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Abstract

Background
and aims

Simulations that integrate sub-models of important biological processes can be used to ask
questions about optimal management strategies in agricultural and ecological systems.
Building sub-models with more detail and aiming for greater accuracy and realism may
seem attractive, but is likely to be more expensive and time-consuming and result in more
complicated models that lack transparency. This paper illustrates a general integrated
approach for constructing models of agricultural and ecological systems that is based on
the principle of starting simple and then directly testing for the need to add additional
detail and complexity.

Methodology The approach is demonstrated using LUSO (Land Use Sequence Optimizer), an agricultural
system analysis framework based on simulation and optimization. A simple sensitivity analy-
sis and functional perturbation analysis is used to test to what extent LUSO’s crop–weed
competition sub-model affects the answers to a number of questions at the scale of the
whole farming system regarding optimal land-use sequencing strategies and resulting
profitability.

Principal results The need for accuracy in the crop–weed competition sub-model within LUSO depended to
a small extent on the parameter being varied, but more importantly and interestingly on
the type of question being addressed with the model. Only a small part of the crop–weed
competition model actually affects the answers to these questions.

Conclusions This study illustrates an example application of the proposed integrated approach for con-
structing models of agricultural and ecological systems based on testing whether complexity
needs to be added to address particular questions of interest. We conclude that this example
clearly demonstrates the potential value of the general approach. Advantages of this
approach include minimizing costs and resources required for model construction, keeping
models transparent and easy to analyse, and ensuring the model is well suited to address
the question of interest.
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Introduction
The issues of scale, detail and accuracy are important
questions when modelling plants in agricultural and eco-
logical systems, just as they are when modelling any
system (Soetaert and Herman 2008). The builder of a
process-based model of an agricultural or ecological
system is likely to be interested in using the model to
address particular management questions at the field
or farm scale. For example: What is the best amount of
nitrogen fertilizer to apply to this field, given that a
legume crop was grown last season and we have had
a certain pattern of rainfall so far this season? What is
the best way to allocate the land use across the farm
over the next few years and what profit is this likely to
result in? If I have grown a cereal crop 4 years in a
row, should I sow a cereal again next year? These ques-
tions are likely to be of different types, requiring answers
that may be quantitative or qualitative, simple or more
complex. But in constructing the model they hope will
help answer these higher-level questions, the modeller
will have to decide whether to represent underlying pro-
cesses at a greater or lesser level of detail. Aiming for
greater detail and accuracy may seem attractive in
terms of realism, but will almost always require more
investment of money, time and other resources. Is this
greater detail and accuracy necessary to address the
particular question of interest?

Process-based models represent the system of interest
in terms of interactions between underlying lower-level
objects or systems. For example, a crop growth modeller
might want to represent interactions between leaves,
roots and soil. The creator of a model always needs to
decide at what scale and level of detail to represent
these underlying processes. For example: Should plants
be represented as homogeneous layers of photosynthetic
material across the field with another series of layers of
roots within the soil, or rather as plants, individual leaves
or even individual cells? If layers are chosen to represent
plants in the field, then should the roots and soil be
represented in layers that are a metre in depth, a centi-
metre in depth or a millimetre in depth? Should time be
modelled at the scale of minutes, days or years?

Choosing to address underlying lower-level objects
and systems within a model at a greater level of detail
can help add to the credibility of the model, because
people tend to equate more detailed and finer-scaled
representation of biological processes with greater
‘realism’, especially in situations where the processes
are well understood. For example, since detailed
models of soil-water physics have been built and
tested (e.g. Ritchie 1972; Connolly et al. 2002; Suleiman
and Ritchie 2003; Stewart et al. 2006), basing a crop

growth model on a simpler soil-water model (e.g.
Probert et al. 1998; Oliver et al. 2009) instead of the
more complex model may reduce its credibility. Similarly,
people may have more confidence in a crop model that
uses a detailed model of photosynthesis (e.g. Johnson
and Thornley 1984) than in one that uses a simple
radiation-use efficiency approach (e.g. McCown et al.
1996; Keating et al. 2003). People may also tend to
believe that greater detail leads to greater accuracy.
On the other hand, choosing to address underlying
lower-level objects and systems at a lesser level of
detail has the great advantage of increasing the simpli-
city and transparency (in the sense of easily seeing how
each parameter influences model output) of the model,
thus potentially making it easier to construct, analyse,
adapt to new questions and communicate to others. A
modelling approach that focuses on the ‘top level’ of
the modelled system and does not represent underlying
lower-level objects, systems and processes may be
called a ‘top-down’ approach, while an approach that
focuses on representing the underlying lower-level
objects, systems and processes may be called a
‘bottom-up’ approach (Haefner 2005).

This paper first discusses the possibility of ‘middle-up’
approaches intermediate between the full ‘top-down’
and ‘bottom-up’ approaches, and of ‘meta-modelling’
approaches that can bridge these various approaches.
It then describes an integrated ‘as-simple-as-possible’
approach that can combine some of the advantages of
these different approaches. We explore and illustrate
this integrated approach using the example of a deter-
ministic agro-ecosystem-scale model called LUSO (Land
Use Sequence Optimizer) (Lawes and Renton 2010),
built to simulate the short- and long-term effects of
farm management decisions on ecological processes
affecting farm profit. For example, it simulates the
effects of land-use allocation decisions on weed popu-
lation dynamics over many subsequent years. LUSO
thus enables different management options to be eval-
uated while taking into account both their short- and
long-term implications. We summarize the LUSO model
and analysis framework, and show how it is currently
based on an intermediate ‘middle-up’ approach. Next
we focus on the field-scale crop–weed competition sub-
model used in LUSO and explain how we tested the sen-
sitivity of the overall LUSO model to variations in this
sub-model, by addressing some particular management
questions at the level of the farming system. We present
the results of this analysis, concluding that in this case,
only for certain types of questions, would it be worth
devoting resources to try to improve model precision.
Finally, we discuss the wider implications for this kind
of integrated ‘as-simple-as-possible’ approach.
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Materials and methods

Different approaches to model development

Top-down, bottom-up and middle-up approaches Take
an example situation where we are interested in
building a farming-system-scale model that can predict
the effect of different farm management options
regarding agricultural land-use rotations on the
long-term profitability of an area of land, such as a field.
We want to take into account both short- and long-term
effects of management options. We may know that
weeds are one of the main factors that influence
profitability and are affected by land-use rotation, and
so we want to represent in the model processes such as
weed germination, weed population dynamics, effects
of weed management such as tillage, and competition
between weeds and crop. We could opt for greater
realism and represent these underlying processes in our
model at a more detailed, lower organizational level,
such as the scale of individual plants and seeds, in what
might be called a bottom-up approach (Fig. 1, Approach
2). Or we could opt for simplicity and abstraction and
attempt to construct empirical functions predicting the
profitability of different land-use rotations with no
representation of underlying processes, in what might
be called a top-down approach. (Note that the pure
top-down approach is not illustrated in Fig. 1; if it
was included, it would consist of a single oval on
the ‘systems-scale’ line.) Or we could opt for an
intermediate approach and represent these underlying
processes at a less detailed, intermediate organizational
level, such as the scale of the population within a field,
in what might be called a middle-up approach (Fig. 1,
Approach 1). Plant competition can also be modelled in
many different ways (Park et al. 2003); in Approach 1 we
might represent crop–weed competition using a single
empirical density-based competition function (Firbank
and Watkinson 1985) or a simple mechanistic model
with relatively few parameters, such as the Conductance
model (Aikman and Scaife 1993; Benjamin and Park
2007), while in Approach 2 we might represent crop–
weed competition using an individual-based model
(Grimm and Railsback 2004; Berger et al. 2008). In the
search for detailed realism, we could go even further
in the ‘bottom-up’ direction and use a linked collection
of functional–structural plant models where each
individual plant is itself represented as a collection of
components such as leaves, internodes and flowers,
together with the interactions between these
components and their environment, such as
photosynthesis, water uptake, transport and allocation
of resources, respiration and growth (Godin and

Sinoquet 2005; Vos et al. 2007; Fourcaud et al. 2008;
Hanan and Prusinkiewicz 2008). Similarly, in Approach 1
we might represent germination using a single constant
germination proportion (e.g. Pannell et al. 2004; Renton
2009; Lawes and Renton 2010), while in Approach 2
we might calculate germination proportion using a
hydro-thermal model that depends on weather
(Bradford 1997; Alvarado and Bradford 2002; Allen
2003), or go even further and represent every seed
individually, with its own unique position in the soil and
individual history of after-ripening and imbibition
(Renton et al. 2008) or its own genetics (Renton 2009).
The advantages of Approach 2 are greater biological
realism, which allows a greater depth of biological
understanding and may make the model more credible
to a biological audience, while the advantages of
Approach 1 are simplicity and greater transparency, in
the sense that there will be fewer parameters and it will
be easier to see how each parameter influences model
output.

Meta-model approach A third approach that may appear
to combine the best of Approach 1 and Approach 2 (more
realism without sacrificing transparency) is linking several
models that work at different scales through simpler
descriptive ‘summary’ models or meta-models
(Figure. 1, Approach 3) (Haefner 2005). In this approach
we might start by using a linked collection of detailed
functional–structural plant models to represent plant
competition. By running a large number of simulations
of these models, enough output data could be obtained
to parameterize simple empirical field-scale models of
competition, such as those used in Approach 1, and
then these could be used as the sub-models in the
system-scale model. These could be known as
‘meta-models’ because they ‘model’ or provide a
simplified representation of the more detailed model. In
this way, we have depth of realism, because the
biological detail and complexity of the individual-plant
scale are included, and effects at this scale can be
explored, via the summary model. The biological detail
and complexity may make the model more credible to a
biological audience; some people may be more
confident in our field-scale model, because it has been
constructed using lower-level models that may be easier
to test directly against experimental data. And we also
have transparency, because the relationships between
the agro-ecosystem-scale model and the field-scale
model, and between the field-scale model and the
individual-plant-scale model, are simpler to analyse
because there is less ‘distance’ between levels (fewer
parameters to synthesize) than in Approach 2. However,
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despite its benefits, Approach 3 is likely to be more
time-consuming than Approach 2, and much more
time-consuming than Approach 1, since it effectively
requires building all the higher-system-level, medium-
field-level and lower-individual-plant-level models
involved in the other two approaches.

‘As-simple-as-possible’ approach This paper illustrates
an integrated ‘as-simple-as-possible’ approach that
combines the simplicity and transparency of Approach 1
and the realism of Approach 2, yet potentially avoids the
investment of time and resources required for a
complete version of Approach 3 (Fig. 1). The approach is
based on the idea of starting simple and adding
complexity and detail only if required to address the
specific intended purpose of the model. The modeller
starts by clarifying the question(s) they want to address
with the model at the scale of the agro-ecosystem, and
then follows Approach 1 and constructs an
agro-ecosystem-scale model based on relatively simple
sub-models of the important underlying processes. The
modeller then tests the sensitivity of the
agro-ecosystem-scale model to variations in the simple
sub-models to see how much difference it makes to the
agro-ecosystem-scale model’s output. If the modeller
finds that the answers they are interested in at the
agro-ecosystem level rely on the accuracy of a
sub-model to a large degree, then the modeller can
either move on to building that lower-level model in

order to then use it to construct a more accurate
summary model, or alternatively, if possible, to
collecting more experimental data to refine the
accuracy of the sub-model. If the modeller finds that the
answers do not rely on the accuracy of the sub-model to
the extent that would justify building the lower-level
model or collecting the additional data, then they can
stay with the current model of the underlying process.
The result of this integrated approach is thus to only
build the lower-level models for the field-level summary
models that ‘really matter’, so if we were to illustrate it
in Fig. 1, it would therefore look like a mix of Approach 1
and Approach 3.

LUSO overview

LUSO can be thought of as a framework based on
simulation and optimization for analysing different man-
agement decisions and options with long-term impli-
cations within agricultural systems. It represents an
agricultural land-use unit, such as a field, and simulates
the processes of weed dynamics, plant disease dynamics
and soil nitrogen status changing from season to season
with different land uses, and affecting crop yield in the
current and future seasons. These processes are each
represented in a relatively simple mechanistic way, but
in combination result in a fairly complex model involving
multiple interactions. A summary of the model is pro-
vided here; further details have been provided elsewhere
(Lawes and Renton 2010). LUSO aims to improve on

Fig. 1 Three process-based approaches to modelling weed dynamics in an agricultural system. In Approach 1, the processes influen-
cing the system are represented at the field scale, and so the model is more transparent, but less realistic; in Approach 2, the processes
influencing the system are represented directly at the individual-plant or individual-seed scale, and so the model is less transparent, but
more realistic; in Approach 3, the processes influencing the system are represented at the field scale, but these field-scale sub-models
are built using models that represent processes at the individual-plant or individual-seed scale or lower, and so the model of the agri-
cultural system is more transparent, and more realistic.
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previous models of optimal land-use sequencing invol-
ving weed management (e.g. Pandey and Medd 1991;
Swinton and King 1994; Sells 1995; Wu 2001; Pannell
et al. 2004; Haneveld and Stegeman 2005; Detlefsen
and Jensen 2007; Doole and Pannell 2008; Benjamin
et al. 2009; Parsons et al. 2009) by accounting for
weed germination and long-term dormancy, density-
dependent weed seed production, and disease and
nitrogen effects, by allowing completely flexible
land-use sequences and by including automated rou-
tines for optimization of economic outcomes and for
sensitivity analyses on these results.

The simulation component of LUSO works on an annual
time step and takes as input a sequence of annual land
uses of any length. For example, this input might be
wheat–lupins–wheat–canola–wheat–pasture (WLWCWP),
which means that wheat is grown in the first, third and
fifth year, lupins in the second, canola in the fourth and
a sown pasture in the sixth. Other required input includes
a parameter file specifying possible land uses (Table 1),
and another parameter file specifying general parameters
and the initial condition of the system (Table 2). LUSO was
initially parameterized for a Western Australian agricul-
tural system where wheat is the dominant crop, and
thus the disease and weed sub-models focus on weeds
and diseases of wheat (Lawes and Renton 2010).
However, the system has been designed so that land
uses and general parameters can be easily added,
changed and removed, and so it can be easily adapted
to represent any seasonal agricultural system. For the
purpose of this paper, a simple version of LUSO with four
possible land uses was used, as specified in Tables 1 and
2. More complex versions are discussed elsewhere
(Renton and Lawes 2009; Lawes and Renton 2010).

The system (the land-use unit) is simulated for the
number of seasons (land uses) specified in the input
sequence, and calculates a yield and thus a profit for
each of these seasons. Different land uses leave different
amounts of soil nitrogen for the following crop, thus
affecting the amount of fertilizer required by that crop,
and thus profit. Different land uses also have different
effects on the population dynamics of weeds and
disease; for example, pasture allows better weed
control and reduces the population of wheat pathogens.
In turn, the weed and disease load each year affects the
crop yield in that year, thus also affecting profit. The
overall profitability of a land-use sequence is then calcu-
lated as the net present value: the sum of annual profits
with future profits discounted by a specified discount
rate.

The LUSO analysis framework allows for easy sensi-
tivity analysis on a given land-use sequence, showing
how the profitability of the land-use sequence changes

with changes in one or two model parameter values.
This allows the user, for example, to look at how the
simulated profitability of different land-use sequences
changes with nitrogen price, or level of weed control,
or any other value of interest. The framework also
enables optimization, finding the most profitable
land-use sequence (or sequences) for any set of par-
ameter values. Moreover, the framework allows for a
simple and intuitive sensitivity analysis on this optimal
sequence, showing how the optimal profitability and
the optimal land-use sequence strategy both change
with variation in one or two parameters of interest.
The kind of sensitivity analysis and the graphical way
in which it is presented are aimed at non-technical
model users, such as agricultural researchers, agrono-
mists and farmers. More sophisticated, technical and
complete sensitivity analyses, such as global analyses
or analyses on the interaction of more than two vari-
ables, can also be used (Saltelli et al. 2004, 2008; Saltelli
2008), and the results of these are presented more pre-
cisely and accurately in tables. These more sophisti-
cated, technical and complete sensitivity analyses have
been very usefully applied to plant growth models
aimed at providing precise accurate numerical predic-
tions (e.g. Kirschbaum 1999; Choudhury 2000; Dunbabin
2007; Pathak et al. 2007; Confalonieri 2010; Varella et al.
2010). However, our experience agreed with previous
reports (Pannell 1997) arguing that simpler, less techni-
cal and more graphical approaches may be appropriate
for interactive use with users who are less familiar with
mathematics and modelling, particularly when a model
is designed to provide qualitative management rec-
ommendations and analyses of agronomic changes,
and general quantification of likely resulting profit,
rather than precise accurate numerical predictions.
One of the points of this paper is that these relatively
simple approaches were also adequate to achieve the
aim of this study: to investigate and clearly demonstrate
how much detail and accuracy is required in plant
growth sub-models to address particular questions
about optimal management strategies in agricultural
systems.

Full details of the soil nitrogen, weed seedbank and
germination, and disease dynamics sub-models, and
how they are used to calculate yield and profit have
been provided elsewhere (Lawes and Renton 2010).
Since this paper focuses on crop–weed competition,
more detail on this sub-model is now provided here.

Crop–weed competition sub-model

LUSO’s crop–weed competition sub-model is based on
the well-established hyperbolic function model (Firbank
and Watkinson 1986, as modified by Maxwell et al. 1990;
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Diggle et al. 2003). For a single crop species and a single
weed species, this equation can be written as

seed set = SSmaxkwdw

1 + kwdw + awckcdc
, (1)

where seed set is the actual number of weed seeds pro-
duced (m22), SSmax is a model parameter representing
the theoretical maximum weed seed set possible (seeds
m22, default value 30 000), kw is a model parameter repre-
senting the size or competitiveness of the weed (default
value 1/33), kc is a model parameter representing the
size or competitiveness of the crop species, which
depends on the land use, dw is the weed density (plants
m22), which varies from year to year, dc is the crop
density (plants m22), which depends on the land use,
and awc is an inter-specific ‘antagonism’ factor that
allows for asymmetric competition between the crop
and the weed, which is set to one (symmetric competition)
by default in the standard LUSO model. The default par-
ameter values for the weed are taken from the Ryegrass

Integrated Management (RIM) model (Pannell et al.
2004), and thus represent ryegrass, although they can
easily be varied to represent other weeds. The default par-
ameter values for the different crops are also taken from
the RIM model. This model can be adapted to multiple
species (Monjardino et al. 2003), but this is not considered
in the present analysis.

The hyperbolic function described above is also modi-
fied to give the multiplication factor for the effect of
weed competition on crop yield (wcf):

wcf = 1 − kcdc

1 + kwdw + kcdc
. (2)

The value of wcf will thus always be between zero and
one, and it will be closer to one when weed density is
high and closer to zero when weed density is low.

Varying the competition sub-model

In order to test the sensitivity of the integrated LUSO
to errors or changes in its crop–weed competition sub-
model, we considered four aspects of the competition
model: maximum weed seed production, competitive-
ness of weed, competitiveness of crop, antagonism,
and local perturbation to functional form, and looked
at how changes to these aspects affected the answers
we got to our three farming-systems-scale questions
(Fig. 2). For the sake of simplicity, and ease of communi-
cating results, we chose to use a ‘one-at-a-time’ sensi-
tivity analysis, rather than considering the interactive
effect of varying multiple parameters together (Saltelli
2008; Lawes and Renton 2010). Although a more com-
plete sensitivity analysis as discussed above would
have benefits such as showing how non-independent
parameters interact to affect model results, the results
presented here show that this simpler and potentially
more intuitive approach was appropriate to achieve the
aims of this paper.

By varying the parameter SSmax, which is a measure
of the maximum weed seed production m22, not a

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Land uses and their default parameter values used for this study. Potential yield yp (t ha21), price received p ($ t21), variable cost
Cv ($ ha21), nitrogen requirement Nr (kg ha21), nitrogen boost per tonne of crop yield or pasture biomass grown Nb (kg t21), disease
multiplier dm (21 means return to minimum level), disease effect on crop s (proportion), weed seed survival ps (proportion), competition
index kc, sowing density dc (plants m22), crop–weed antagonism index awc and weed seed return wsr (proportion).

Name yp p Cv Nr Nb dm s ps kc dc awc wsr

Wheat 3 350 250 160 0 3 1 0.05 0.091 150 1 1

Lupins 1.5 250 200 0 50 21 0 0.03 0.08 40 1 1

Pasture 3 0 80 0 25 21 0 0.03 0.08 50 1 0.1

Canola 1.3 550 250 120 0 21 0 0.03 0.08 100 1 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 General parameters and their default values used for
this study.

Parameter Symbol Value

Length of sequence (years) y 10

Seedbank population at year 0 sb0 50

Weed germination (%) pg 0.8

Weed competition index kw 1/33

Weed maximum seed set SSmax 30 000

Nitrogen cost ($ kg21) Ncst 2

Soil nitrogen Ns0 0

Soil disease population at year 0 D0 0.03

Fixed costs accrued per ha every year Cf 150

Discount rate dis 0.05

Cost per weed seed WScst 0.1
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measure of fecundity per individual plant, as in some
variants of the hyperbolic competition model (e.g.
Damgaard 2004), we were, in effect, asking the question,
‘To what extent does it matter if we get the maximum
weed seed production per area somewhat wrong in
our model?’ By varying the parameters kw, kc and awc,
we were, in effect, asking the question, ‘To what extent
does it matter if we get the competitiveness of the
weed or competitiveness of the crop or the inter-species
antagonism wrong in our model?’ Rather than consider-
ing all the possible crops, we only considered the compe-
titiveness and antagonism of the main crop, wheat, and
assumed that the competitiveness and antagonism of
the other crops did not change. Other crops could
have been considered independently using the same
approach if this was of interest, or the competitiveness
of all crops could have been varied in synchronization if
this was of more biological relevance.

Finally, we considered a general localized functional
perturbation (Hearne et al. 2007) to the hyperbolic com-
petition function. We decided to use a simple continuous
perturbation function

pf (dw) =
Dsize, dw − Dloc

∣∣ ∣∣ ≤ Dsc

1, dw − Dloc

∣∣ ∣∣ . Dsc

{
,

where pf (dw) is the perturbation factor at weed density
dw, Dsize is a parameter that represents the size of the
perturbation (the maximum proportional change to the

function), Dloc is a parameter that represents the
location of the perturbation (the weed density value at
which the perturbation is greatest) and Dsc is a par-
ameter that represents the scale of the perturbation
(the spread or range of weed densities over which it
has an effect). The weed seed production function was
multiplied by this perturbation factor pf (dw) to investi-
gate the effect of a perturbation to this production
function. Examples of the effect on the weed seed pro-
duction function resulting from such perturbations are
illustrated in Fig. 2. The parameter Dsize has a default
value of one, which means that at this default value pf
¼ 1 for all values of dw, and so there is no perturbation to
the weed seed production function. For our analysis the
value of the parameter Dsize was switched to 1.1 to
cause a 10 % perturbation to the production function.
Initially we gave the parameter Dsc a value of 50 and
varied Dloc around a value of 450 to find the most sensi-
tive perturbation location. Since we found Dloc¼ 5 to be
the most sensitive location for perturbation (as shown
in Results), we set Dloc to be constant at a value of 5
and then varied Dsc around a value of 50 to determine
the extent of functional perturbation sensitivity.

Other non-linear variations to the basic linear
hyperbolic competition function with more biological
meaning have been suggested and studied (e.g.
Damgaard 2004; Weigelt et al. 2007), but we decided
to use this functional perturbation approach because it
is simple, is independent of other parameters, allows

Fig. 2 Plots showing how increasing three parameters of the crop–weed competition sub-model (left) and parameters of the pertur-
bation function (right) affects the shape of the function describing weed seed produced m22 versus weed density m22. Parameters
were increased by 20 %, except for Dloc and Dsc, which were increased by 100 %.
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for perturbations with local or wider extent, and pre-
serves the pattern of seed production tending towards
SSmax and crop yield tending towards zero as weed
density tends towards infinity. This means that local
perturbation of functional form can be considered
completely separately from biological parameters.

Note that changing kw and kc directly affects both the
weed seed production function and the crop yield func-
tion, while awc, SSmax, Dloc, Dsize and Dsc directly affect
only the weed seed production function. However, all
parameters have an indirect effect on the whole model
dynamics and crop yield over all years through ‘flow-on
effects’, because weed seed production in one given
year affects weed density in the subsequent year. This
affects both crop yield and weed seed production in
the subsequent year, which affects weed density, crop
yield and weed seed production in the year after that,
and so on. Also note that the effect on the weed seed
production function of increasing the antagonism par-
ameter awc by a certain proportion is the same as
increasing the crop competitiveness parameter kc,
which is why this parameter is not illustrated separately
in Fig. 2. However, the effect of these two parameters on
the overall model dynamics and long-term profitability is
different, because kc directly affects crop yield but awc

does not.

LUSO used to address three types of questions

For this study, we used LUSO to address three questions
addressing long-term farming-system management
issues. Two are relatively simple. First, what is the
optimal land-use sequence for a farmer to employ over
10 years? Second, what is the total profit for this
10-year sequence? To answer these questions, LUSO
was simply used to find the optimal land-use sequence
Sopt and the corresponding optimal profit P(V, Sopt) for
the original unchanged competition functions. We also
used LUSO to address a third, more qualitative and
subtle, long-term farming-system-scale question: how
do the optimal profit and the optimal land-use sequence
change as the amount of weed seed returned to the
seedbank is reduced? This represents an analysis of the
value and effect of possible weed management
measures, such as separating the chaff fraction that
contains much of the weed seed in the harvester and
removing it from the field, which is interesting and
particularly relevant to the purpose for which LUSO
was constructed because it provides an estimate of the
overall value of introducing new weed management
technologies or practices. To address this question, we
examined how the optimal land-use sequence and the
optimal profit varied as the parameter representing
weed seed return in wheat was varied.

These three questions all concern long-term farming-
system management, but represent three different types
of questions with three different types of answers. The
first provides a management recommendation: what
land-use sequence should the farmer or land manager
plan for his land assuming current technologies and
prices remain constant? The second provides a quanti-
tative prediction: what profit will the farmer or land
manager achieve if he implements the recommended
management sequence. The third question concerning
the overall value of introducing new weed management
technologies or practices is more general and the
answer to this question is better represented graphically
as a relationship between improvement in technology
and change in profit, rather than a precise profit value
or land-use sequence like the answers to the other two
questions.

Once we had obtained the answers to the three ques-
tions with the original unchanged model, we then inves-
tigated whether, and to what extent, the more precise
answers to the first two questions depended on
changes or errors in the crop–weed competition sub-
model. To do this, we varied the competition curve
parameters discussed above and recorded how the
optimal profitability changed, and if and when the
optimal sequence changed. As well as calculating how
the optimal profitability changed with the altered com-
petition curves, we also calculated how the profitability
of the original optimal sequence changed with the
altered competition curves. To explain this more pre-
cisely, we define Sopt to be the optimal sequence under
the original unchanged competition parameter values
V and P(V, Sopt) to be the corresponding profit of this
sequence at those parameter values. We then define
Sopt

* to be the optimal sequence under the new
changed parameter values V*, P(V*, Sopt

* ) to be the
profit given by the new optimal sequence under the
new changed parameter values V*, and P(V*, Sopt) to
be the profit given by the originally optimal sequence
under the new changed parameter values V*. Thus, we
considered how both P(V*, Sopt

* ) and P(V*, Sopt) varied
with different values of V*. We could also determine
the difference in profitability between the original
optimal sequence under the original parameter values
and the new optimal sequence under the new
changed parameter values: Pdiff ¼ P(V*, Sopt

* ) 2 P(V,
Sopt), which represents the error in predicted profit due
to not improving the model. More interestingly, we
could also determine the difference in profitability
between the original optimal sequence and the new
optimal sequence under the new changed parameter
values: Pcost ¼ P(V*, Sopt

* ) 2 P(V*, Sopt). If V represents
an original model version and V* represents a potential
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improved version obtained by more detailed modelling
(or better experimental data), then Pcost corresponds to
the value to the farm manager of using the improved
version of the model to make decisions instead of the
original version. Equivalently Pcost represents the cost
to the farmer of not improving the model.

Finally, we repeated this analysis, showing how P(V*,
Sopt

* ) and P(V*, Sopt) varied with varying values of differ-
ent weed competition parameters, for several values of
the weed seed return parameter. This allowed us to con-
sider how the answer to the third more general question,
regarding the overall value of introducing new weed
management technologies or practices, would depend
on changes or errors or improvements in the crop–
weed competition sub-model. This in turn informs the
modeller’s or research funder’s decision about whether

it is expedient to do the work to make these possible
improvements or correct these possible errors in order
to satisfactorily address this question about the value
of new weed management technologies or practices.

Results

Initial answers to three farm management
questions

The optimal sequence was WPWWPWPWPW (where W is
wheat and P is pasture) and its net present value (total
profitability over 10 years, accounting for discounting of
future profit) was $462.04 ha21. Figure 3 (top) shows
how the yield penalty due to weeds and disease
changes over the seasons depending on the land-use
sequence in this optimal sequence, with regular pasture

Fig. 3 Weed seedbank density (seeds m22) and disease load (relative value out of 1000 maximum) changing over time under the
optimal land-use rotation for default parameter values and with the weed seed return parameter set to 1.0 (top) and to 0.1 (bottom).

AoB PLANTS 2011 plr006 doi:10.1093/aobpla/plr006, available online at www.aobplants.oxfordjournals.org & The Authors 2011 9

Renton — How much detail and accuracy is required in plant growth sub-models?



rotations necessary to allow control of weeds, despite pro-
viding little short-term profit. Figure 4 shows how the
changes in the weed seed return parameter affected the
profitability of both the original optimal sequence and
the actual optimal sequence for the changed weed seed
return parameter value. Note how lower values of weed
seed return, corresponding to improved techniques or
technologies for capturing or destroying weed seeds,

allow more crops (wheat and lupins) to enter the
land-use sequence, with correspondingly higher profit
overall. Figure 3 (bottom) shows how the yield penalty
due to weeds and disease changes over the seasons
depending on the land-use sequence in the sequence
that was found to be optimal when the weed seed
return parameter was set to 0.1, representing new tech-
niques or improved technology for weed seed catching
and removal or destruction. Note that the weed seedbank
is much lower relative to disease burden in this case than
in Fig. 3 (top), indicating that disease rather than weed
burden is driving the need for rotation in the land-use
sequence in this case.

Effect of changes to SSmax and kw on the first two
answers
Changes in the maximum weed seed set parameter SSmax

affected the profitability of the original optimal sequence
and the actual optimal sequence as shown in Fig. 5 (left).
Note that Pcost, the cost to the farmer of not improving the
model, corresponds to the difference between the two
lines in the figure. The values of SSmax where the two
lines overlay correspond to the region where the original
optimal sequence is still the actual optimal sequence for
the changed competition curve, and thus there would be
no cost at all to the farmer for using the inferior model.
While the profitability of LUSO’s best sequence is changing
with changes in SSmax in this interval, the actual
recommended land-use sequence is not. The values of
SSmax where the lines diverge are regions where a different
sequence is now optimal. When the lines are close

Fig. 4 The effect of changes in the weed seed return par-
ameter on the profitability of both the original optimal
land-use sequence and the actual optimal land-use sequence
for the changed value of the weed seed return parameter wsr.
The actual optimal land-use sequences for various weed seed
return parameter value ranges are also shown.

Fig. 5 Profitability of the original optimal sequence and the actual optimal sequence changing for different values of the crop–weed
competition parameters SSmax (left) and kw (right). Note that these figures are very similar but not identical. In each case, the region
where the two lines overlay corresponds to the region where the original optimal sequence is still the actual optimal sequence for the
changed competition parameter value.
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together, the difference Pcost between LUSO’s original
recommendation and its new recommendation based
on the improved competition curve is small, but as the
lines spread further apart, the difference between
LUSO’s original recommendation and its new improved
recommendation becomes more important. Changes in
the weed competitiveness parameter kw affected the
profitability of the original optimal sequence and the
actual optimal sequence as shown in Fig. 5 (right). Note
that increasing potential weed seed set and weed compe-
titiveness both reduce the maximum profitability of the
farming system, as would be expected.

Effect of changes to SSmax and kw on the third
answer

Figure 6 shows how the profitability of the optimal
land-use sequence changes with variation in the weed
competitiveness parameter kw and the weed seed return
parameter wsr in interaction. Note that the two subplots
show orthogonal sections of the same three-dimensional
surface. The left plot shows clearly that the effect of errors
or variation in kw makes a much greater difference when
the value of wsr is larger. As this was true for all weed com-
petition parameters, we only show results for the greatest
value of wsr ¼ 1 as a ‘worst-case scenario’ in subsequent
plots. The right subplot shows that the general pattern of
the relationship between wsr and optimal profitability is
not greatly affected by variation in kw of up to 20 %; for
all three examples there is a clear pattern of improved
profit with lower weed seed return.

Effect of changes to kc and awc on the three
answers
Changes in the wheat crop competitiveness parameter
kc affected the profitability of the original optimal
sequence and the actual optimal sequence as shown
in Fig. 7 (left). Changes in the wheat crop vs. weed
antagonism parameter awc affected the profitability of
the original optimal sequence and the actual optimal
sequence as shown in Fig. 7 (right). Note that increasing
wheat crop competitiveness and wheat crop vs. weed
antagonism both increase the maximum profitability of
the farming system, as would be expected.

Effect of changes to Dloc and Dsc on the three
answers

Varying the crop–weed competition function pertur-
bation parameters Dloc and Dsc as described above in
Materials and methods affected the profitability of the
original optimal sequence and the actual optimal
sequence as shown in Fig. 8. Note that importantly
there are regions where varying these parameters
made no difference at all, as discussed below.

Discussion
The results show that the amount of accuracy required
when representing crop–weed competition within the
LUSO framework strongly depends on the kind of
management question being addressed. Errors in the
crop–weed competition sub-model had a much
smaller effect on recommendations for management
decisions (what is the most profitable land-use sequence

Fig. 6 Profitability of the optimal land-use sequence changing with variation in the weed competitiveness parameter kw for three
separate values of the weed seed return parameter wsr (left), and profitability of the optimal land-use sequence changing with vari-
ation in the weed seed return parameter wsr for three separate values of the weed competitiveness parameter kw (right).
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to employ?) than on quantitative predictions (how much
profit will result from this recommended management
decision?).

Addressing the first question about the recommended
land-use sequence did not require great accuracy.
Figures 5 and 7 show that small differences in the com-
petition parameters make no difference to which
land-use sequence is optimal. Larger differences (up to
20 %) in any of the four parameters can change which
land-use sequence is optimal, but Pcost, the difference

in profitability between the new optimal land-use
sequence and the original optimal land-use sequence
under the new parameter values, is still relatively
small. Importantly, this means that the cost to the
farmer of the model recommending the ‘wrong’ (orig-
inal) land-use sequence rather than the ‘correct’ (new)
optimal land-use sequence would be small. The main
effects on model recommendations are when
maximum potential weed seed set or weed competitive-
ness is increased, or when wheat crop competitiveness

Fig. 8 Profitability of the original optimal sequence and the actual optimal sequence changing for different values of the crop–weed
competition function perturbation parameters Dloc (left) and Dsc (right). On the right, Dloc is set constant to its most sensitive value 5,
rather than its default value while Dsc is varied. In each case, the region where the two lines overlay corresponds to the region where the
original optimal sequence is still the actual optimal sequence for the changed competition parameter value.

Fig. 7 Profitability of the original optimal sequence and the actual optimal sequence changing for different values of the crop–weed
competition parameters kc (left) and awc (right). In each case, the region where the two lines overlay corresponds to the region where
the original optimal sequence is still the actual optimal sequence for the changed competition parameter value.
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or wheat-weed antagonism is decreased. In fact,
increasing wheat crop competitiveness or wheat-weed
antagonism by up to 20 % made no difference to
which land-use sequence was optimal.

Addressing the third question regarding the value of
reducing weed seed return rate did not require great
accuracy either. Taking kw as an example, Fig. 6 shows
that an error in kw makes no difference to the left-hand
end of the ‘best’ line in Fig. 4. On the other hand, a 20 %
error in kw results in the right-hand end of the ‘best’ line
being shifted up to about $800 or down to about $200.
However, it is clear that this would have a relatively
small effect on the general shape of the ‘best’ line, or
the conclusions that have been drawn from this figure
above. It is always true that reducing weed seed return
significantly improves profitability. The effect of errors
in other crop–weed competition parameters in Fig. 4 is
similar to that of errors in kw (data not shown), but is
smaller, since the optimal profitability is less sensitive
to the other crop–weed competition parameters. It
thus appears that errors or changes in the crop–weed
competition sub-model will have a relatively small
effect on the results of general qualitative analyses of
agronomic factors such as this analysis of the value of
reducing weed seed return rate.

The story is quite different for the second question
about the optimal predicted profit value, which is quite
strongly affected by variation in the crop–weed compe-
tition parameters. For example, a 20 % increase in weed
competitiveness more than halves profitability from
$462 to about $200 and a 20 % increase in this par-
ameter almost doubles profitability from $462 to about
$800 (Fig. 5, right). The biggest effects on absolute
predicted profit are also when maximum potential
weed seed set or weed competitiveness is increased,
or when wheat crop competitiveness or wheat–weed
antagonism is decreased, but even in the other direction
(decreasing maximum potential weed seed set or weed
competitiveness, or increasing wheat crop competitive-
ness or wheat–weed antagonism) there is a big
change in predicted profit.

The results also show that only a small section of the
crop–weed competition curve is important in the analy-
sis we considered here. Figure 8 (left) shows that per-
turbing the function at a location larger than 100 has
no effect, while perturbing at a location close to zero
has a larger effect. Figure 8 (right) shows that when per-
turbing the function at its most sensitive location, the
extent or range of the perturbation is only important
up to a certain point; after this point, a larger extent of
perturbation makes no difference to the optimal profit-
ability. These results thus show clearly that for the
weed competition curve shown in Fig. 2, only that

particular section where dw is ,200 is important in
addressing the particular questions we have considered.
Errors or changes or variability in the function at other
sections of the curve, at values of dw .200 (such as
those shown in Fig. 2), would have little or no effect on
the answers to these questions. As the LUSO model
was constructed to address exactly these kinds of man-
agement questions, this indicates that it would be a
waste of time, money and other resources to conduct
more detailed modelling (or experimental work) aimed
at improving or even testing the accuracy of the curve
for values of dw .200.

This analysis has significant implications regarding the
need for devoting costly resources to more detailed
modelling or experimentation aimed at making the
crop–weed competition sub-model more accurate.
Great accuracy is not required for providing the rec-
ommendation of greatest practical importance to a
farmer regarding what farm management decision
should actually be made. A researcher, interested in
the relative benefits of new methods of reducing the
return of weed seed to the seedbank at harvest in
wheat, can also conclude that the simple model is ade-
quate. If we are interested in exact profitability but are
very confident in the section of the crop–weed compe-
tition curve close to zero, we can again conclude that
our simple crop–weed competition model is adequate.
Even if we are interested in exact profitability and are
not confident in the section of the crop–weed compe-
tition curve close to zero, this analysis has still provided
important information. If we decide that exact profitabil-
ity results are important enough to justify the cost of
further experiments or the building of more complex
lower-level sub-models to refine the accuracy of the
crop–weed competition curve, we would know to focus
this modelling or experimental work on relatively low
weed densities, since that is the part of the curve that
matters (as explained in detail above). In this example,
all parameters tested were found to be important, but
in another case it may be discovered that the answers
to the various kinds of questions regarding management
options that we are using the model to address are
much more sensitive to errors in certain parameters, in
which case further modelling or experimentation can
be focused on specifying these particular parameters
more accurately. Furthermore, whatever is found regard-
ing the need for further modelling or experimentation,
this kind of analysis also helps us gain some estimate
of confidence in the answers currently provided by the
model.

What should be done if we did actually need LUSO to
provide an accurate prediction of profit, or in any case
where an analysis like this shows that the existing
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sub-models are not adequate to address a particular
agro-ecosystem-level question? Modelling and exper-
imentation are both options that could be used to try
to improve the accuracy of crop–weed competition
sub-models, but both have limitations. Experimental or
agricultural field-trial results are always limited to a
particular soil type, a particular set of environmental
conditions, and particular genotypes of weed and crop;
carrying out enough experiments to accurately
represent the range of conditions that a general
bio-economic management analysis tool like LUSO
is trying to cover is likely to be impossible, or at least
extremely expensive. More detailed mechanistic lower-
level modelling may thus be an attractive option, with
various levels of detail possible. A simple approach
might involve canonical modelling, where qualitative
aspects of plant function are explicitly included in the
model, but quantitative aspects are fitted empirically,
resulting in an ‘intermediate-level’ model that combines
the ability of process-based models to represent
dynamic processes and thus new situations with the
relative simplicity of empirical models (Renton et al.
2005b; Jankowski and Gozdowski 2010). More mechanis-
tic and thus more complex approaches could involve
using detailed biophysical crop growth models
(Bouman et al. 1996; McCown et al. 1996; Deen et al.
2003; Jones et al. 2003; Keating et al. 2003; Stöckle
et al. 2003) that might represent details of the soil and
canopy as layers across a field, and then linking these
with the weed seedbank models in some way (e.g.
Smith et al. 2005; Thornby and Walker 2009); individual-
based models that represent plants as individual entities
interacting in space (Grimm and Railsback 2004; Berger
et al. 2008); or even as collections of functional–struc-
tural plant models where plant components are rep-
resented individually (Godin and Sinoquet 2005; Vos
et al. 2007; Fourcaud et al. 2008; Hanan and Prusinkie-
wicz 2008) and growth patterns are determined either
through empirical functions (Renton et al. 2005a;
Costes et al. 2008) or through more deeply mechanistic
modelling involving nutrient transport and signalling
(e.g. Allen et al. 2005) and environmental competition
between plants for resources such as light and water
(Bastiaans et al. 1997; Chelle and Andrieu 1999; Cici
et al. 2008). The problem is that any more detailed
mechanistic lower-level modelling will require additional
data for model construction and validation, as well as
the resources involved in model construction itself. The
range of validity of the overall model will be limited to
the smallest range of validity of any of its sub-models,
so the more sub-models, the more extensive the
amount of validation required. Typically, choosing to
model at deeper levels of detail and mechanism will

require more data, a wider range of types of data, data
that are more specific to a particular situation, and
more time and money for both data collection and
model construction. The exception will be where an
appropriate model already exists and has been tested,
and the related danger is that an inappropriate model
is used just because it already exists and has been
tested. Even if resources are available for experimen-
tation or construction of more detailed models, there is
no guarantee that this will result in more accurate crop-
competition sub-models. For example, after evaluating
the ability of four relatively complex simulation models
to predict experimental crop–weed competition results,
Deen et al. (2003) concluded that ‘Increasing model
complexity did not appear to dramatically improve
model accuracy’. More detailed models will inevitably
contain more component sub-models, with more par-
ameters overall, which increases the possibility of
accumulation of error from multiple sources.

More optimistically, an analysis like that presented in
this paper can indicate that a simple sub-model can be
even further simplified, with resulting advantages. For
example, the crop–weed competition curve used in
LUSO is clearly non-linear, as evidenced in Fig. 2, but
the fact that only a small section of this curve was
important for the presented analysis suggests that the
curve could be approximated well by a piecewise linear
model with little loss of accuracy. This could allow
much more efficient optimization analysis through
using mathematical programming techniques such as
linear programming or integer programming (Wolsey
1998), rather than the computationally intensive
exhaustive or heuristic methods currently employed in
the LUSO framework.

Conclusions and forward look
This paper has illustrated an integrated ‘as-simple-
as-possible’ approach to modelling an agricultural
system for the purpose of simulation and optimization
analysis. This approach is relevant to the modelling of
any system, but is particularly suited to modelling bio-
logical and ecological systems because of their complex-
ity and thus the possibility of constructing overly
complex and thus expensive models. The value of this
approach has been demonstrated with this LUSO
example by showing that a high degree of detail and
accuracy in LUSO’s crop–weed competition sub-model
is more important for addressing some kinds of
questions than for others. An advantage of this
‘as-simple-as-possible’ approach is that it starts simple
and adds complexity only as required, thus minimizing
costs, time and resources required. Another advantage
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is that model construction and the need for additional
complexity are driven by particular questions or model-
ling aims, ensuring that the resulting model is ‘fit for
purpose’. Moreover, the model is kept as simple as poss-
ible, without extra components that have little effect
on the question of interest, thus improving model trans-
parency and ease of analysis. A fourth advantage is
minimizing the accumulation of error from multiple sub-
models and a greater number of parameters, and a final
advantage is that less validity testing of model com-
ponents is required. So we can conclude perhaps that
the answer to the initial question ‘How much detail
and accuracy is required when representing crop–weed
competition within simulations of agricultural systems?’
is ‘. . .exactly as much detail and accuracy as is required
to achieve the modelling aim, and no more’, thus agree-
ing with Einstein’s well-known quote ‘Make everything as
simple as possible, but not simpler’. This paper provides
a demonstration of a practical approach for testing just
how simple ‘as simple as possible’ should be for biologi-
cal sub-models within agro-ecological simulations, and
we suggest that a similar approach should be under-
taken with future biological, ecological and agricultural
modelling studies, particularly when they are aimed at
identifying management recommendations.
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