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Abstract
Recently-developed genotype imputation methods are a powerful tool for detecting untyped
genetic variants that affect disease susceptibility in genetic association studies. However, existing
imputation methods require individual-level genotype data, whereas in practice it is often the case
that only summary data are available. For example this may occur because, for reasons of privacy
or politics, only summary data are made available to the research community at large; or because
only summary data are collected, as in DNA pooling experiments. In this article, we introduce a
new statistical method that can accurately infer the frequencies of untyped genetic variants in these
settings, and indeed substantially improve frequency estimates at typed variants in pooling
experiments where observations are noisy. Our approach, which predicts each allele frequency
using a linear combination of observed frequencies, is statistically straight-forward, and related to
a long history of the use of linear methods for estimating missing values (e.g. Kriging). The main
statistical novelty is our approach to regularizing the covariance matrix estimates, and the resulting
linear predictors, which is based on methods from population genetics. We find that, besides being
both fast and flexible – allowing new problems to be tackled that cannot be handled by existing
imputation approaches purpose-built for the genetic context – these linear methods are also very
accurate. Indeed, imputation accuracy using this approach is similar to that obtained by state-of-
the art imputation methods that use individual-level data, but at a fraction of the computational
cost.
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1. Introduction
Genotype imputation [Servin and Stephens (2008), Guan and Stephens (2008), Marchini et
al. (2007), Howie et al. (2009), Browning and Browning (2007), Huang et al. (2009)] has
recently emerged as a useful tool in the analysis of genetic association studies as a way of
performing tests of association at genetic variants (specifically Single Nucleotide
Polymorphisms, or SNPs) that were not actually measured in the association study. In brief,
the idea is to exploit the fact that untyped SNPs are often correlated, in a known way, with
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one or more typed SNPs. Imputation-based approaches exploit these correlations, using
observed genotypes at typed SNPs to estimate, or impute, genotypes at untyped SNPs, and
then test for association between the imputed genotypes and phenotype, taking account of
uncertainty in the imputed genotypes. (Although in general statistics applications the term
“imputation” may imply replacing unobserved data with a single point estimate, in the
genetic context it is often used more broadly to include methods that consider the full
conditional distribution of the unobserved genotypes, and this is the way we use it here.)
These approaches have been shown to increase overall power to detect associations by
expanding the number of genetic variants that can be tested for association [Servin and
Stephens (2008), Marchini et al. (2007)], but perhaps their most important use has been in
performing meta-analysis of multiple studies that have typed different, but correlated, sets of
SNPs (e.g. Zeggini et al. (2008)).

Existing approaches to imputation in this context have been developed to work with
individual-level data: given genotype data at typed SNPs in each individual they attempt to
impute the genotypes of each individual at untyped SNPs. From a general statistical
viewpoint, one has a large number of correlated discrete-valued random variables
(genotypes), whose means and covariances can be estimated, and the aim is to predict values
of a subset of these variables, given observed values of all the other variables. Although one
could imagine applying off-the-shelf statistical methods to this problem (e.g. Yu and Schaid
(2007) consider approaches based on linear regression), in practice the most successful
methods in this context have used purpose-built methods based on discrete Hidden Markov
Models (HMMs) that capture ideas from population genetics (e.g. Li and Stephens (2003),
Scheet and Stephens (2005)).

In this paper we consider a related, but different, problem: given the frequency of each allele
at all typed SNPs, we attempt to impute the frequency of each allele at each untyped SNP.
We have two main motivations for considering this problem. The first is that, although most
large-scale association studies collect individual-level data, it is often the case that, for
reasons of privacy [Homer et al. (2008b), Sankararaman et al. (2009)] or politics, only the
allele frequency data (e.g. in cases vs controls) are made available to the research
community at large. The second motivation is an experimental design known as DNA
pooling [Homer et al. (2008a), Meaburn et al. (2006)], in which individual DNA samples
are grouped into “pools” and high-throughput genotypings are performed on each pool. This
experimental design can be considerably cheaper than separately genotyping each
individual, but comes at the cost of providing only (noisy) estimates of the allele frequencies
in each pool. In this setting the methods described here can provide not only estimates of the
allele frequencies at untyped SNPs, but also more accurate estimates of the allele
frequencies at typed SNPs.

From a general statistical viewpoint this problem of imputing frequencies is not so different
from imputing individual genotypes: essentially it simply involves moving from discrete-
valued variables to continuous ones. However, this change to continuous variables precludes
direct use of the discrete HMM-based methods that have been applied so successfully to
impute individual genotypes. The methods we describe here come from our attempts to
extend and modify these HMM-based approaches to deal with continuous data. In doing so
we end up with a considerably simplified method that might be considered an off-the-shelf
statistical approach: in essence, we model the allele frequencies using a multivariate normal
distribution, which results in unobserved frequencies being imputed using linear
combinations of the observed frequencies (as in Kriging, for example). Some connection
with the HMM based approaches remains though, in how we estimate the mean and
variance-covariance matrix of the allele frequencies. In particular, consideration of the
HMM-based approaches lead to a natural way to regularize the estimated variance-
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covariance matrix, making it sparse and banded: something that is important here for both
computational and statistical reasons. The resulting methods are highly computationally
efficient, and can easily handle very large panels (phased or unphased). They are also
surprisingly accurate, giving estimated allele frequencies that are similar in accuracy to
those obtained from state-of-the-art HMM-based methods applied to individual genotype
data. That is, one can estimate allele frequencies at untyped SNPs almost as accurately using
only the frequency data at typed SNPs as using the individual data at typed SNPs.
Furthermore, when individual-level data are available one can also apply our method to
imputation of individual genotypes (effectively by treating each individual as a pool of 1),
and this results in imputation accuracy very similar to that of state-of-the-art HMM-based
methods, at a fraction of the computational cost. Finally, in the context of noisy data from
pooling experiments, we show via simulation that the method can produce substantially
more accurate estimated allele frequencies at genotyped markers.

2. Methods and models
We begin by introducing some terminology and notation.

A SNP (Single Nucleotide Polymorphism) is a genetic marker that usually exhibits two
different types (alleles) in a population. We will use 0 and 1 to denote the two alleles at each
SNP with the labeling being essentially arbitrary.

A haplotype is a combination of alleles at multiple SNPs residing on a single copy of a
genome. Each haplotype can be represented by a string of binary (0/1) values. Each
individual has two haplotypes, one inherited from each parent. Routine technologies read the
two haplotypes simultaneously to produce a measurement of the individual’s genotype at
each SNP, which can be coded as 0,1 or 2 copies of the 1 allele. Thus the haplotypes
themselves are not usually directly observed, although they can be inferred using statistical
methods [Stephens et al. (2001)]. Genotype data where the haplotypes are treated as
unknown are referred to as “unphased”, whereas if the haplotypes are measured or estimated
they are referred to as “phased”.

In this paper we consider the following form of imputation problem. We assume that data
are available on p SNPs in a reference panel of data on m individuals samples from a
population, and that a subset of these SNPs are typed on a further study sample of
individuals taken from a similar population. The goal is to estimate data at untyped SNPs in
the study sample, using the information on the correlations among typed and untyped SNPs
that is contained in the reference panel data.

We let M denote the panel data, and h1,…,h2n denote the 2n haplotypes in the study sample.
In the simplest case, the panel data will be a 2m × p binary matrix, and the haplotypes h1,
…,h2n can be thought of as additional rows of this matrix with some missing entries whose
values need “imputing”. Several papers have focused on this problem of “individual-level”
imputation [Servin and Stephens (2008), Scheet and Stephens (2005), Marchini et al.
(2007), Browning and Browning (2007), Li et al. (2006)].

In this paper, we consider the problem of performing imputation when only summary-level
data are available for h1,…,h2n. Specifically, let

(2.1)
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denote the vector of allele frequencies in the study sample. We assume that these allele
frequencies are measured at a subset of typed SNPs, and consider the problem of using these
measurements, together with information in M, to estimate the allele frequencies at the
remaining untyped SNPs. More formally, if (yt, yu) denotes the partition of y into typed and
untyped SNPs, our aim is to estimate the conditional distribution yu|yt, M.

Our approach is based on the assumption that h1,…,h2n are independent and identically
distributed (i.i.d.) draws from some conditional distribution Pr(h|M). Specifically, in
common with many existing approaches to individual-level imputation [Stephens and Scheet
(2005), Marchini et al. (2007), Li et al. (2006)], we use the HMM-based conditional
distribution from Li and Stephens (2003), although other choices could be considered. It
then follows by the central limit theorem, provided that the sample size 2n is large, the
distribution of y|M can be approximated by a multivariate normal distribution:

(2.2)

where μ = E(h|M) and .

From this joint distribution, the required conditional distribution is easily obtained.
Specifically, by partitioning μ and Σ in the same way as y, according to SNPs’ typed/
untyped status, (2.2) can be written,

(2.3)

and

(2.4)

The mean of this last distribution can be used as a point estimate for the unobserved
frequencies yu, while the variance gives an indication of the uncertainty in these estimates.
(In principle the mean can lie outside the range [0, 1), in which case we use 0 or 1, as
appropriate, as the point estimate; however this happens very rarely in practice).

The parameters μ and Σ must be estimated from the panel data. It may seem natural to
estimate these using the empirical mean fpanel and the empirical covariance matrix Σpanel

from the panel. However, Σpanel is highly rank deficient because the sample size m in the
panel is far less than the number of SNPs p, and so this empirical matrix cannot be used
directly. Use of the conditional distribution from Li and Stephens solves this problem.
Indeed, under this conditional distribution E(h|M) = μ̂ and Var(h|M) = Σ ̂ can be derived
analytically (appendix A) as:

(2.5)

(2.6)
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where θ is a parameter relating to mutation, and S is obtained from Σpanel by shrinking off-
diagonal entries towards 0. Specifically,

(2.7)

where ρij is an estimate of the population-scaled recombination rate between SNPs i and j
(e.g. Hudson (2001), Li and Stephens (2003), McVean et al. (2002)). We use the value of θ
suggested by Li and Stephens (2003),

(2.8)

and values of ρij obtained by applying the software PHASE [Stephens and Scheet (2005)] to
the HapMap CEU data, which are conveniently distributed with the IMPUTE software

package. For SNPs i and j that are distant, . To exploit the benefits of sparsity
we set any value that was less than 10−8 to be 0, which makes Σ̂ sparse and banded: see
Figure 1 for illustration. This makes matrix inversion in (2.4) computationally feasible and
fast, using standard Gaussian elimination.

2.1. Incorporating measurement error and over-dispersion
Our treatment above assumes that the allele frequencies of typed SNPs, yt, are observed
without error. In some settings, for example in DNA pooling experiments, this is not the
case. We incorporate measurement error by introducing a single parameter ε2, and assume

(2.9)

where random vectors  represent the observed and true sample allele
frequencies for typed SNPs respectively, and subscript p − q denotes the number of typed
SNPs. We assume that, given , the observations  are conditionally independent of
the panel data (M) and the allele frequencies at untyped SNPs .

Our treatment in the previous section also makes several other implicit assumptions: for
example, that the panel and study individuals are sampled from the same population, and
that the parameters ρ and θ are estimated without error. Deviations from these assumptions
will cause over-dispersion: the true allele frequencies will lie further from their expected
values than the model predicts. To allow for this, we modify (2.2) by introducing an over-
dispersion parameter σ2:

(2.10)

Over-dispersion models like this are widely used for modeling binomial data [McCullagh
and Nelder (1989)].

In our applications below, for settings involving measurement error (i.e. DNA pooling
experiments), we estimate σ2, ε2 by maximizing the multivariate normal likelihood:
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(2.11)

For settings without measurement error, we set ε2 = 0 and estimate σ2 by maximum
likelihood.

From the hierarchical model defined by (2.9) and (2.10), the conditional distributions of
allele frequencies at untyped and typed SNPs are given by:

(2.12)

and

(2.13)

We use (2.12) to impute allele frequencies at untyped SNPs. In particular, we use the
conditional mean

(2.14)

as a natural point estimate for these allele frequencies. In settings involving measurement
error, we use (2.13) to estimate allele frequencies at typed SNPs, again using the mean

(2.15)

as a point estimate. Note that this mean has an intuitive interpretation as a weighted average
of the observed allele frequency at that SNP and information from other nearby, correlated,
SNPs. For example, if two SNPs are perfectly correlated, then in the presence of
measurement error, the average of the measured frequencies will be a better estimator of the
true frequency than either of the single measurements (assuming measurement errors are
uncorrelated). The lower the measurement error, ε2, the greater the weight given to the
observed frequencies; and when ε2 = 0 the estimated frequencies are just the observed
frequencies.

Remark. For both untyped and typed SNPs, our point estimates for allele frequencies,
(2.14) and (2.15)) are linear functions of the observed allele frequencies. Although these
linear predictors were developed based on an appeal to the Central Limit Theorem, and
resultant normality assumption, there are alternative justifications for use of these particular
linear functions that do not rely on normality. Specifically, assuming that the two haplotypes
making up each individual are i.i.d draws from a conditional distribution Pr(h|M) with mean
μ̂ and variance covariance matrix σ2Σ ̂, then the linear predictors (2.14) and (2.15)) minimize
the integrated risk (assuming squared error loss) among all linear predictors [West and
Harrison (1997)]. In this sense they are the best linear predictors, and so we refer to this
method of imputation as Best Linear IMPutation or BLIMP.
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2.2. Extension to imputing genotype frequencies
The development above considers imputing unobserved allele frequencies. In some settings
one might also want to impute genotype frequencies. A simple way to do this is to use an
assumption of Hardy–Weinberg equilibrium: that is, to assume that if y is the allele
frequency at the untyped SNP, then the three genotypes have frequencies (1 − y)2, 2y(1 − y)
and y2. Under our normal model, the expected values of these three quantities can be
computed:

(2.16)

where  are given in (2.12). These expectations can be used
as estimates of the unobserved genotype frequencies.

The method above uses only allele frequency data at typed SNPs. If data are also available
on genotype frequencies, as might be the case if the data are summary data from a regular
genome scan in which all individuals were individually genotypes, then an alternative
approach that does not assume HWE is possible. In brief, we write the unobserved genotype
frequencies as means of the genotype indicators, 𝟙[g=0] and 𝟙[g=2] (analogous to expression
(2.1)), and then derive expressions for the means and covariances of these indicators both
within SNPs and across SNPs. Imputation can then be performed by computing the
appropriate conditional distributions using the joint normal assumption, as in (2.4). See
appendix B for more details.

In practice, we have found these two methods give similar average accuracy (results not
shown), although this could be because our data conform well to Hardy–Weinberg
equilibrium.

2.3. Individual-level genotype imputation
Although we developed the above model to tackle the imputation problem when individual
genotypes are not available, it can also be applied to the problem of individual-level
genotype imputation when individual-level data are available, by treating each individual as
a pool of two haplotypes (application of these methods to small pool sizes is justified by the
Remark above). For example, doubling (2.14) provides a natural estimate of the posterior
mean genotype for an untyped SNP. For many applications this posterior mean genotype
may suffice; see Guan and Stephens (2008) for the use of such posterior means in
downstream association analyses. If an estimate that takes a value in {0,1,2} is desired, then
a simple ad hoc procedure that we have found works well in practice is to round the
posterior mean to the nearest integer. Alternatively, a full posterior distribution on the three
possible genotypes can be computed by using the genotypic version of our approach
(appendix B).

2.4. Using unphased genotype panel data
Our method can be readily adapted to settings where the panel data are unphased. To do this,
we note that the estimates (2.5, 2.6) for μ and Σ depend on the panel data only through the
empirical mean and variance covariance matrix of the panel haplotypes. When the panel
data are unphased, we simply replace these with 0.5 times the empirical mean and variance
covariance matrix of the panel genotypes (since, assuming random mating, genotypes are
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expected to have twice the mean and twice the (co)variance of haplotypes); see Weir (1979)
for related discussion.

2.5. Imputation without a panel
In some settings, it may be desired to impute missing genotypes in a sample where no
individuals are typed at all SNPs (i.e. there is no panel M), and each individual is typed at a
different subset of SNPs. For example, this may arise if many individuals are sequenced at
low coverage, as in the currently-ongoing 1000 genomes project
(http://www.1000genomes.org). In the absence of a panel we cannot directly obtain the
mean and variance-covariance estimates μ̂ and Σ̂ as in (2.5) and (2.6). An alternative way to
obtain these estimates is to treat each individual genotype vector as a random sample from
multivariate normal distribution Np(μ̂, Σ ̂), and apply the ECM algorithm [Meng and Rubin
(1993)] to perform maximum likelihood estimation. However, this approach does not
incorporate shrinkage. We therefore modify the algorithm in an ad-hoc way to incorporate
shrinkage in the conditional maximization step. See Appendix C for details.

3. Data application and results
We evaluate methods described above by applying them to data from a subset of the
WTCCC Birth Cohort, consisting of 1376 unrelated British individuals genotyped on the
Affymetrix 500K platform [Wellcome Trust Case Control Consortium (2007)]. For
demonstration purpose, we use only the 4329 SNPs from chromosome 22. We impute data
at these SNPs using the 60 unrelated HapMap CEU parents [The International HapMap
Consortium (2005)] as the panel. For the recombination parameters required in (2.7) we use
the estimates distributed in the software package IMPUTE v1 [Marchini et al. (2007)],
which were estimated from the same panel using the software package PHASE [Stephens
and Scheet (2005)].

In our evaluations, we consider three types of application: frequency imputation using
summary-level data, individual-level genotype imputation, and noise reduction in DNA
pooling experiments. We examine both the accuracy of point estimates, and calibration of
the credible intervals.

3.1. Frequency imputation using summary-level data
In this section, we evaluate the performance of (2.14) for imputing frequencies at untyped
SNPs. The observed data consist of the marginal allele frequencies at each SNP, which we
compute from the WTCCC individual-level genotype data. To assess imputation accuracy,
we perform the following cross-validation procedure: we mask the observed data at every
25th SNP, then treat the remaining SNPs as typed and use them to impute the frequencies of
masked SNPs and compare the imputation results with the actual observed frequencies. We
repeat this procedure 25 times by shifting the position of the first masked SNP. Because in
this case, the observed frequencies are obtained through high quality individual-level
genotype data, we assume the experimental error parameter ε2 = 0.

To provide a basis for comparison, we also perform the same experiment using the software
package IMPUTE v1 [Marchini et al. (2007)], which is among the most accurate of existing
methods for this problem. IMPUTE requires individual-level genotype data, and outputs
posterior genotype probabilities for each unmeasured genotype. We therefore input the
individual-level genotype data to IMPUTE and estimate the allele frequency at each untyped
SNP using the posterior expected frequency computed from the posterior genotype
probabilities. Like our method, IMPUTE performs imputation using the conditional
distribution from Li and Stephens [Li and Stephens (2003)]; however, it uses the full
conditional distribution whereas our method uses an approximation based on the first two
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moments. Furthermore, IMPUTE uses individual-level genotype data. For both these
reasons, we would expect IMPUTE to be more accurate than our method, and our aim is to
assess how much we lose in accuracy by our approximation and by using summary-level
data.

To assess accuracy of estimated allele frequencies, we use the Root Mean Squared Error
(RMSE),

(3.1)

where J is the number of SNPs tested (4329) and yj, ŷj are observed and imputed allele
frequencies for SNP j respectively.

The RMSE from our method was 0.0157 compared with 0.0154 from IMPUTE (Table 1).
Thus, for these data, using only summary-level data sacrifices virtually nothing in accuracy
of frequency imputation. Furthermore, we found that using an unphased panel (replacing the
phased HapMap CEU haplotypes with the corresponding unphased genotypes) resulted in
only a very small decrease in imputation accuracy: RMSE = 0.0159. In all cases the methods
are substantially more accurate than a “naive method” that simply estimates the sample
frequency using the panel frequency (Table 1).

We also investigated the calibration of the estimated variances of the imputed frequencies
from (2.12). To do this, we constructed a Z-static for each test SNP j,

(3.2)

where yj is true observed frequency, and the conditional mean and variance are as in (2.12).
If the variances are well calibrated, the Z-scores should follow a standard normal
distribution (with slight dependence among Z-scores of neighboring SNPs due to LD).
Figure 2a shows that, indeed, the empirical distribution of Z-scores is close to standard
normal (results are shown for phased panel; results for unphased panel are similar). Note
that the over-dispersion parameter plays a crucial role in achieving this calibration. In
particular, the Z-scores produced by the model without over-dispersion (2.2) do not follow a
standard normal distribution, with many more observations in the tails (Figure 2b) indicating
that the variance is under-estimated.

3.1.1. Comparison with un-regularized linear frequency estimator—To assess the
role of regularization, we compared the accuracy of BLIMP with simple un-regularized
linear frequency estimators based on a small number of near-by “predicting” SNPs. (In fact,
selecting a small number of SNPs can be viewed as a kind of regularization, but we refer to
it as un-regularized for convenience.) The un-regularized linear estimator has the same form
as in (2.4), but uses the un-regularized estimates fpanel and Σpanel for μ and Σ. We consider
two schemes to select predictors: the first scheme selects k flanking SNPs on either side of
the target SNP (so 2k predictors in total); the second scheme selects the 2k SNPs with the
highest marginal correlation with the target SNP. Figure 3 shows RMSE as predicting SNPs
increases from 0 to 50. We find that the best performance of the un-regularized methods is
achieved by the first scheme, with a relatively large number of predicting SNPs (20–40);
however its RMSE is larger than that of IMPUTE and BLIMP.
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3.2. Individual-level genotype imputation
Although very satisfactory methods already exist for individual-level genotype imputation,
BLIMP has the potential advantage of being extremely fast and low on memory-usage (see
computational comparisons, below). We therefore also assessed its performance for
individual-level genotype imputation. We used the same cross-validation procedure as in
frequency imputation, but using individual-level data as input. As above, we compared
results from our approach with those obtained using IMPUTE v1.

We again use RMSE to measure accuracy of imputed (posterior mean) genotypes:

(3.3)

where m is the number of the individuals (1376), p is the total number of tested SNPs (4329)

and  are observed and estimated (posterior mean) genotypes for individual i at SNP j
respectively.

For comparison purpose, we also use a different measure of accuracy that is commonly used
in this setting: the genotype error rate, which is the number of wrongly imputed genotypes
divide by the total number of imputed genotypes. To minimize the expected value of this
metric, one should use the posterior mode genotype as the estimated genotype. Thus, for
IMPUTE v1 we used the posterior mode genotype for this assessments with this metric.
However, for simplicity, for our approach we used the posterior mean genotype rounded to
the nearest integer. (Obtaining posterior distributions on genotypes using our approach, as
outlined in appendix B, is considerably more complicated, and in fact produced slightly less
accurate results, not shown).

We found that, under either metric BLIMP provides only very slightly less accurate
genotype imputations than IMPUTE (Table 1). Further, as before, replacing the phased
panel with an unphased panel produces only a small decrease in accuracy (Table 1).

These results show average accuracy when all untyped SNPs are imputed. However, it has
been observed previously (e.g. Marchini et al. (2007), Guan and Stephens (2008)) that
accuracy of calls at the most confident SNPs tends to be considerably higher than the
average. We checked that this is also true for BLIMP. To obtain estimates of the confidence
of imputations at each SNP we first estimated σ by maximum likelihood using the summary
data across all individuals, and then compute the variance for each SNP using (2.12); note
that this variance does not depend on the individual, only on the SNP. We then considered
performing imputation only at SNPs whose variance was less than some threshold, plotting
the proportion of SNPs imputed (“call rate”) against their average genotype error rate as this
threshold varies. The resulting curve for BLIMP is almost identical to the corresponding
curve for IMPUTE (Figure 4).

3.3. Individual-level genotype imputation without a panel
We use the same WTCCC Birth Cohort data to assess our modified ECM algorithm for
performing individual-level genotype imputation without using a panel. To create a data set
with data missing at random we mask each genotype, independently, with probability m. We
create multiple data sets by varying m from 5% to 50%. For each data set we run our ECM
algorithm for 20 iterations. (Results using different starting points for the ECM algorithm
were generally very consistent, and so results here are shown for a single starting point.)
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We compare the imputation accuracy with the software package BIMBAM [Guan and
Stephens (2008)] which implements the algorithms from Scheet and Stephens (2005).

BIMBAM requires the user to specify a number of “clusters”, and other parameters related
to the EM algorithm it uses: after experimenting with different settings we applied
BIMBAM on each data set assuming 20 clusters, with 10 different EM starting points,
performing 20 iterations for each EM run. (These settings produced more accurate results
than shorter runs.)

Overall, imputation accuracy of the two methods was similar (Table 2), with BLIMP being
slightly more accurate with larger amounts of missing data and BIMBAM being slightly
more accurate for smaller amounts of missing data.

We note that in this setting, some of the key computational advantages of our method are
lost. In particular, when each individual is missing genotypes at different SNPs, one must
effectively invert a different covariance matrix for each individual. Furthermore, this
inversion has to be performed multiple times, due to the iterative scheme. For small amounts
of missing data the results from BLIMP we present here took less time than the results for
BIMBAM, but for larger amounts the run times are similar.

3.4. Noise reduction in pooled experiment
We used simulations to assess the potential for our approach to improve allele frequency
estimates from noisy data in DNA pooling experiments (equation (2.13)). To generate noisy
observed data we took allele frequencies of 4329 genotyped SNP from the WTCCC Birth
Cohort chromosome 22 data as true values, and added independent and identically
distributed N(0, ε2) noise terms to each true allele frequency. Real pooling data will have
additional features not captured by these simple simulations (e.g. biases towards one of the
alleles), but our aim here is simply to illustrate the potential for methods like ours to reduce
noise in this type of setting. We varied ε from 0.01 – 0.18 to to examine different noise
levels. Actual noise levels in pooling experiments will depend on technology and
experimental protocol; to give a concrete example, Meaburn et al. (2006) found differences
between allele frequency estimates from pooled genotyping and individual genotyping of the
same individuals, at 26 SNPs, in the range 0.008 to 0.077 (mean 0.036).

We applied our method to the simulated data by first estimating σ and ε using (2.12), and
then, conditional on these estimated parameters, estimating the allele frequency at each
observed SNP using the posterior mean given in equation (2.13). We assessed the accuracy
(RMSE) of these allele frequency estimates by comparing them with the known true values.

We found that our method was able to reliably estimate the amount of noise present in the
data: the estimated values for the error parameter ε show good correspondence with the
standard deviation used to simulate the data (Figure 5a), although for high noise levels we
underestimate the noise because some of the errors are absorbed by the parameter σ.

More importantly, we found our estimated allele frequency estimates were consistently more
accurate than the direct (noisy) observations, with the improvement being greatest for higher
noise levels (Figure 5b). For example, with ε = 0.05 our method reduced the RMSE by more
than half, to 0.024.

3.5. Computational efficiency
Imputation using our implementation of BLIMP is highly computationally efficient. The
computational efficiency is especially notable when dealing with large panels: the panel is
used only to estimate μ̂ and Σ̂, which is both quick and done just once, after which
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imputation computations do not depend on panel size. Our implementations also take
advantage of the sparsity of Σ̂ to increase running speed and reduce memory usage. To give
a concrete indication of running speed, we applied BLIMP to the WTCCC Birth Cohort data
on chromosome 22, containing 4,329 genotyped and 29,697 untyped Hapmap SNPs on 1376
individuals, using a Linux system with eight-core Intel Xeon 2.66GHz processors (although
only one processor is used by our implementation). The running time is measured by ’real’
time reported by the Unix “time” command. For frequency imputation, BLIMP took 9
minutes and 34 seconds, with peak memory usage of 162 megabytes; for individual-level
genotype imputation BLIMP took 25 minutes, using under 300 megabytes of memory. As a
comparison, IMPUTE v1 took 195 minutes for individual-level genotype imputation, with
memory usage exceeding 5.1 gigabytes.

Since these comparisons were done we note that a new version of IMPUTE (v2) has been
released [Howie et al. (2009)]. This new version gives similar imputation accuracy in the
settings we described above; it runs more slowly than v1 but requires less memory.

4. Conclusion and discussion
Imputation has recently emerged as an important and powerful tool in genetic association
studies. In this paper, we propose a set of statistical tools that help solve the following
problems:

1. Imputation of allele frequencies at untyped SNPs when only summary-level data
are available at typed SNPs.

2. Noise reduction for estimating allele frequencies from DNA pooling-based
experiments.

3. Fast and accurate individual-level genotype imputation.

The proposed methods are simple, yet statistically elegant, and computationally extremely
efficient. For individual-level genotype imputation the imputed genotypes from this
approach are only very slightly less accurate than state-of-the-art methods. When only
summary-level data are available we found that imputed allele frequencies were almost as
accurate as when using full individual genotype data.

The linear predictor approach to imputation requires only an estimate of the mean and the
covariance matrix among SNPs. Our approach to obtaining these estimates is based on the
conditional distribution from Li and Stephens (2003); however, it would certainly be
possible to consider other estimates, and specifically to use other approaches to shrink the
off-diagonal terms in the covariance matrix. An alternative, closely-related, approach is to
obtain a linear predictor directly by training a linear regression to predict each SNP, using
the panel as a training set, and employing some kind of regularization scheme to solve
potential problems with over-fitting caused by large p small n. This approach has been used
in the context of individual-level genotype imputation by A. Clark (personal
communication), and Yu and Schaid (2007). However, the choice of appropriate
regularization is not necessarily straightforward, and different regularization schemes can
provide different results [Yu and Schaid (2007)]. Our approach of regularizing the
covariance matrix using the conditional distribution from Li and Stephens (2003) has the
appeal that this conditional distribution has already been shown to be very effective for
individual genotype imputation, and for modeling patterns of correlation among SNPs more
generally [Li and Stephens (2003), Stephens and Scheet (2005), Servin and Stephens (2008),
Marchini et al. (2007)]. Furthermore, the fact that, empirically, BLIMP’s accuracy is almost
as good as the best available purpose-built methods for this problem suggests that alternative
approaches to regularization are unlikely to yield considerable improvements in accuracy.
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The accuracy with which linear combinations of typed SNPs can predict untyped SNPs is
perhaps somewhat surprising. That said, theoretical arguments for the use of linear
combinations have been given in previous work. For example, Clayton et al. (2004) showed
by example that, when SNP data are consistent with no recombination (as might be the case
for markers very close together on the genome), each SNP can be written as a linear
regression on the other SNPs. Conversely, it is easy to construct hypothetical examples
where linear predictors would fail badly. For example, consider the following example from
Nicolae (2006a): 3 SNPs form 4 haplotypes, 111, 001, 100 and 010, each at frequency 0.25
in a population. Here the correlation between every pair of SNPs is 0, but knowing any 2
SNPs is sufficient to predict the third SNP precisely. Linear predictors cannot capture
this ”higher order” interaction information, so produce sub-optimal imputations in this
situation. In contrast, other methods (including IMPUTE) could use the higher-order
information to produce perfect imputations. The fact that, empirically, the linear predictor
works well suggests that this kind of situation is rare in real human population genotype
data. Indeed, this is not so surprising when one considers that, from population genetics
theory, SNPs tend to be uncorrelated only when there is sufficiently high recombination rate
between them, and recombination will tend to break down any higher-order correlations as
well as pairwise correlations.

Besides HMM-based methods, another type of approach to genotype imputation that has
been proposed is to use “multi-marker” tagging [de Bakker et al. (2005), Purcell et al.
(2007), Nicolae (2006b)]. A common feature of these methods is to pre-select a (relatively
small) subset of “tagging” SNPs or haplotypes from all typed SNPs based on some LD
measure threshold, and then use a possibly non-linear approach to predicting untyped SNPs
from this subset. Thus, compared with our approach, these methods generally use a more
complex prediction method based on a smaller number of SNPs. Although we have not
compared directly with these methods here, published comparisons [Howie et al. (2009)]
suggest that they are generally noticeably less accurate than HMM-based methods like
IMPUTE, and thus by implication less accurate than BLIMP. That is, it seems from these
results that, in terms of average accuracy, it is more important to make effective use of low-
order correlations from all available SNPs that are correlated with the target untyped SNP,
than to take account of unusual higher-order correlations that may occasionally exist.

Our focus here has been on the accuracy with which untyped SNP allele frequencies can be
imputed. In practice an important application of these imputation methods is to test untyped
alleles for association with an outcome variable (e.g. case-control status). Because our allele
frequency predictors are linear combinations of typed SNP frequencies, each test of an
untyped SNP is essentially a test for differences between a given linear combination of
typed SNPs in case and control groups. Several approaches to this are possible; for example
the approach in Nicolae (2006b) could be readily applied in this setting. The resulting test
would be similar to the test suggested in Homer et al. (2008a) which also uses a linear
combination of allele frequencies at typed SNPs to test untyped SNPs for association with
case-control status in a pooling context. The main difference is that their proposed linear
combinations are ad hoc, rather than being chosen to be the best linear imputations; as such
we expect that appropriate use of our linear imputations should result in more powerful tests,
although a demonstration of this lies outside the scope of this paper.
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APPENDIX A: LEARNING FROM PANEL USING LI AND STEPHENS MODEL
In this section, we show the calculation of μ̂ and Σ̂ using phased population panel data.
Following the Li and Stephens model, we assume that there are K template haplotypes in the
panel. For a new haplotype h sampled from the same population, it can be modeled as an
imperfect mosaic of existing template haplotypes in the panel. Let ej denote the jth unit
vector in K dimensions (1 in the jth coordinate, 0’s elsewhere), we define random vector Zt
to be ej if haplotype h at locus t copies from jth template haplotype. The model also assumes
Z1,…,Zn form a Markov chain in state space {e1,…,eK} with transition probabilities

(A.1)

where  and rt = 1 − exp(−ρt/K) is a parameter that controls the probability that h
switches copying template at locus t. The initial-state probabilities of the Markov chain is
given by

(A.2)

It is easy to check that the initial distribution π is also the stationary distribution of the
described Markov chain. Because the chain is initiated at the stationary state, it follows that
conditional on M

(A.3)

Therefore marginally, the means and variances of Zts have following simple forms:

(A.4)

(A.5)

Let K-dimensional vector  denote the binary allelic state of panel haplotypes at locus t
and scalar parameter θ represents mutation. The emission distribution in Li and Stephens
model is given by

(A.6)

that is, with probability 1 − θ, h perfectly copies from k-th template in the panel at locus t,
while with probability θ, a mutation occurs and ht “mutates” to allele 0 or 1 equally likely. If

we define , then the emission distribution can be written as

(A.7)
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The goal here is to find the closed-form representations of first two moments of joint
distribution (h1, h2,…,hp) given the observed template panel M. For marginal mean and
variance of ht, it follows that

(A.8)

(A.9)

where  is the observed allele frequency at locus t from panel M. Finally, to
compute Cov(hs, ht) for some loci s < t, we notice that conditional on Zs and M, hs and ht are
independent and

(A.10)

Let rst denote the switching probability between s and t, and E(ht|Zs, M) can be calculated
from

(A.11)

Therefore,

(A.12)

It follows that

(A.13)

where  is the panel frequency of the haplotype “1 − 1” consisting of loci s and t.

In conclusion, under the Li and Stephens model, the distribution h | M has expectation

(A.14)

where fpanel is the p-vector of observed frequencies of all p SNPs in the panel, and variance
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(A.15)

where matrix S has the structure

(A.16)

APPENDIX B: DERIVATION OF JOINT GENOTYPE FREQUENCY
DISTRIBUTION

In this section, we derive the joint genotype frequency distribution based on the Li and
Stephens model.

Let git denote the genotype of individual i at locus t. The sample frequency of genotype 0 at
locus t is given by

(B.1)

Similarly, genotype frequencies  can be obtained by
averaging indicators 𝟙[git=1] and 𝟙[git=2] over the samples respectively. Because of the
restriction

(B.2)

given any two of the three indicators, the third one is uniquely determined. Let gi denote 2p-
vector (𝟙[gi1=0], 𝟙[gi1=2],…,𝟙[gip=0], 𝟙[gip=2]) and

(B.3)

Assuming that g1,…,gn are i.i.d draws from conditional distribution Pr(g|M), by central limit
theorem as sample size n is large, it follows

(B.4)

where μg = E(g|M) and Σg = Var(g|M).

For the remaining part of this section, we derive the closed-form expressions for μg and Σg
based on the Li and Stephens model.

Let ha and hb denote the two composing haplotypes for some genotype sampled from
population. Note that
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(B.5)

Given panel M, the two composing haplotypes are also assumed to be independent and
identically distributed. Following the results from Appendix A, we obtain that

(B.6)

where E(ht|M) is given by (A.8).

To compute covariance across different loci s and t, we note that

(B.7)

Then all the covariance terms across different loci can be represented using E(hsht|M),
which is given by (A.12). For example,

(B.8)

APPENDIX C: MODIFIED ECM ALGORITHM FOR IMPUTING GENOTYPES
WITHOUT A PANEL

In this section, we show our modified ECM algorithm for genotype imputation without a
panel.

By our assumption, each individual genotype p-vector gi is a random sample from the
multivariate normal distribution Np(μ̂, Σ ̂), and different individual vectors may have
different missing entries. Suppose we have n individual samples, let Gobs denote the set of
all typed genotypes across all individuals and  denote the typed genotypes for individual
i.

In the E step of ECM algorithm, we compute the expected values of the sufficient statistics

 conditional on Gobs and current
estimate for (μ̂, Σ ̂). Specifically, in t-th iteration,

(C.1)

Wen and Stephens Page 17

Ann Appl Stat. Author manuscript; available in PMC 2011 April 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(C.2)

where

(C.3)

and

(C.4)

The calculation of  follows directly from
(2.4).

In the conditional maximization step, we first update the estimates for fpanel and Σpanel

sequentially, i.e.

(C.5)

and

(C.6)

Finally, we update the shrinkage estimates μ̂ and Σ̂ using

(C.7)

(C.8)

where

(C.9)
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We initiated ECM algorithm by setting fpanel,(0) to the marginal means from all observed
data and Σpanel,(0) to a diagonal matrix with diagonal entries being empirical variance
computed from typed SNPs.
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FIG 1.
Comparison of empirical and shrinkage estimates (based on Li and Stephens Model) of
squared correlation matrix from the panel. Both of them are estimated using Hapmap CEU
panel with 120 haplotypes. The region plotted is on chromosome 22 and contains 1000
Affymetrix SNPs which cover a 15Mb genomic region. Squared correlation values in [0.05,
1.00] are displayed using R’s heat.colors scheme, with gold color representing stronger
correlation and red color representing weaker correlation.
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FIG 2.
Comparison of variance estimation in models with and without over-dispersions. The Z-
scores are binned according to the standard normal percentiles, e.g. the first bin (0 to 0.05)
contains Z-score values from −∞ to −1.645. If the Z-scores are i.i.d. and strictly follows
standard normal distribution, we expect all the bins having approximately equal height.
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FIG 3.
Comparison between BLIMP estimator and un-regularized linear estimators. The lines show
the RMSE of each allele frequency estimator vs. number of predicting SNPs. Results are
shown for two schemes for selecting predicting SNPs: flanking SNPs (red line) and
correlated SNPs (green line). Neither scheme is as accurate as BLIMP (blue solid line) or
IMPUTE (blue dashed line).
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FIG 4.
Controlling individual-level genotype imputation error rate on a per-SNP basis. For BLIMP,
the error rate is controlled by thresholding on the estimated variance for imputed SNP
frequencies; for IMPUTE the call threshold is determined by average maximum posterior
probability. These two different measures of per-SNP imputation quality are strongly
correlated (correlation coefficient = −0.983).
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FIG 5.
a. Detection of experimental noise in simulated data. The simulated data sets are generated
by adding Gaussian noise N(0, ε2) to the actual observed WTCCC frequencies. The
estimated ε values are plotted against the true ε values used for simulation. We estimate ε
using maximum likelihood by (2.11). b. An illustration on the effect of noise reduction in
varies noise levels. RMSE from noise reduced estimates are plotted against RMSE from
direct noisy observations. The noise reduced frequency estimates are posterior means
obtained from model (2.13).

Wen and Stephens Page 25

Ann Appl Stat. Author manuscript; available in PMC 2011 April 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Wen and Stephens Page 26

TABLE 1

Comparison of accuracy of BLIMP and IMPUTE for frequency and individual-level genotype imputations.
The RMSE and Error rate, defined in the text, provide different metrics for assessing accuracy; in all cases
BLIMP was very slightly less accurate than IMPUTE. The “naive method” refers to the strategy of estimating
the sample frequency of each untyped SNP by its observed frequency in the panel; this ignores information in
the observed sample data, and provides a baseline level of accuracy against which the other methods can be
compared.

Frequency imputation

RMSE Error Rate

naive method 0.0397 NA

BLIMP (phased panel) 0.0157 NA

BLIMP (unphased panel) 0.0159 NA

IMPUTE 0.0154 NA

Individual genotype imputation

RMSE Error Rate

BLIMP (phased panel) 0.2339 6.46%

BLIMP (unphased panel) 0.2407 6.77%

IMPUTE 0.2303 6.30%
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TABLE 2

Comparison of imputation error rates from BLIMP and BIMBAM for individual genotype imputation without
a panel.

Missing Rate

5% 10% 20% 50%

BIMBAM 5.79% 6.35% 7.15% 9.95%

BLIMP ECM 6.07% 6.49% 7.31% 9.91%
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