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Abstract
The phosphorylation and dephosphorylation of proteins by kinases and phosphatases constitute an
essential regulatory network in eukaryotic cells. This network supports the flow of information
from sensors through signaling systems to effector molecules, and ultimately drives the phenotype
and function of cells, tissues, and organisms. Dysregulation of this process has severe
consequences and is one of the main factors in the emergence and progression of diseases,
including cancer. Thus, major efforts have been invested in developing specific inhibitors that
modulate the activity of individual kinases or phosphatases; however, it has been difficult to assess
how such pharmacological interventions would affect the cellular signaling network as a whole.
Here, we used label-free, quantitative phosphoproteomics in a systematically perturbed model
organism (Saccharomyces cerevisiae) to determine the relationships between 97 kinases, 27
phosphatases, and more than 1000 phosphoproteins. We identified 8814 regulated phosphorylation
events, describing the first system-wide protein phosphorylation network in vivo. Our results show
that, at steady state, inactivation of most kinases and phosphatases affected large parts of the
phosphorylation-modulated signal transduction machinery, and not only the immediate
downstream targets. The observed cellular growth phenotype was often well maintained despite
the perturbations, arguing for considerable robustness in the system. Our results serve to constrain
future models of cellular signaling and reinforce the idea that simple linear representations of
signaling pathways might be insufficient for drug development and for describing organismal
homeostasis.

INTRODUCTION
Protein kinases, and, to a lesser extent, protein phosphatases, are attractive drug targets (1–
5); however, although their respective catalytic activities are well characterized, their
functions in vivo remain relatively poorly understood. Despite extensive in vitro (6), in
silico (7), or indirect in vivo assays (8), our knowledge of the global relationships between
kinases, phosphatases, and their substrates remains fragmented (2). Even less is known
about the more downstream, indirect consequences of kinase activity, making rational
selection of suitable candidates for therapeutic interventions difficult; consequently, many
promising kinase inhibitors are ultimately retired from development (9).

One promising approach for closing this knowledge gap is the organism-wide, quantitative
assessment of all phosphorylated proteins, comparing phosphorylation status in wild-type
cells to that in cells that have undergone systematic perturbations of their kinases or
phosphatases. Progress in phosphoproteomics technology has brought this goal within reach
by enabling the reproducible quantification of thousands of phosphorylation sites in a single
study (10–12). Although the throughput is not yet sufficient to systematically address all 518
protein kinases and 147 protein phosphatases in human cells (13,14), simpler organisms,
such as yeast, can be addressed. Yeast in particular is frequently used as a model to study
human diseases (15), including cancer, mitochondrial diseases, and even neurological
disorders caused by protein misfolding (16,17). Although some signaling systems, such as
the apoptotic machinery, are absent in yeast, other parts of its signaling network display
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substantial similarities to those in human cells (18,19). Of the 161 kinases and phosphatases
in yeast, 136 are conserved in humans at more than 30% amino acid sequence identity (table
S1), and some human signaling proteins can even replace their yeast counterparts (20). Here,
we used a combination of phosphoproteomics measurements and computational methods
(11) to detect and quantify the system-wide responses in the yeast phosphoproteome upon
deletion or inhibition of most of its kinases and phosphatases.

RESULTS
Experimental strategy

We developed an integrated experimental and computational strategy for high-throughput
comparative phosphoproteomic analysis in Saccharomyces cerevisiae (Fig. 1), which
consisted of the following steps. First, we systematically perturbed the kinase-substrate and
phosphatase-substrate networks by selecting gene deletion mutants of the nonessential
kinases or phosphatases or, for some essential kinases, by generating mutants inhibitable by
cell-permeable drugs, which are referred to as “analog-sensitive” kinase strains (21). To
minimize compensatory mutations that might accumulate over time in the gene deletion
strains, we freshly prepared all mutant strains. To enable a statistical characterization of our
observations, we always grew, processed, and measured each perturbed strain in three
independent replicates, together with three replicates of wild-type, control cells.
Phosphopeptides were isolated from each sample (22,23) and submitted to high-performance
mass spectrometry to generate liquid chromatography coupled to mass spectrometry LC-
MS/MS phosphoproteome maps. The triplicate phosphoproteome maps generated from each
perturbed or wild-type cell sample were annotated with the amino acid sequences of the
detected phosphopeptide features and were aligned with the algorithm SuperHirn (24),
which was followed by additional postprocessing (see Supplementary Materials for details).
The statistical significance of observed changes in the perturbed states was then computed
for each phosphopeptide with the Corra software suite (25).

We assessed the reliability of our measurements and computational data processing at two
levels. First, we assessed the confidence of the phosphopeptide identifications generated by
database searching, and second, we assessed the reproducibility of detecting quantitative
phosphopeptide differences between wild-type and mutant strains. For the first check, and to
determine the reliability of our phosphopeptide identifications from the peptide fragment ion
spectra, we performed statistical analyses with the PeptideProphet tool (26) and a decoy
database strategy (27). From these analyses, we found that a PeptideProphet probability
cutoff of 0.9 corresponded to a false discovery rate (FDR) of ~0.038 (3.8%) (table S2),
which confirms that our chosen cutoff of 0.9 yielded an acceptably low degree of incorrect
peptide identifications, in particular because most phosphopeptides were identified
repeatedly in the context of this extensive study.

We then used the statistical tool Corra (25), which supports an empirical Bayesian
alternative to the t test (28). The test improves the reliability of conclusions in cases of large-
scale testing. For each phosphopeptide feature, the test provided a P value of the observed
differences between wild-type and mutant replicates. The P values were further corrected for
multiple testing according to the Benjamini and Hochberg procedure (29) (see the
Supplementary Materials). After this quantitative analysis step, we chose an FDR threshold
of 0.015 in conjunction with a minimum fold-change requirement of log2 >1.5, both of
which had to be met before we would consider any phosphopeptide as reproducibly
regulated. At this threshold, nine comparisons between wild-type and lowest-impact kinase
mutants resulted in only a single or no phosphopeptide being designated as regulated, which
verified the validity of our selected criteria. On the basis of these results, we concluded that
our applied cutoffs ensured that, despite a high sensitivity (fig. S1), only a minimal amount
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of noise entered our analyses and that we achieved high reproducibility in the observed
regulatory events.

Overall, we attempted the analysis of 161 mutant strains of yeast. Of these, 37 strains could
not be analyzed because they were not viable, not inhibitable, or otherwise not amenable to
our procedure (table S1). In total, we generated quantitative data for 116 gene deletion
mutants and for an additional 8 strains in which analog-sensitive kinases were
pharmacologically inhibited (table S1). Together, this corresponds to coverage of 78% of the
theoretical kinase and phosphatase space in yeast and covered 77% of those enzymes that
show sequence conservation with human enzymes (table S1). A matrix and a network
generated from these data related the observed changes in the abundance of a
phosphopeptide (measured in triplicate) to the corresponding kinase or phosphatase deletion
(Fig. 2 and fig. S2). The matrix contains 8814 reproducible changes in peptide abundance
that mapped to 1026 phosphoproteins that were clustered according to the coregulation of
the phosphopeptides (tables S3 and S4). Of note, an additional 7550 phosphopeptides were
consistently identified but did not exhibit a substantial change in abundance under any of the
perturbations tested.

Finally, the cellular abundance distribution of detected phosphoproteins (regulated and
unregulated) was roughly similar to that of the total yeast proteome; however, the complete
phosphoproteome was still not covered (fig. S3), because under our chosen growth
conditions, many phosphorylation sites would not be phosphorylated, and because our
experimental pipeline had several biases, among them that only tryptic peptides with a mass/
charge ratio (m/z) suitable for LC-MS/MS analysis (30) could be identified. Nevertheless,
the observed phosphorylation sites covered a reasonably large fraction of the
phosphoproteome, and therefore an existing bias should not impair our conclusions (31).

Direct versus indirect phosphorylation events
Because kinases and phosphatases are components of complex, interconnected signaling
networks, we fully expected to observe a number of indirect, downstream responses, that is,
phosphopeptides whose abundance would change despite their not being a direct molecular
target of the kinase or phosphatase in question. Indeed, we found that such events seemed to
strongly outnumber direct kinase-substrate interactions, as argued by the following
observations. First, we determined for each kinase or phosphatase the number of
phosphopeptides whose responses showed the expected directionality (that is, reductions in
abundance in the case of kinase deletions and increases in abundance in the case of
phosphatase deletions). In general, the number of phosphopeptides that responded in the
expected directionality was roughly similar to that of phosphopeptides that responded with
“inverted” directionality (Fig. 2 and fig. S4). Exceptions to this finding were analog-
sensitive kinases that were inhibited over the short term; for example, in the case of Cdc28,
about 76% of the phosphopeptides were regulated in the expected directionality. No
difference in the direction of regulation was observed between nonessential kinases or
phosphatases (fig. S4). Second, we conservatively assumed that phosphopeptides that
changed in abundance in only a single deletion strain might be direct molecular targets of
the kinase or phosphatase in question. By this measure, we found that, at most, 32% of the
observed regulatory events might have been direct for kinases (that is, that the events
mapped to just a single kinase), whereas in the case of phosphatases this number was 53%.
The data sets generated by the short-term inhibition of the analog-sensitive kinases showed a
higher fraction of potential direct targets (44%) than did the permanent deletion strains.

Third, we tested the overlap of our data with various previously established reference
protein-protein interactions in yeast (32–35), such as the STRING database (tables S5 and
S6). We observed that the overlap of our data with these direct interactions was small (table
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S5). This is consistent with the long-held notion that kinase-substrate interactions are too
weak and transient to be detectable by typical affinity purification–based protein interaction
screens. Reassuringly, however, first, the overlap of the heavily studied kinase Cdc28 with
our data set on the level of regulated phosphoproteins was high, showing a 43% overlap
with the study of Ubersax et al. (36) and a 76% overlap with the study of Holt et al. (10) (on
the phosphorylation site level, the overlap was 46%). Second, all other phosphorylation
events that did overlap showed substantial enrichments for the expected directionality.
Likewise, we observed substantial enrichment of confirmed interactions, in particular for
those phosphopeptides that responded only in a single perturbation (table S7). This indicates
that our data included a sizeable fraction of direct enzyme-target interactions; however, from
all three tests, we can conclude that indeed a large majority of our observed events were
indirect consequences of the deletion. Not a single kinase showed exclusively direct effects,
indicating that a focused modulation of a pathway (branch) without system-wide adaptations
might not be possible with a single drug.

Changed extents of phosphorylation versus changed protein abundance
As is the case in prolonged pharmacological intervention, our genetic kinase-deletion
approach gave the cells ample time to accommodate (and potentially compensate for) the
loss of kinase activity. This should not only have led to downstream, indirect consequences
on the phosphoproteome, but could have also entailed subsequent changes in gene
expression and the amounts of proteins produced. To assess the extent of this effect, we
measured not only abundance changes in the phosphoproteome but also abundance changes
of the proteins themselves, by observing unphosphorylated peptides in a subset of 16 kinase
deletion strains. The kinases selected for this test ranged from those that had a small effect
on the phosphoproteome to those that had a large effect. The data indicated that for a total of
467 regulated phosphopeptides that matched to 118 proteins covered in this analysis, 79% of
the proteins remained unchanged in abundance, and, in a single case, the directionality of the
phosphopeptide regulation was opposite to the protein abundance change (figs. S5 and S6).
In 21% of the cases in which a phosphopeptide was regulated, we also observed a change in
protein abundance in the same direction.

We also performed additional orthogonal, but more indirect, analyses based on the
coregulation or antiregulation of phosphorylation sites on the same protein, which we found
in more than half of the phosphoproteins. We reasoned that a synchronous change with a
similar amplitude and directionality of such phosphopeptides would indicate an abundance
change of the corresponding protein. In contrast, a discordant abundance change of the
phosphopeptides from such proteins would indicate a change in phosphorylation site
occupancy. These data (fig. S7) can be summarized as follows: For about 25% of the
observed events, only a single regulated phosphopeptide was detected on the entire length of
the phosphoprotein, impeding this type of analysis. The remainder of events fell into three
classes: In 49% of the remaining cases, at least two phosphopeptides originating from the
same protein were observed to be regulated, and these exhibited identical directionality. In
contrast, in 5% of events, the changes were of opposing directionality; the latter pattern was
not consistent with a simple protein abundance change. Of note, in a large part of the data,
that is, in 46% of cases, a phosphopeptide that had substantially changed in abundance was
detected with at least one other phosphopeptide on the same protein, but the other
phosphopeptides were not observed to be regulated. The latter two categories indicate that
for most events detected in this study, changes in the abundance of a phosphopeptide could
not be explained by changes in protein abundance alone.
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Effect of a given kinase or phosphatase on the phosphoproteome
The number of phosphopeptides that were affected by the deletion of a given kinase or
phosphatase varied considerably (Fig. 2). Therefore, we (i) quantified the impact of each
kinase or phosphatase on the phosphoproteome under the growth conditions tested, (ii)
assessed whether the kinases and phosphatases were associated with different biological
processes according to their effect on the phosphoproteome, and (iii) determined which
biological processes were affected by each kinase and phosphatase.

We first computed the fraction of phosphopeptides that were affected by a given kinase or
phosphatase relative to the total number of phosphopeptides that were affected by the
kinases and phosphatases (Fig. 3A and table S8). We observed that the deletion of 22% of
the kinases and phosphatases that we tested resulted in fewer than 10 perturbed
phosphopeptides each; therefore, we considered these deletions to have had minimal effects
on the fraction of the phosphoproteome detected in this study. These included kinases
important in cellular stress response mechanisms, such as Mrk1 (37) and Gcn2 (38). In
contrast, for 78% of the kinase and phosphatase deletion strains, distinct changes in the
phosphoproteome could be detected. The kinases with the largest effects on the
phosphoproteome were Ctk1 (39), a kinase with key roles in the regulation of transcription
and translation, and Psk2, which is involved in sugar flux and translational regulation (40).
These data show that the loss of most kinases or phosphatases indeed perturbed large parts
of the signaling network.

We next determined the distribution of biological processes represented by the
phosphoproteins affected by the lower-impact (bottom half) and higher-impact (top half)
kinases and phosphatases, respectively. We found that the enzymes with the smallest effect
showed a strong enrichment in processes associated with mitogen-activated protein kinase
(MAPK) cascade signaling [“MAPKKK (MAPK kinase kinase) cascade,” P = 3.9−10;
“response to pheromone,” P = 4.2−6], whereas the enzymes with the largest effects showed a
strong enrichment in processes related to the mitotic cell cycle (“interphase of mitotic cell
cycle,” P = 3.1−9; “mitotic cell cycle,” P = 1.4−6) (tables S9 and S10). These data showed
that under the tested conditions, even stress- or mating-related kinases showed a measurable
impact on the phosphoproteome, albeit lower than that of growth- and cell cycle–related
kinases or phosphatases. Lastly, we also computed those biological processes that were
enriched among the responders of each individual kinase or phosphatase. We found that 575
biological processes were enriched (Fig. 3B and table S11), an average of five processes for
each active kinase or phosphatase. The most frequently enriched functions were
“endocytosis” (39 times) and “cell morphogenesis” (38 times). Together, these data illustrate
that the effects of most kinases and phosphatases on the signal transduction network, and
thereby on controlled biological processes, were broad, perhaps broader than expected (2).

Correlation with yeast phenotypes
We next tested the phenotypic consequences of deletion of kinases and phosphatases, which
are relevant in particular with regard to effects (side effects) of potential drugs that inhibit
kinases or phosphatases. For each deletion strain, we assessed changes in growth speed (41)
and morphological features (table S8) (42). Despite 97 of the deletion strains showing
reproducible responses in the phosphorylation network, only 9 mutants showed a strong
effect on growth speed, and the total was 23 if strong changes in morphological features
were also included (Fig. 3A). Conversely, 11 of the 27 kinases and phosphatases that had an
undetectable, or only minimal, effect on the section of the phosphoproteome measured in
this study showed a phenotype, among them, the kinase Elm1 (43), which showed a strong
morphological phenotype. However, many strong morphological phenotypes were indeed
observed in mutants that showed a strong change in the phosphoproteome, but the results
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were nevertheless surprising because they indicated that strong phenotypes were not
necessarily reflected in the status of the phosphoproteome, as exemplified by Elm1 and
other enzymes. Perhaps, in some cases, compensatory effects (visible at the level of the
phosphoproteome) were precisely what prevented the occurrence of strong phenotypic
consequences, as exemplified by the lack of correlation between the growth phenotypes and
the changes in the phosphoproteome. This observation is particularly relevant because, first,
cancer cells might display in some regards increased compensatory power, and second,
kinase inhibitors that are specific for a target in vivo might not necessarily result in a cellular
phenotype.

DISCUSSION
Our study delineates the responses of the system-wide cellular phosphorylation network
upon systematic inactivation of individual kinases or phosphatases. Because the
phosphorylation network is one of the main cellular backbones for the processing of
information and the implementation of cellular responses, it is highly dynamic. Our
measured behavior is only a single snapshot of a large number of possible outcomes, which
were constrained by the growth and experimental conditions that we chose.

The first surprising observation that we made was that 7550 phosphopeptides were
consistently identified but did not show a substantial amount of regulation. This may be due
to, first, our cutoffs being conservative; thus, many putative regulatory events may not have
been reproducible or strong enough to be deemed substantial. Second, 22% of the kinase and
phosphatase mutants could not be analyzed, mainly because the corresponding genes are
essential for cellular viability. Perhaps their essentiality is at least partly due to a generally
higher impact on the phosphoproteome, as indicated recently (10), or because their
substrates need to be phosphorylated constitutively. Third, in yeast, a large number of
paralogous kinase isoforms exist (for example, Tpk1, Tpk2, and Tpk3). Given this, it is
reasonable to expect some overlap or redundancy in substrates, which could lead to a
considerable number of phosphorylation sites that would appear unregulated as long as only
one of the paralogous duplicates was deleted. Fourth, the yeast populations that we analyzed
consisted in a strict sense of many mixed subpopulations (for example, cells in different cell
cycle states), and it can be assumed that an identical phosphorylation site can become
phosphorylated by different kinases during the cell cycle. Therefore, analyzing deletions of
single kinases or phosphatases would only manifest in slight, if any, regulation for such
sites; for example, a cell cycle phase–specific regulation is masked by all cells that are not in
that particular phase at any given time point. Fifth, we also analyzed whether the regulated
and nonregulated phosphopeptides fell into different protein abundance classes (for
example, the nonregulated are of low abundance and therefore regulation is more difficult to
observe), but this was not the case. Overall, it is likely that all five possible explanations
contribute to the observed result.

Another finding of this study was the unexpectedly strong dominance of indirect effects (as
opposed to direct molecular target effects), which were often without a resulting strong
cellular phenotype. To some extent, this observation fits with a view of signaling networks
having to be highly flexible and redundant to respond to an ever-changing environment
while maintaining stable cellular states (44). This constrains the architecture of the system,
as described by the “law of requisite variety” (45,46), a fundamental law in systems control
theory. It states that stable systems have to encode a number of control states that is higher
than or equal to the number of states to be controlled. Considering that for each cell the
space of “environmental states” is enormous, consequently, also the cellular “control
variable space” must have an equal or greater size. The combinatorial possibilities of the
phosphoproteome seem to ideally fulfill this demand (44).
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An alternative explanation for this observation might also be found in the theory of Neutral
Evolution (47). It is possible that only a small number of the observed phosphorylation
events are actually relevant for the function and survival of the cell, whereas most
phosphorylation events would simply have no effect, or at least have no negative effect, on
the cell. As a result, such phosphorylation sites would not be counterselected during
evolution. The data generated in this study do not, by themselves, support or refute this
hypothesis. Finally, the low correlation between phenotype and the degree of change in the
phosphoproteome may have been affected by the growth conditions chosen here, the lack of
sensitivity of the phenotypic assays, or the possibility that the phosphoproteomics data were
not sampled deeply enough to find such correlations.

In addition to revealing insights into the architecture of cellular signaling, our data set also
describes the proteome-wide functional states of yeast cells; this might be useful for
determining diagnostic markers for stress conditions, functional states of key pathways, or
the activity of a given kinase or phosphatase. These markers could be used in conjunction
with targeted proteomics approaches to not only study basic biological processes but also
determine how a given pharmacological intervention would affect the cellular signaling
network.

With targeted proteomics methods, not only can the cellular information flux under many
conditions be observed, at high throughput, but this approach also enables us to understand
for all phosphorylation sites whether the observed change is a “true” regulation event or
simply as a result of a change in protein abundance (48–50) because both the
phosphopeptide and several proteotypic peptides corresponding to the protein could be
relatively or absolutely quantified, thus determining the phosphorylation site occupancy and
regulation. Overall, our data provide global starting points, and constraints, toward
understanding the complexity of phosphorylation regulation in yeast and other organisms. In
the future, the results should be complemented by similar data for specific cellular
conditions, time courses, or small-molecule interventions, thereby sharpening—step by step
—our view of the events in the phosphorylation network. The ensuing insights in general
design rules and motifs in cellular information processing will be essential for our ability to
develop kinase-based drugs in an informed way.

MATERIALS AND METHODS
The generated LC-MS/MS phosphoproteome maps (table S2), an overview of the generated
data (table S12), and the statistical methods used for their analysis are explained in detail in
the Supplementary Materials. We have made available all kinase/phosphatase-responder
relations in a user-friendly way in the recently described PhosphoPep database (30,51)
(http://www.phosphopep.org). All yeast strains used here can be supplied upon request in a
96-well plate format (table S13).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Integrated experimental and computational pipeline to determine in vivo kinase-substrate
and phosphatase-substrate relationships. Yeast kinase and phosphatase genes were
systematically deleted one by one and the phosphoproteomes were systematically compared
between mutant and wild-type strains. To achieve this, for each mutant strain and wild-type,
we grew and processed three independent biological replicates by proteome isolation,
protein digestion with trypsin, phosphopeptide enrichment by applying a TiO2 resin, and
quantification and identification of the phosphopeptides with LC-MS/MS. Observed
phosphopeptide ion features were aligned, quantified, and tested for statistical significance.
For the example phosphopeptide shown, IAS*PIQHEHDSGSR, the resulting matrix gives
the intensity values measured in the wild-type and mutant samples, as well as the
corresponding log2 fold change (here −3.76) with its associated significance. Abbreviations
for the amino acids are as follows: A, Ala; D, Asp; E, Glu; G, Gly; H, His; I, Ile; P, Pro; Q,
Gln; R, Arg; and S, Ser.
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Fig. 2.
Matrix of kinases and phosphatases analyzed in this study and their effects on the
phosphoproteome. Overall, 124 kinases and phosphatases were interrogated through our
experimental and computational pipeline. Each row (y axis) corresponds to a regulated
phosphopeptide and each column (x axis) summarizes the responders of a given kinase or
phosphatase. Phosphopeptides with a directionality as expected (that is, kinase deletion
resulted in a decrease in peptide abundance, whereas phosphatase deletion resulted in an
increase in peptide abundance) are shown in graded blue, and phosphopeptides with an
inverted directionality (evidence for indirect effect, not compatible with direct molecular
target) are displayed in graded gold, according to the observed fold change for each peptide.
Phosphopeptides observed but not regulated or not detected are displayed in gray. At the
bottom, the total numbers of events observed in this study are listed. “Full response”
corresponds to phosphopeptides that appeared or vanished when wild-type and mutant
strains were compared, and “partial response” corresponds to phosphopeptides that showed
a statistically significant change in abundance, but were detected in both wild-type and
mutant samples. Abbreviations for the amino acids are as follows: A, Ala; D, Asp; E, Glu; F,
Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr;
and V, Val.
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Fig. 3.
(A) Phosphoproteome-wide impact of each kinase and phosphatase. For all kinases and
phosphatases, we computed the fraction of phosphopeptides affected relative to the total
number of phosphopeptides affected by all kinases and phosphatases. The kinases and
phosphatases were then ranked accordingly. Blue circles represent kinases, light blue circles
represent essential kinases, and golden circles represent phosphatases. A large golden
triangle indicates a strong growth or morphological phenotype of a given mutant, whereas a
small blue triangle represents a weak growth or morphological phenotype of a given mutant.
Right side: examples of kinases that showed either a low or a high effect on the
phosphoproteome regions, together with their known cellular functions. (B) For each kinase
and phosphatase, the biological processes enriched among their regulated phosphoproteins
were computed. Each column corresponds to a biological process, whereas each row
corresponds to a given kinase or phosphatase (kinases are depicted in blue, essential kinases
in light blue, and phosphatases in gold). The color scale denotes the statistical significance
of the observed enrichment. Magnified inset: an example for three clustered kinases, for
which a related set of processes is observed enriched among their substrates.
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