ring-stage-infected RBCs (median

resulting concentration, 200 RMPs/lL [range, 168–220 RMPs/

lL] increasing to 390 RMPs/uL [range, 369-498 RMPs/uL];

P 5 .01 for trend). The fraction of RMPs derived from infected

Table 1. Baseline Characteristics of Enrolled Patients with Plasmodium falciparum, Plasmodium vivax, and Plasmodium malariae
Infection

Characteristic Patients with PF (n 5 28) Patients with PV (n 5 5) Patients with PM (n 5 2)

Parasitemia, parasites/lL 37,077 (400–1,180,690) 10,500 (4,635–28,109) 6,029 (3,818–8,239)

Hematocrit, % 37.7 (14.5–44.7) 37.3 (24.10–41.80) 31.6 (30.4–32.8)

Hb level, g/dL 12.4 (4.8–15.4) 12.8 (7.6–14) 11 (10.5–11.5)

AST level, IU/L 44 (13–184) 35 (25–50) 36 (19–53)

ALT level, IU/L 36 (17–126) 26 (16–37) 35 (32–38)

Serum bilirubin level, mg/dL 1.17 (.11–18.37) .46 (.2–.78) .5 (.21–.79)

Total bilirubin level, mg/dL 2.52 (.63–23.86) 1.26 (.84–2.22) 1.39 (.74–2.04)

BUN level, mmol/L 21 (8–85) 16 (10–138) 12.5 (9–16)

Creatinine level, lmol/L 1.1 (.6–3.98) .99 (.62–.99) .94 (.92–.95)

Glucose level, mmol/L 6.6 (4.3–13.1) 7.1 (5.2–8.7) 6.2 (5.9–6.4)

Plasma lactate level, mmol/L 4.39 (2.45–12.70) NA NA

NOTE. Data are median (range) values. ALT, alanine aminotransferase; AST, aspartate aminotransferase; BUN, blood urea nitrogen; Hb, hemoglobin; NA, not

available; PF, P. falciparum infection; PM, P. malariae infection; PV, P. vivax infection.

Table 2. Baseline Characteristics of Enrolled Patients With Uncomplicated Falciparum Malaria and Severe Falciparum Malaria

Characteristic Patiens with UM (n 5 10) Patients with SM (n 5 18)

Parasitemia, parasites/lL 14,821 (1,160–92,115) 314,654 (139,332–489,975)a

Hematocrit, % 37.8 (28.6–42.8) 34 (30–39)

Hb level, g/dL 12.4 (8.9–14.8) 11.63 (9.98–13.27)

AST level, IU/L 23 (13–46) 75 (51–98)a

ALT level, IU/L 28 (17–41) 52 (36–69)

Serum bilirubin level, mg/dL .35 (.11–.89) 2.47 (.73–18.37)a

Total bilirubin level, mg/dL 1.2 (.63–2.24) 5.95 (1.65–23.86)a

BUN level, mmol/L 17 (8–24) 32 (21–43)a

Creatinine level, lmol/L .86 (.65–1.27) 1.17 (.8–1.55)

Glucose level, mmol/L 6.4 (4.3–13.1) 6.8 (5.9–7.8)

Plasma lactate level, mmol/L 3.78 (3.03–6.18) 6.58 (3.15–12.7)a

NOTE. Data are median (range) values. ALT, alanine aminotransferase; AST, aspartate aminotransferase; BUN, blood urea nitrogen; Hb, hemoglobin; SM, severe

falciparum malaria; UM, uncomplicated falciparum malaria.
a aP , .01 compared with patients with UM.
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red blood cells in vitro, defined as RMPs positively staining with

both annexin V and anti-RESA antibody plus FITC-conjugated

IgG, was overall 39% of the total RMPs. In synchronized culture

(5% parasitemia and 5% hematocrit), the mean proportion of

the total RMPs positively staining with anti-RESA was 39% (SD,

2%) for ring-stage parasites, 31% (SD, 8%) for trophozoite-

stage parasites, and 39% (SD, 5%) for schizont-stage parasites.

After schizont rupture, the mean proportion of RMPs positively

staining with anti-RESA was 47% (SD, 4%). The mean pro-

portion of RMPs released by infected cells compared with that

released by uninfected cells was estimated to be 12 (SD, 1) for

the ring stage, 9 (SD, 3) for the trophozoite state, 12 (SD, 3) for

the schizont stage, and 17 (SD, 1) after schizont rupture.

Release of RMPs After Hemin Treatment
Uninfected red blood cells were incubated with hemin (12.5–100

lg/mL) for 2–6 h in the presence or absence of the antioxidant

N-acetylcysteine in a concentration of 1 mg/mL. RMP pro-

duction increased with increasing hemin concentrations and

was maximal after incubation with 100 lg/mL of hemin expo-

sure in the supernatant for 6 h with a median concentration of

700 RMPs/lL (range, 638882 RMPs/lL). This effect was in-

hibited when the red blood cells were incubated concomitantly

with N-acetylcysteine (1 mg/mL) and hemin (P 5 .01).

DISCUSSION

This study quantifies circulating RMPs during malaria infection.

Plasma RMP concentrations were increased in patients with

falciparum malaria in proportion to disease severity, and were

also increased in patients with P. vivax and P. malariae in-

fections, although to a lesser extent. RMP concentrations were

also higher in patients with severe malaria than in patients with

trauma or severely ill in sepsis. Concentrations of RMPs de-

creased 24 h after initiation of antimalarial drug treatment, al-

though in patients with P. falciparum malaria, the circulating

RMP levels remained increased for 2 weeks after the start of

antimalarial treatment. In contrast, in patients with P. vivax and

P. malariae infections, MPs concentrations were lower and de-

creased to baseline levels within 2 weeks after the start of

treatment. Removal by the spleen is likely to be the most im-

portant contributor to the clearance of RMPs from the circu-

lation, since it has been shown that splenectomized malaria

patients have increased levels and prolonged circulation of MPs

[7]. During malaria infection the spleen enlarges and is acti-

vated, increasing its clearance capacity [19]. Cells and particles

that express PS on their surface are removed by the splenic

reticuloendothelial system. The liver and the lungs can also

contribute to the clearance of RMPs as has been shown in

a murine animal model [20]. The production of RMPs in

Table 3. Total Red Cell–derived Microparticles in Patients With Severe Falciparum Malaria, Nonsevere Falciparum Malaria, Vivax
Malaria, or Malariae Malaria and Healthy Subjects

No. of red cell–derived microparticles, median (range)

Day Patients with SM Patients with UM Patients with PV Patients with PM Healthy subjects

0 535 (13–4,342)a 276 (15–2,150)a 409 (281–503)a 163 (127–200)a 8 (3–166)

1 269 (41–1,979)a 150 (33–360)a 47 (14–266)a,b 122 (114–130) NA

2 159 (16–524)a 96 (33–478)a 162 (24–369)a,b 268 (NA) NA

3 146 (28–963)a,b 84 (13–759)a 52 (38–316)a,b 155 (134–175) NA

5 115 (35–476)a,b 156 (7–1,387)a 121 (11–774)a,b 102 (100–105) NA

7 112 (35–1,830)a,b 38 (9–317)a,b 49 (13–808)a,b 125 (46–205) NA

14 156 (9–921)a,b 45 (10–410)a,b 18 (6–64)b 48 (NA) NA

NOTE. NA, not available; PM, malariae malaria; PV, vivax malaria; SM, severe falciparum malaria; UM, nonsevere falciparum malaria.
a P , .05 compared with healthy subjects.
b P , .01 compared with value on admission day (day 0).

Figure 2. Plasma red blood cell–derived microparticles in blood
samples collected at admission from healthy subjects, patients with
uncomplicated Plasmodium falciparum infection (UM), patients with
severe P. falciparum infection (SM), patients with Plasmodium vivax
infection (PV), and patients with Plasmodium malariae infection (PM).
*P , .001 compared with healthy subjects. Data are represented as the
mean (6 SD).
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a P. falciparum in vitro culture system was increased during the

latter stages of the parasite asexual life cycle. Parasitized cells

produced considerably more RMPs per cell at all stages of de-

velopment than did unparasitized cells both in vivo and in vitro.

It was estimated that parasitized red cells contributed �13 times

more RMPs than do uninfected red cells in severe malaria. This

is consistent with other observed changes in URBCs during se-

vere malaria infections, which include a marked reduction in

their deformability [21]. RMP production by URBCs could be

mediated by the release of malaria heme products at the schizont

rupture, which is also one of the proposed mechanisms for the

reduction in uninfected red cell deformability. We showed that

hemin induces the production of RMPs in a concentration- and

time-dependent manner. This is probably mediated through an

oxidative mechanism, since the antioxidant N-acetylcysteine

almost completely blocked RMP production. Oxidative stress

is increased during malaria infection and is thought to be

generated by both malaria heme products and the host immune

response [22, 23].

It has been shown in previous studies that PS is expressed on

the outer membrane leaflet in IRBCs and that PS expression is

related to parasite maturation [24, 25], which suggests that the

vesiculation process leading to MP formation is related to active

red cell membrane changes induced by the growing parasite.

Studies by Lang and colleagues [26] showed that infection of

RBCs by P. falciparum leads to activation of several distinct

anion channels and a nonselective, Ca21-permeable cation

channel. These channels could be activated by oxidative stress

generated by the parasite. Similar or identical channels are ac-

tivated by oxidation of noninfected erythrocytes [22]. Activation

of the nonselective cation channel allows entry of Ca21 and Na1,

both of which are required for intracellular growth of the par-

asite. Entry of Ca21 is known to stimulate a phospholipid

scramblase, which is a protein responsible for the bidirectional

phospholipid migration across the lipid bilayer, resulting in

breakdown of the PS asymmetry of the cell membrane. The

exposure of PS at the outer surface of the cell membrane could

be followed by binding to PS receptors on macrophages and

subsequent phagocytosis of the affected RBCs [1, 5]. Mainte-

nance of the normal asymmetry by vesiculation may represent

an important parasite strategy to avoid recognition and de-

struction by the host reticuloendothelial system [27, 28]. This

study identifies different sources of plasma RMPs in patients

with malaria and reconfirms the relationship of plasma RMP
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Figure 3. Plasma red blood cell–derived microparitcle (RMP) concentrations in malaria patients with severe Plasmodium falciparum infection (A),
uncomplicated P. falciparum infection (B), and Plasmodium vivax infection (C) following antimalarial drug treatment. Data are represented as the
mean (6 SE).
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concentrations with disease severity. Parasite maturation evokes

the release of RMPs from infected erythrocytes, whereas the

quantatively more important production of RMPs from

uninfected erythrocytes might be triggered by an oxidative-

stress-related mechanism through heme exposure.
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