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Abstract
Background—The P-value approach has been employed to prioritizing genome-wide
association (GWA) scan signals, with a genome-wide significance defined by a prior P-value
threshold, although this is not ideal. A rationale put forward is that the association signals rather
should be expected to give less support for single nucleotide polymorphisms (SNPs) that are rare
(with associated low-power tests) than for common SNPs with equivalent P-values, unless
investigators believe, a priori, that rare causative variants contribute to the disease and have more
pronounced effects.

Methods—Using data from a GWA scan for type 2 diabetes (1924 cases, 2938 controls, 393 453
SNPs), we compared P-values with four alternative signal measures: likelihood ratio (LR), Bayes
factor (BF; with a specified prior distribution for true effects), ‘frequentist factor’ (FF; reflecting
the ratio between estimated—post-data— ‘power’ and P-value) and probability of pronounced
effect size (PrPES).

Results—The 19 common SNPs [minor allele frequency (MAF) among the controls >29%]
yielding strong P-value signals (P<5×10−7) were also top ranked by the other approaches. There
was a strong similarity between the P-values, LR and BF signals, in terms of ranking SNPs. In
contrast, FF and PrPES signals down-weighted rare SNPs (control MAF<10%) with low P-values.

Conclusions—For prioritization of signals that do not achieve compelling levels of evidence for
association, the main driving force behind observed differences between the various association
signals appears to be SNP MAF. The statistical power afforded by follow-up samples for
establishing replication should be taken into account when tailoring the signal selection strategy.
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Introduction
Since the advent of genome-wide association (GWA) studies, enormous amounts of data
have been generated and, thereby, many potential routes to further identification of genes
involved in common and complex human diseases are open. Potential risk genes have
primarily been selected for follow-up on the basis of their very high statistical significance
(top-ranking variants). A genome-wide significance is typically defined by means of a prior
P-value threshold. Consideration of the false-positive report probability1 leads to a simple
mathematical formula for assessing a significance threshold for ‘strong’ signals2:

(1)

This approach simplifies the analysis by assuming a binary choice between ‘true
association’ corresponding to a fixed effect size for a single nucleotide polymorphism (SNP)
and ‘no association’ (corresponding to the null effect). By interpreting power as the mean
power across SNPs—calculated based on the specified, fixed effect size for true association
—an a priori genome-wide significance threshold is thereby obtained (hence, the variation in
power across the SNPs is not taken into account). For example, with the prior odds of a true
association at any specified loci of the order of 100 000 : 1 against and 50% power, a P-
value threshold of 5×10−7 implies that the posterior odds in favour of a strong signal being a
true association would be 10 : 1, that is, 106 times higher than the prior odds. However, it
has been acknowledged that a genome-wide significance is not ideal.2 A rationale put
forward is that the association signals rather should be expected to give less support for rare
SNPs (with associated low-power tests) than for common SNPs with equivalent P-values,
unless investigators believe, a priori, that rare causative variants contribute to the disease
and have more pronounced effect sizes.2 In fact, the statistical power at a fixed effect size
can be affected markedly by the risk allele frequency. In reporting power for GWA studies,
it is a common practice to assume that the causal variant, or an SNP in perfect linkage
disequilibrium (LD) with it, is typed. Table 1 demonstrates the strong influence of risk allele
frequency on power.

The problem of sorting out false-positive association signals and reducing false-negative
ones provides a crucial challenge for GWA studies.3 The process of achieving convincing
statistical support for risk alleles from GWA studies includes two important tasks: (i)
ranking the association signals, to provide a prioritization list of SNPs for replication
studies; and (ii) calibrating inference to make a decision on whether a genetic variant is
associated with the disease or not.4,5 As we pointed out above, the P-value approach has
commonly been used for ranking SNPs in GWA studies. Moreover, consideration of the
false-positive report probability [Equation (1)] has provided a calibration method in some
studies—the list of ‘strong’ signals has thereby been decided.2 Further feasible statistical
approaches to accomplishing these tasks exist. The frequentist and Bayesian paradigms offer
different statistical frameworks.5,6 There are also differences between the statistical tools
based on hypothesis testing (addressing the question ‘Is there a significant association?’)7,8;
likelihood ratio (LR) (‘What degree of evidence for an association do the observed data
provide, considering a specified alternative hypothesis for calibrating inference?’)6; Bayes
factor (BF) (‘What degree of evidence for an association do the observed data provide,
considering a prior distribution for true effect sizes?’)4,5 and effect estimation (‘What can
we say about the effect size?’).9

We here address the question ‘How should investigators take into account the fact that the
associations at different SNPs are estimated with a different precision (which relates to
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varying power for a true association) when ranking GWA scan signals?’ by considering
empirical data. Hence, our focus is on ranking of candidate SNPs in terms of evidence,
rather than on calibrating inference. We compare association signals provided by P-values
with three association signal measures reflecting degree of evidence for an association [LR,
BF and ‘frequentist factor’ (FF)] and one estimation-based measure [probability of
pronounced effect size (PrPES)]. Some of the signal measures rely on some form of prior
assumption about true effect sizes; we underline that our prior assumptions about potential
effect sizes are similar across the candidate SNPs—in particular, we do not assume, a priori,
that rare causative variants have more pronounced effect sizes than common causative
variants.

Materials and Methods
Empirical data

To compare the different types of association signals (described further), we used data from
a high-density GWA scan (with Affymetrix GeneChip 500K Mapping Array Set) for type 2
diabetes from the Wellcome Trust Case Control Consortium.2,10 This data set incorporates
1924 cases and 2938 controls, with data on 393 453 SNPs passing quality control.10 Briefly,
both samples and SNPs were subjected to quality control. At the SNP level, quality control
checks included deviation from Hardy–Weinberg equilibrium (P<10−4 in cases or controls),
minor allele frequency (MAF) (<1%) and call rate (call rate <95% for SNPs with MAF
>5%, call rate<99% for SNPs with MAF <5%).

P-values and genome-wide significance
The P-values were obtained from the Cochran–Armitage test for trend.11 The log-additive
disease model seems plausible for each potentially influential SNP.10 The P-value quantifies
the discrepancy between observed data and the null hypothesis of no effect (H0), as the
probability of results being as discrepant or more so, given H0. Signals with P<5×10−7 have
been labelled as ‘strong’, with consideration to Equation (1) above.2 Signals with P-values
between 1×10−5 and 5×10−7 have been labelled as ‘moderate’ evidence of association.2 In
our present investigation, we go further down the significance distribution and report the
association signals for the SNPs with P<0.001.

LR signals
For each SNP, we used a logistic regression model for the likelihood Pr(data|γ, μ) where the
log-odds for the disease is equal to μ + γZi. Zi denotes the genotype (coded as 0, 1 or 2) for
individual i. The effect parameter γ represents the per-allele change in the log-odds of the
disease, predicted towards the minor allele. The parameter μ represents the baseline log-
odds of the disease (taking into account that the number of cases has been elevated
artificially in the case–control design). The LR is obtained from the observed association
data and takes the form

where  is the maximum likelihood estimate of γ and  is the estimated baseline log-odds.
An LR is calculated by the ratio of densities at  and 0, respectively, from a normal
distribution with mean  and standard deviation (SD) equal to the standard error (SE) of .
12
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An LR signal for a candidate SNP is given by log10(LR). Clearly, we obtain more evidence
against the null hypothesis in favour of the conventional (maximum likelihood) effect size
estimate by increasing the LR signal.

BF signals
The BF has been proposed as an alternative to P-values for prioritization of association
signals in GWA studies.2,4,5 The BF is obtained from the observed association data and,
here, takes the form Pr(data|M1)/ Pr(data|M0) [rather than the conventional, inverted form
Pr(data|M0)/ Pr(data|M1)]4,5; Pr(data|Mk)=∫Pr(data|θk, Mk)dθ, where θ=(γ, μ) denotes the
parameters for prior model Mk (k=0, 1). Bearing in mind that we restrict attention to the log-
additive effect model, M1 denotes a statistical model reflecting the assigned prior
distribution for the effect sizes of every copy of a given allele on the log-odds of the disease,
conditional on the existence of an association. We use N(0, 0.2) prior distribution on the
effect parameter γ, which has been suggested.2 We reinforce that we focus on a specific BF,
with the same effect size model M1 for all SNPs. M0 denotes the statistical model under the
null effect (γ=0). Moreover, calculation of the BFs requires a prior distribution on the
baseline log-odds parameter μ; we use N(0, 1) distribution for μ, which have been suggested
(the resulting BFs are relatively insensitive to this choice of prior).2

A BF signal is given by log10(BF). A larger BF signal indicates more evidence against the
null effect model M0 in favour of the alternative model M1. The BF signals were obtained
from the software package SNPTEST (http://www.stats.ox.ac.uk/~marchini/software/gwas/
snptest.html).

FF signals
Wacholder et al.,1 who proposed consideration of the false-positive report probability,
primarily addressed the a priori choice of an appropriate significance threshold for
classifying noteworthy association signals, Equation (1). They also described how to
calculate the false-positive report probability based on observed data. Such post-data
calculation is performed by substituting the observed P-value in place of the predetermined
significance threshold and recalculating the power for the predetermined alternative effect
size but with the precision (SE) of the obtained effect (γ) estimate. Hence, this post-data
‘power’ is conceptually different from the conventional power calculated for predetermined
significance level (not the observed P-value), sample size and SNP MAF (as in Table 1).
Based on the genotype counts for the cases and controls, respectively, for each candidate
SNP, the ratio

referred to as the FF, can be used for ranking SNPs. We reinforce that the alternative effect
for the post-data ‘power’ calculations should be fixed a priori.1 For demonstration, we
estimated the post-data ‘power’ for two alternative effect sizes: (i) eγ [i.e. per-allele OR
predicted towards the minor allele]=1.15 and (ii) eγ =1.30.

The FF can be viewed as a BF variant and has also been referred to as the false-discovery
rate BF.13 The FF is similar, but not identical, to the BF, as thoroughly discussed by
Wakefield.4

An FF signal is given by log10(FF).
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PrPES signals
PrPES signals are obtained from a semi-Bayes estimation-based procedure.9 First, the log-
additive effect size of each candidate SNP, together with its 95% confidence interval (CI), is
estimated conventionally (i.e. without specifying any prior distribution on γ). Secondly, a
semi-Bayes method is used; adjusting the conventional effect size estimates.14 Such
adjustments pull outlying effect size estimates towards the null effect and lead to narrower
95% CIs than with the conventional estimation method.9,14,15 Conventional effect size
estimates that are biased away from the null can be expected in GWA studies, in particular
for rare variants with low P-values.16 Thirdly, the PrPES signal is calculated for each
candidate SNP, based on a pronounced effect size (PES) magnitude, which should be
specified a priori. An appropriate PES magnitude should be related to the prior assumption
about the effect size variability across all SNPs, which is used for the semi-Bayes method
(as described below). We considered two reasonable PES magnitudes: (i) e|γ|>1.15 (i.e. eγ,
predicted towards the minor allele, >1.15 or <1/1.15=0.870) and (ii) e|γ|>1.10. (The reason
for the discrepancy between our choice of the latter PES magnitude and our alternative (ii)
e|γ|=1.30 used in the FF approach is further addressed in Discussion.)

The PrPES approach relies on three prior assumptions/specifications. First, the true effects
of the SNPs are assumed to be exchangeable a priori. The exchangeability assumption
implies that we offer about the same prior guess with about the same effective sample size
for all SNP-specific effect size parameters, γ1, γ2, …, γN (N=393 453 in our application).17

This assumption essentially means that we offer an uncertain and qualitative prior guess
about the similarity of the effects of the SNPs, without saying that effect size parameters are
really equal; without seeing the data, we cannot grade the SNP-specific effect sizes.17

Secondly, the true values on the effect size parameters γ1, γ2, …, γN are approximately
normally distributed centred at the overall average effect. Thirdly, a prior variance of the
true values on γ1, γ2, …, γN is specified; this variance is denoted VT. VT should not
exceed the ‘observed’ sample variance of the effect parameter estimates, VO (Appendix 1).
We point out that VT should be much lower than the variance specified for the true effect
model, M1, in the BF approach [i.e. variance 0.04 (0.22)], as M1 is specified conditional on
the existence of an association. Our primary choice on VT=0.00155, which implies that we,
a priori, expect a fraction of 0.36×10−5 of the true individual ORs (eγ) to fall >1.20 or
<1/1.20=0.833, provided a null overall average effect. In some respect, that choice of VT is
in line with the indicated prior viewpoints in the present GWA study: a probability of the
genome-wide existence of an association in the order of 100 000 : 1 against and, moreover,
N(0,0.2) prior distribution on γ—yielding eγ >1.20 or <0.833 with probability 0.36—
conditional on the existence of an association.2 We also performed sensitivity analyses by
varying VT.

Technical details for the PrPES approach are given in Appendix 1.

Results
P-values

Out of the 393 453 candidate SNPs, 651 have P<0.001. We observe 19 strong signals, that
is, with P<5×10−7. These 19 SNPs are common in the study population, with MAFs among
the controls >29%.

LR signals
The LR signals yield virtually the same picture—reflecting the degree of evidence against
the null hypothesis across the 651 SNPs examined—as the P-values (Figure 1a).
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BF signals
There is also very close agreement between the P-values and BF signals (Figure 1b). Thus,
no substantial difference in the primary prioritization list (based on P-values) is provided by
the BF approach.

FF signals
For SNPs with equivalently low P-values, the FF signals down-weight rare SNPs (Figure 1c
and d), due to the fact that the effect estimates for rare SNPs have relatively weak precision
and, therefore, lower post-data ‘power’. Naturally, the usage of the larger alternative effect
(e|γ|=1.30) implies higher post-data ‘power’ and therefore provides stronger FF signals
(Figure 1c vs d).

PrPES signals
The conventional eγ estimates across the 393 453 candidate SNPs range between 0.522 and
1.879, with an observed sample variance (VO; Appendix 1) equal to 0.003. With the prior
variance VT=0.00155, the semi-Bayes adjusted eγ estimates range between 0.909 and 1.150.
Outlying estimates for rare variants were pulled notably more towards the null effect than
outlying estimates for more common variants; for candidate SNPs with control MAF up to
10%, the semi-Bayes adjusted eγ estimates range between 0.940 and 1.081.

The PrPES signals also imply the same list of top ranking variants (Figure 1e and f). The
PrPES signals for the higher PES magnitude (e|γ|>1.15) are generally weak and yield only
marginal down-weighting of rare variants (Figure 1e). For the lower PES magnitude
(e|γ|>1.10), the PrPES signals are naturally stronger and yield marked down-weighting of
rare variants (Figure 1f). Varying PES magnitude had some influence on the ranking—
Spearman’s rank correlation coefficient rS=0.806 between the PrPES signals (n=651) for the
two alternative PES magnitudes at VT=0.00155.

The sensitivity analyses confirmed that PrPES signals for the 651 SNPs (with P<0.001) were
strengthened by increasing VT. We found that the order of the PrPES signals was affected
marginally by varying VT (rS≥0.966 when varying our primary choice VT=0.00155 by
±20%, with e|γ|>1.15 as the PES magnitude; and rS≥0.979, with e|γ|>1.10 as the PES
magnitude). Even an extreme prior assumption about effect variability did not change the
ranking substantially (e.g. rS=0.919, VT=VO=0.003, vs VT=0.00155, with e|γ|>1.10 as the
PES magnitude).

Robustly replicating loci and examples of SNPs with notably different results
There are now a few robustly replicating type 2 diabetes loci (n=19: rs864745; rs12779790;
rs7961581; rs7578597; rs4607103; rs10923931; rs10946398; rs5015480; rs10811661;
rs757210; rs4402960; rs13266634; rs7901695; rs5219; rs1801282; rs10830963;
rs10010131; rs2237892 and rs8050136).18 We have checked if these SNPs were included in
the association signals considered in our present investigation (i.e. among the 651 SNPs with
P<0.001); seven SNPs in the list above were included (Table 2). Those seven robustly
replicating SNPs are common in the study population, with MAFs among the controls
>16%. Two robustly replicating SNPs were observed among the 19 strong signals
(P<5×10−7) in this original GWA scan (rs7901695 and rs8050136; Table 2). For the other
included SNPs that did not achieve strong evidence for association, but which have gained
increased evidence by replication studies, the various signal measures did not give
dramatically different support (Table 2; we address differences in results below). The
remaining 12 SNPs listed above were not in LD with any of the 651 SNPs with P<0.001.
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Table 2 also gives examples of rare SNPs (rs657317 and rs12086219) that were notably
down-ranked by using the FF (with the alternative eγ=1.15) and PrPES (with the PrPES
magnitude e|γ|>1.15) approaches, as compared with the P-value, LR and BF approaches.
Hence, the FF and PrPES approaches could sort out rare SNPs from a prioritization list
provided by ranking P-values, LR or BF signals. Moreover, there are examples of SNPs for
which the FF and PrPES signals, respectively, yield notably different ranks (Table 2). For
the specified alternative hypothesis (eγ=1.15), the FF approach yields less support (in terms
of ranking) than the PrPES approach for a SNP with a conventional effect size estimate
evidently >1.15 (or <1/1.15=0.87); yet, the semi-Bayes adjusted effect estimate provides
relatively strong support for a pronounced effect (rs10806665; Table 2). In contrast, the FF
approach yields stronger support than the PrPES approach for a SNP with a conventional
effect size estimate ~1.15 (or 1/1.15=0.87) (e.g. rs864745; Table 2). One should bear in
mind that many association signals by each different measure are dense (Figure 1); in
particular, signals by each measure are very similar whenever they relate to very similar
likelihood-based estimation results of the effect parameter γ (ignoring direction of effect).

Discussion
Our investigation, based on a single GWA data set, indicates that the selection of the top
ranking variants—the common SNPs yielding strong signals—is robust against the choice of
signal measure. For prioritization of signals that do not achieve compelling levels of
evidence for association, the main driving force behind observed differences between the
various association signals appears to be SNP MAF. Rare SNPs with low P-values were
down-weighted by using the FF and PrPES approaches; so far, these approaches have not
been favoured in practice. The requirement for specifying an alternative in some form,
which is not needed for the calculation of a P-value, may have been a practical obstacle.
Nevertheless, the statistical power afforded by follow-up samples for establishing replication
should be taken into account when tailoring the signal selection strategy.

Performance of the LR approach
The LR approach relies on sound evidential framework theory, dictated by the Law of
Likelihood.6 For calibrating inference, the evidential likelihood approach means that the null
hypothesis and a simple alternative hypothesis (with a fixed effect size) are considered in the
design stage and then error probabilities are calculated in order to find a cut-off for the
likelihood ratio.6 Notwithstanding that aspect, for ranking the association signals after data
collection (as we focus on in this article), the LR and P-value approaches can be expected to
give similar results. The P-values from the Cochran–Armitage test for trend and the
likelihood ratio test (with the null hypothesis γ=0) are asymptotically equivalent.11,12

Performance of the FF approach
The FF approach simplifies the analysis by restricting true associations to a fixed effect size.
The FF signals have conceptual drawbacks and theoretical deficiencies because the
calculation ignores information by conditioning on the observed P-value.4,19 We point out
that the post-data ‘power’ (for a specified alternative)—the numerator of the FF—is lower
for an SNP with larger effect size estimate than for an SNP with equal precision but a lower
effect size estimate [because the P-value (significance threshold) is lower for the former
SNP]; that behaviour of a ‘power’ seems irrational. Nevertheless, we think that FF signals
merit consideration in GWA scans due to their straightforward performance: down-
weighting rare SNPs at a fixed P-value.
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Performance of the BF approach
The BF approach relies on sound statistical theory taking into account some reasonable prior
belief about the effect size distribution. We think that this Bayesian framework is attractive
for prioritization of association signals. However, we found that rare SNPs with low P-
values were not down-weighted by the suggested BF approach (under the given prior model
M1 for the effect parameter, which is independent of SNP MAF). Other GWA scan data
support our finding (supplementary figure 22 presented in ref.2). Recently published
theoretical results reveal that BF signals at a fixed P-value could, in a well-powered GWA
study, give ‘increasing’ support for an association by ‘decreasing’ SNP MAF (implying
decreasing precision of the effect estimate).20 On the one hand, the BF approach could yield
down-weighting of common SNPs at a fixed P-value because the evidence for alternative
effect model M1 might not be strong—although the data are unlikely under the null effect
model M0, they are unlikely under M1 also.20 On the other, the P-value approach under
small data departures from the null hypothesis yields small P-values, provided a high
precision of the effect estimate. In a well-powered GWA study, the data might yield
pronounced (conventional) effect size estimates with fairly high precision, implying only
minor bias away from the null,16 for some influential, rare SNPs. It appears that the BF
approach starts to up-weight the support for rare SNPs, relative to common SNPs with
equivalent P-value, at a certain sample size.20 However, the sample size required for up-
weighting of rare SNPs is likely to be sensitive to the prior specification of the effect size
model M1 (here, assumed to be independent of MAF).

The suggested BF approach could theoretically yield marked down-weighting of rare SNPs
at a fixed P-value (if the corresponding effect size estimates are far away from the null).
Such results seem to be exceptional in GWA studies of similar size as we considered [we
did not observe marked down-weighting of any rare SNP with P<0.001 by the BF approach,
although it has been observed for a few rare SNPs in a GWA scan with the same controls
but another case series (supplementary figure 22 presented in ref.2)].

Considerations concerning the PrPES approach
A PrPES signal is directly linked to the effect size estimates obtained after the semi-Bayes
adjustments of the conventional effect size estimates. Importantly, the pronounced
(conventional) effect size estimates are first adjusted downward (towards the null) by the
semi-Bayes method. Downward adjustment of extreme, conventional effect estimates is
justified, because the estimation results for claimed positive associations are affected by a
selection/ascertainment bias referred to as ‘winner’s curse’ (upward bias).16,21–23 Shrinkage
of the conventional effect estimates by ‘regression towards the mean’ has therefore been
advocated for designing replication studies.22 Hence, a positive feature of the PrPES
approach is that investigators obtain useful information for specifying reasonable effect sizes
when dimensioning replication studies. (The Bayesian approach used for calculating BF
signals can also yield simple effect size estimate along with credibility intervals.)

Nevertheless, the calculation of PrPES signals raises some issues of concern. The semi-
Bayes method relies on the prior belief about the effect sizes, given by VT under the
exchangeability assumption (subsequently, we address modifications of the exchangeability
assumptions). In our present investigation, with VT=0.00155 as the primary choice, the
semi-Bayes adjustments yielded a strongly pronounced stabilization of outlying effect
estimates (towards the null effect) for rare SNPs with low P-values. We found that the
ranking of the PrPES signals was fairly insensitive to the choice of VT. An additional
concern is the prior choice of the PES magnitude—the alternative effect size in the FF
approach seems to be an analogous choice. One should bear in mind, however, that an
appropriate PES magnitude should be related to the prior assumption about the effect size
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variability, VT. For example, an effect size of eγ=1.30, which has been considered in
statistical power calculations for GWA scans,2 provides an overly optimistic PES magnitude
for our primary VT=0.00155, because the expected effect sizes are of lower magnitudes. We
advocate the use of a low PES magnitude, which should imply marked variation of PrPES
signals.

Rare variants and prior belief modifications
Rare variants are likely to play an important role in complex disease susceptibility.
However, for the purposes of prioritizing genome-wide scan association results for follow-
up genotyping, we strongly believe that it may be preferable to at least initially pursue
common variant associations. The reason behind this rationale is that lower minor allele
frequencies do affect power (given modest effect sizes). Replication of such signals would
necessitate difficult-to-achieve large numbers of follow-up samples, which most researchers
do not have readily available for first-pass replication efforts.

In order to obtain stronger support for rare SNPs, investigators need a better-powered GWA
study, different analytical approaches,24 or, alternatively, to put forward functional
arguments for giving stronger a priori support to rare SNPs. It is possible for investigators to
incorporate prior belief modifications, that is, different a priori weights to different classes
of SNPs, in the various prioritization approaches. By considering Equation (1), different P-
value thresholds—and different implications of FF signals—follow from different a priori
weights across the candidate SNPs. In the PrPES approach, it is possible to modify the
exchangeability assumption by assigning different VTs to different classes of SNPs [e.g.
considering if they are non-synonymous SNPs, genic SNPs (in particular in genes with a
potential function for the disease), SNPs in highly conserved regions or SNPs in LD with
many (or few) other SNPs], although such modifications have not been elaborated in
practice.9

In the BF approach, various choices of the prior model for true associations (M1) have been
suggested.20 An alternative model M1 proposed implies larger effect size at rarer MAFs.20

However, such an ‘effect-MAF dependence’ prior is questionable as a general rule, without
considering functional arguments. A somewhat different M1 is the ‘implicit P-value’ prior,
also for stronger effect sizes to be anticipated at lower MAFs—this prior is also dependent
of the sample size, which is undesirable.20 The ‘implicit P-value’ prior is theoretically
interesting because it yields identical rankings between (approximate) BFs and P-values.20

Analogously to the prior modifications suggested above for the PrPES approach, it is, in the
BF approach, possible to use a different prior variance (specified for the effect size model
M1) for different classes of SNPs.2 Such modification of the specific prior model M1 in the
BF approach that we have considered here (i.e. the same M1 for all SNPs) might be more
attractive than modifying M1 by considering SNP MAF solely.

Two remarks
We focused on the log-additive effect model. The approaches can be generalized to test/fit
disease models covering deviations from log-additivity.2 We point out that the PrPES
approach can be modified by considering the effect size corresponding to a dominant or
recessive disease model.

Finally, we stress that our results do not ‘validate’ the different methods, which would
require in-depth examination on the performances of the methods—through simulation
studies under various scenarios with the real prounounced effects in SNPs with high or low
allele frequencies. It is also of interest to study consistency of the different signal measures
based on data from replication studies.
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KEY MESSAGES

• There are alternatives to the commonly used P-value signal measure that should
be considered in practice.

• The main driving force behind differences in performance between the various
signal measures appears to be SNP MAF; the top ranking variants (common
SNPs) are robust against the choice of signal measure.

• Investigators should take into account the statistical power afforded by follow-
up samples for establishing replication when tailoring the signal selection
strategy.
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Appendix 1
A Bayesian shrinkage estimator in this context can be defined as25

where Bj is the shrinking coefficient (0≤Bj≤1),  is the adjusted (shrunk) estimate for

SNP j,  is the conventional effect estimate for SNP j and . the estimated mean
effect of all SNPs. In a semi-Bayes procedure, the shrinkage coefficient is14

where  is the estimated variance (squared standard error) of  and VT is the prior
variance of the true effects γ across all SNPs, assumed to be normally distributed. The
expression for the adjusted estimate for SNP j can therefore be written as

In other application areas,  is estimated as a weighted average (with wj as weights) of the
conventional effect estimates . In GWA scans, however, it is reasonable to set . Thus,
the previous expression simplifies to
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The observed variance of the distribution of the conventional effect estimates across all
SNPs is estimated as

where

since , this expression simplifies to

The prior variance VT should be chosen such that VT<VO. The huge number of SNPs
typically involved in GWA scan implies that the variance of the semi-Bayes adjusted effect
estimate  can be approximated by the asymptotic Bayes posterior variance25

With a prior and conventional effect estimates that are approximately normally distributed,
the posterior probability of pronounced effect can be calculated as

where Φ is the cumulative density function of the standard normal distribution, and ORhigh
and ORlow are the given effect sizes (e.g. ORhigh = 1:10 and ORlow = 0:909).
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Figure 1.
Scatter plots showing the five types of empirical association signals calculated for the 651
SNPs with trend P<0.001. The points are coloured according to the MAF among the controls
[black, MAF ≤10% (n=104); red, MAF>10% (n = 547)]. The horizontal reference line
denotes a prior P-value threshold of 5×10−7 [−log10(P-value)=6.3], derived by considering
the false-positive report probability (association signals with P<5×10−7 have been labelled
as strong evidence of association; ref.2). (a) P-values vs LR signals [i.e. log10(LR)]. (b) P-
values vs BF signals [i.e. log10(BF); BF obtained by considering a log-additive effect model,
with specified prior distributions on the model parameters, and the null effect model]. (c and
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d) P-values vs FF signals [i.e. log10(‘FF’); ‘FF’ reflecting the ratio between post-data
‘power’ (for the alternative effect size given in each panel) and P-value]. (e and f) P-values
vs PrPES signals [i.e. probabilities of pronounced effect size, defined as the per-allele OR,
predicted towards the minor allele, above or below given limits; per-allele OR estimated by
using (i) the log-additive effect model without specified prior distribution on the model
parameters and (ii) a semi-Bayes adjustment procedure]. The rank-correlations (Spearman)
equal 0.987, 0.969, 0.594, 0.836, 0.837 and 0.759 for the values shown in panels a, b, c, d, e
and f, respectively.
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Table 1

Statistical power at the significance level 5×10−7 for a candidate SNP in a GWA study with 2000 cases and
3000 unmatched controls, under three different disease models (single genetic marker effect), varying the
expected risk allele frequency among the controls (Hardy–Weinberg equilibrium assumed)a

Statistical power under given
disease model (OR)

Risk allele
frequency

Log-additive
(1.3b)

Dominant
(1.3)

Recessive
(1.3)

0.05 0.020 0.015 <0.001

0.10 0.170 0.095 <0.001

0.15 0.414 0.200 <0.001

0.20 0.625 0.277 <0.001

0.25 0.763 0.311 0.004

0.30 0.843 0.307 0.011

0.35 0.886 0.274 0.029

0.40 0.908 0.223 0.062

0.45 0.917 0.164 0.110

0.50 0.915 0.108 0.168

a
It is assumed that the causal variant, or an SNP in perfect LD with it, will be typed. The results were obtained by using the freely available

software program QUANTO (http://hydra.usc.edu/GxE/).

b
Per-allele odds ratio (OR).
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