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Abstract

Background: In man, many different events implying childhood separation from caregivers/unstable parental environment
are associated with heightened risk for panic disorder in adulthood. Twin data show that the occurrence of such events in
childhood contributes to explaining the covariation between separation anxiety disorder, panic, and the related
psychobiological trait of CO2 hypersensitivity. We hypothesized that early interference with infant-mother interaction could
moderate the interspecific trait of response to CO2 through genetic control of sensitivity to the environment.

Methodology: Having spent the first 24 hours after birth with their biological mother, outbred NMRI mice were cross-
fostered to adoptive mothers for the following 4 post-natal days. They were successively compared to normally-reared
individuals for: number of ultrasonic vocalizations during isolation, respiratory physiology responses to normal air (20%O2),
CO2-enriched air (6% CO2), hypoxic air (10%O2), and avoidance of CO2-enriched environments.

Results: Cross-fostered pups showed significantly more ultrasonic vocalizations, more pronounced hyperventilatory
responses (larger tidal volume and minute volume increments) to CO2-enriched air and heightened aversion towards CO2-
enriched environments, than normally-reared individuals. Enhanced tidal volume increment response to 6%CO2 was present
at 16–20, and 75–90 postnatal days, implying the trait’s stability. Quantitative genetic analyses of unrelated individuals, sibs
and half-sibs, showed that the genetic variance for tidal volume increment during 6%CO2 breathing was significantly higher
(Bartlett x= 8.3, p = 0.004) among the cross-fostered than the normally-reared individuals, yielding heritability of 0.37 and
0.21 respectively. These results support a stress-diathesis model whereby the genetic influences underlying the response to
6%CO2 increase their contribution in the presence of an environmental adversity. Maternal grooming/licking behaviour, and
corticosterone basal levels were similar among cross-fostered and normally-reared individuals.

Conclusions: A mechanism of gene-by-environment interplay connects this form of early perturbation of infant-mother
interaction, heightened CO2 sensitivity and anxiety. Some non-inferential physiological measurements can enhance animal
models of human neurodevelopmental anxiety disorders.
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Introduction

The term ‘separation anxiety’ applies comprehensively to

multiple forms of distress reactions displayed by mammals during

postnatal development in conjunction with events of separation

from a caregiver [1]. Childhood separation anxiety disorder (SAD)

- an extreme human manifestation within this interspecies’

propensity - predicts heightened risk for panic disorder (PD) in

early adulthood [2], and both PD and SAD [3] share a trait of

oversensitivity to higher-than-normal CO2 concentrations in
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inhaled air. Relatively specific responses to CO2-enriched air

mixtures have been described in controlled studies of PD and

SAD. These responses consist of both stronger emotional reactions

(e.g. panic anxiety), and altered respiratory parameters (i.e., wider

tidal volume enhancements and fluctuations, and heightened

minute ventilation) [4–6], compared to those seen in control

subjects.

Whilst PD is part of the DSM-IV anxiety disorders, the bulk of

time-honoured data from clinical observation and empirical

research indicates that panic attacks should not be equated with

fear responses. Clinical panic attacks are typically spontaneous and

unpredictable, and characterised by prominent physical symptoms

such as dyspnea, rather than by cognitive symptoms [7]. Another

physical symptom, frequently reported during spontaneous and

CO2-provoked panic attacks, is dizziness [8], which may be

substantiated in the vestibular dysfunctions often present among

people with PD [9]. Endocrinological data contribute to

strengthening the view that panic is not a typical emergency fear

response. Heightened cortisol levels in spontaneous and CO2-

provoked attacks [10,11] have been found to reflect anticipatory

anxiety/individual differences in emotionality, rather than the

diagnostic category of PD per se. Thus, inasmuch as panic attacks

occur in the absence of cues of external danger and are triggered

by heightened CO2 concentrations, they are better seen as inner

unconditioned false alarms of biological origin. According to this

model, panic attacks derive from a deranged suffocation detector

[4] via pathophysiological mechanisms that differ from those

underlying general or anticipatory anxiety. Accordingly, most

people at the onset of PD are no more anxious/apprehensive/

avoidant than people in the general population [12] , and their

cortisol levels are within the range of normality [4,13]. However,

after having experienced one or more panic attacks, subjects with

PD develop a form of avoidance towards places (such as subways

or cinemas) where they believe they will experience dyspnea/panic

[14], and also become less explorative towards novel, open spaces,

behavioural characteristics collectively named ‘agoraphobia’ [15].

According to twin studies, shared genetic determinants appear

to be the major underlying cause of the developmental continuity

of childhood SAD into adult PD, and of the association of both

disorders with altered sensitivity to CO2 [16,17]. Moreover, a host

of events implying unstable parental environment and separation

during childhood (encompassing, e.g, parental military service, job

relocation, separation, divorce, death, etc.) can account for a

significant additional proportion of the covariation between SAD,

CO2 sensitivity and PD [17]. Thus, in addition to genetic

determinants, environmental risk factors affect the liability to

these traits, and Ogliari et al. [18] showed that several life events

that influence the susceptibility to PD also predict heightened CO2

reactivity. There is now initial evidence that genetic and

environmental determinants may not simply add, but also interact,

to influence human responses to CO2. By modelling the effects of

life events in young adult twins, Spatola et al. [19] recently found

that adversities that take place within the childhood-adolescence

window of risk moderate the genetic variance for CO2 sensitivity,

as assessed by a CO2 challenge provocation test. Such a form of

gene-by-environment interplay is consistent with a diathesis-stress

model, and points towards gene-by-environment interactions

[20,21] that, while rooted in early life, can exert their effect also

in early adulthood.

However, the connections between early perturbations of the

offspring-caregiver relationships, separation anxiety, panic, and

altered respiratory physiology are still to be clarified.

While the study of human subjects is necessarily limited by the

‘natural experiment’ approach, the fact that all mammals show

similar physiological responses to heightened CO2 concentrations

(i.e., hyperventilation and increased arousal/anxiety) can be

exploited to disentangle some of the questions that pertain to the

human SAD-PD developmental continuum. By capitalizing on

physiological responses to heightened CO2 concentrations that are

relevant to both animal behaviour and the human SAD-PD

continuum, one can tackle these questions by fully experimental

approaches within the context of animal models [14,22].

Indeed, higher-than-normal environmental concentrations of

CO2 constitute an aversive stimulus for many species. In the C.

Elegans [23] and the Drosophila [24,25], CO2 elicits innate

responses of avoidance. In man, heightened CO2 concentrations

induce hyperventilation, subjective air hunger and anxiety

[18,26,27] by activating the ventral medulla and subsequently

the pons, midbrain, limbic and paralimbic areas, parahyppocam-

palgyrus, and the anterior insula [28]. Recent data [29] also show

that the amygdala is itself a chemosensor that initiates fear

responses under hypercarbia and acidosis.

While all mammals respond similarly to the unconditioned

suffocative stimulus of heightened CO2 concentration by increas-

ing ventilation, vigilance and eventually by displaying anxious/

avoidant behaviour [30], individuals within the same species differ

widely from each other in the intensity of these responses, partially

due to genetic factors [8,31,32]. Moreover, different types of early

experiences –including environmental adversities not primarily

associated with breathing- may affect the plasticity of the

mammalian respiratory control system [33].

To sum up the background of this study, seven interrelated

points appear fundamental: 1) SAD and PD are on a

developmental and pathophysiological continuum, as SAD often

precedes PD, and both conditions are associated with CO2

hypersensitivity; 2) hypersensitivity to CO2 can be indexed via

respiratory parameters and/or exaggerated anxiety responses to

heightened CO2 concentrations in inhaled air; 3) the phenotypes

of hypersensitivity to CO2, SAD, and PD share a genetic

background; 4) in man, childhood separation from caregivers/

unstable parental environment and early life adversities appear to

enhance the risk for SAD/PD/CO2 hypersensitivity; 5) human

responses to heightened CO2 concentrations may be in part

influenced by complex causal mechanisms, whereby the degree of

sensitivity to early environmental adversities appears to be under

genetic control; 6) rodents are prone to separation anxiety and

respond to heightened CO2 concentrations similarly to man, i.e.,

by incrementing ventilation and arousal/anxiety; 7) also similarly

to man, the increase in ventilation under heightened CO2

concentrations among rodents yields a degree of interindividual

variance, which can be amenable to quantitative genetic

estimations.

We speculated that early environmental adversities may

moderate a proportion of genetic liability to CO2 sensitivity

through gene-by-environment interplay mechanisms, and that

such mechanisms could be substantiated in man and animals.

Inasmuch as CO2 sensitivity represents a valid endophenotype

[34–37] that shares part of the liability with human PD and SAD

[17], and since CO2 sensitivity is interspecific, animal models of

CO2 responses can be used as a proxy of a human psychiatric

disorder to study gene-environment interplay [38].

To investigate the relationships that link early interference to

infant-mother interactions, separation anxiety, and CO2 sensitiv-

ity, we focused on the ventilatory response to heightened CO2

concentrations in outbred mice repeatedly cross-fostered during

the first postnatal days. This approach, largely based on

respiratory measurements, permits the circumventing of the

difficulties that arise from making inferences about an animal’s

Repeated Cross-Fostering and CO2 Sensitivity
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emotional state. Moreover, the laboratory context avoids the gene-

by-environment correlations that hamper research on gene-by-

environment interplay in man.

By implementing a repeated cross-fostering procedure, we

sought to address three main questions that pertain to the human

SAD-PD developmental continuum: 1) can this form of pertur-

bation of infant-mother relationship alter the pattern of individual

reactivity to inhaled CO2? 2) is the alteration in sensitivity to CO2

specific and stable? 3) can this type of early manipulation act as an

enhancer of individual differences, so that it can reveal

mechanisms of genetic control of sensitivity to the environment?

Materials and Methods

Animals
NMRI outbred mice (Harlan, Italy) were used in all

experiments. Mice were mated when they were twelve weeks

old. Mating protocol consisted in housing two females with one

male in transparent high temperature polysufone cages

(26.7620.7614.0 cm) with water and food available ad libitum.

Room temperature (2161uC) and a 12:12 h light dark cycle (lights

on at 07.00 a.m.) were kept constant. After 15 days males were

removed and pregnant females were isolated in clean cages, and

inspected twice a day for live pups. For the first postnatal day

(PND0) litters were left with the biological mother.

Postnatal treatment: Repeated Cross-fostering (RCF)
Procedure

The Repeated Cross Fostering procedure (RCF) is a new

experimental rearing protocol devised to interfere with infant-

mother interaction in the first days of life, thus predisposing

offspring to separation anxiety without inducing neglect from

caregivers. This was based upon the knowledge that when mouse

pups are cross-fostered to adoptive lactating dams, they are usually

well accepted and nurtured [39], and on the fact that an adoption

procedure carried out in the first postnatal days has a low impact

on offspring’s HPA functioning [40].

Having spent the first postnatal day (PND0) with the biological

mother, on PND1 litters were culled to eight pups (4 males and 4

females) and assigned to experimental Repeated Cross Fostering

(RCF), or control (CT) treatment. Unlike the ‘classical’ cross-

fostering procedures [41], RCF pups changed caregiver every

24 hours: 4 times in the PND1-PND4 time interval by following a

rotation scheme, each dam shifted to 4 different litters and each

litter was shifted to 4 different dams (see also Figure S1). The

procedure consisted of first removing the mother from the cage,

then removing its entire litter, and immediately introducing this

litter into the home-cage of a different dam whose pups had just

been removed. The RCF pups were then semi-covered with the

home-cage bedding of the adoptive mother, which was then

reintroduced in the cage and left with this litter for 24 hours. The

entire procedure lasted about 30 seconds and took place every day

between 10.30 and 11.00 am. This was repeated daily, four times

(PND1 to PND4), until reaching the fourth adoptive mother, with

which pups remained until weaning (PND0: biological mother,

PND1-PND4: adoptive mother 1 to 4- Figure S1). Adoptive dams

were lactating females with pups of the same age as fostered litters.

This repeated change of caregiver was aimed at interfering with

the formation of the infant-mother relationship [42], and to

approximate parental instability, a risk factor for internalising

disorders, SAD, PD and CO2 hypersensitivity in man [17,43,44].

Control litters were collected daily and reintroduced to their

home-cage, covered with home-cage bedding and had their

biological mothers returned within 30 sec, from PND1 to PND4.

Animals were weaned when 28 days old and then separated by sex

and left in cages with littermates.

Table S1 shows the body weights of RCF and CT individuals

during development and in adulthood, as well as their basal body

temperature at PND20, measured at a fixed time of day with an

infrared body thermometer (153 IRB, Bioseb), in accordance to

previously published methods [45].

Maternal Behaviour
Maternal behaviour was observed daily from PND1 to PND7

by an observer unaware of the litter’s status (RCF/CT) in two

daily sessions (12.00–12.30 and 16.00–16.30), the first session

taking place one hour after the cross fostering procedure on

PND1-PND4. Maternal behaviour: a) NURSING, including the

arched-back and blanket postures, and b) GP/L: grooming and

licking pups [46] was monitored with an instantaneous sampling

method (one sampling every 2 min), for a total of 16 sampling

points/session. The analyses of maternal behaviour were based on

the observation of NURSING and GP/L on 10 litters of RCF,

and 8 litters of CT pups.

Offspring behaviour
Pups’ behaviour was evaluated at: a) PND8, by measuring

ultrasonic (USVs) distress vocalizations emitted during isolation,

and: b) PND10, by measuring the pups’ ability to orient towards

and approach maternal/home-cage beddings’ [47,48] odour cues

(HOMING behaviour, vide infra). The assessments of USVs were

preceded by transfer of the home-cages into the experimental

room at 14.30 of PND8. On PND8, after 1 hour of acclimatiza-

tion, the mother was removed and transferred into a clean cage,

while the offspring was left in the home cage standing on a warm

plate set at the temperature of 35,5uC to prevent cooling. Each

pup was individually placed for 5 minutes into a beaker containing

(i) own-cage bedding (USVs-own) or (ii) clean bedding (USVs-

clean) and the vocalizations were recorded. No more than 1 pup/

litter/condition was employed and pups were gender-matched for

a total of 31 RCF and 44 CT pups. Ultrasonic vocalizations were

recorded using an UltraSoundGate Condenser Microphone

(CM16, Avisoft Bioacoustics, Berlin, Germany) lowered 1 cm

above the top of the isolation beaker containing the pup. The

microphone was sensitive to frequencies of 15–180 kHz with a flat

frequency response (66 dB) between 25–140 kHz. It was

connected via an UltraSoundGate USB Audio device to a

personal computer, where acoustic data were recorded as wav

files at 250,000 Hz in 16 bit format. Sound files were transferred

to SasLab Pro (version 4.40; AvisoftBioacoutics) for sonographic

analysis and a fast Fourier transformation was conducted (512

FFT-length, 100% frame, Hamming window and 75% time

window overlap). Spectrograms were produced at 488 Hz of

frequency resolution and 0.512 ms of time resolution. To detect

ultrasonic vocalizations, an automatic threshold-based algorithm

and a hold time mechanism (hold time: 20 ms) were used. Signals

below 30 kHz were truncated to reduce background noise to 0 dB.

Inaccurate detections were adjusted manually by an experienced

user before running the automatic parameter analysis. The total

number of vocalizations emitted in 5 minutes was measured.

The pups’ orientation towards familiar odorous cues (HOM-

ING behaviour) was evaluated on PND10 in 32 RCF and 36 CT

pups. The assessments of HOMING were preceded by transfer of

the home-cages into the experimental room at 14.30 of PND10.

The amount of time spent in their home-cage bedding-scented

versus (i) clean, or (ii) bedding from an alien dam’s cage portions of

the apparatus was recorded in 5 minute test sessions. The ability of

pups to orient towards familiar odorous cues was evaluated in a

Repeated Cross-Fostering and CO2 Sensitivity
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small apparatus (5633610 h cm) with a central plexiglas part

(565 cm, starting point) that separated (with sliding doors) two

differently-scented chambers. One of these was covered with pups’

home-cage bedding, whilst the other was covered with (i) clean or

(ii) home-cage bedding from an alien dam’s cage. After 1 minute

of habituation in the central part of the maze, the lateral doors

were removed and the pups could move freely in the apparatus.

The behaviour of pups in the maze was video-recorded for

5 minutes and the time spent in the different compartments was

evaluated thereafter. No more than two pups/litter/condition in a

gender-matched design were tested in these two HOMING

procedures.

Basal Corticosterone levels during development
Dams and pups were sacrificed to measure serum corticosterone

basal levels collected via trunk blood samples from 10.00 to 11.00

am. Trunk blood samples were collected after decapitation in RCF

and CT offspring (RCF = 16, CT = 14, in a gender-matched

design) and their corresponding dams as adoptive or biological

mothers (RCF dams = 6, CT dams = 5) before weaning (PND 27–

28). After blood centrifugation (20 min, 4uC, 4000 rpm) serum

samples were stored at 225uC until assay were conducted.

Corticosterone levels were measured using commercially available

EIA kits (EIA kit Assay Design, sensitivity 27.0 pg/mL). All

corticosterone measures were carried out in duplicate.

Assessments of Face Validity for Human Panic
In order to assess the face validity for human PD/SAD of the

current animal model, we capitalised on the following 4 features of

human PD, as outlined in the introduction: 1) post-CO2 cortisol

levels do not differ between subjects at heightened risk for PD and

control subjects [10,11]; 2) after having experienced one or more

panic attacks, subjects with PD avoid places where they anticipate

experiencing dyspnea [14]; 3) after having experienced panic

attacks, subjects with PD become less explorative towards novel,

open spaces and develop agoraphobia [15] 4)vestibular dysfunc-

tions are often described among people with PD [9]. These 4

features of human PD were assessed by proxy among RCF vs. CT

adult animals in the 4 following experiments:

1. Corticosterone levels after exposition to CO2-enriched

air Six. The basal serum corticosterone levels obtained from the

tail of 6 RCF (2 females 4 males), and 5 CT (2 females, 3 males)

individuals (PND70–90) were collected in a litter-balanced design,

and compared to corticosterone levels collected in the same

individuals by the same tail-cut method after 20 minutes spent an

incubator chamber while breathing 6% CO2-enriched air. As

described above, after blood centrifugation serum samples were

stored at -25uC until assay were conducted using the commercially

available EIA kits (EIA kit Assay Design). All corticosterone

measures were carried out in duplicate.

2. Avoidance of CO2-enriched environments. Place

avoidance/preference towards a CO2-enriched environment was

measured in 70–90 day old CT (N = 15) and RCF (N = 11) naı̈ve

male mice in a litter-balanced design, in a ‘place conditioning’

apparatus [49] consisting of two differently-cued chambers

connected by a central alley. On day 1 (pretest), the mouse was

introduced in the central alley and left free to explore the entire

apparatus. During the following 8 days (conditioning), each mouse

was confined daily (for 20 min) in one of the two chambers, while

the apparatus was introduced into an incubator with either room

air or 6% CO2-enriched air, on alternative days. For each animal,

over the 8 training days, one of the two chambers was consistently

paired with 6% CO2-enriched air and the other one with normal

air. Testing was conducted on day 10. Animals were placed in the

central alley of the apparatus and left free to explore the chambers

for 10 min. Pretest and test sessions were videotaped, and

subsequently an experienced observer unaware of the treatment

conditions recorded the time (in seconds) spent in the different

compartments with dedicated software (Smart, Panlab). Place-

preference scores were calculated as: [(the amount of time spent in

the CO2-paired compartment)/(amount of time spent in both

compartments)]6100.

3. Effects of CO2 exposure on exploratory

behaviour. Animals (78 individuals, 70–90 PND, gender- and

litter-matched) for this experiment were first isolated for 24 hrs in

a clean cage with a sliding door, with food and water available.

Then subjects were exposed either to room air (RCF: n = 21, CT:

n = 20) or to a 20% CO2-enriched environment (RCF: n = 20,

CT: n = 17) for 2 minutes. Immediately thereafter, each animal

was allowed to enter a free exploratory apparatus (70690 cm)

connected with the home cage, by leaving the sliding door open

for 10 minutes. Each session was video-recorded, and later the

percentage of time spent in the centre of the arena (30650 cm)

during exploration of the apparatus was measured by a dedicated

software (Smart, Panlab).

4. Evaluation of vestibular function among RCF and CT

individuals. Thirty-seven RCF and 32 CT gender and litter-

matched individuals (PND70–90) were assessed for their

performance at the Rotarod test [50] as a proxy of balance.

After training for three sessions in the preceding day, mice had to

maintain balance upon an accelerating rotating rod (four trials,

from 4 to 40 rpm in 300 seconds), the dependent variable being

each subject’s latency to fall from the rod [50].

Respiratory Responses
We took into account the following respiratory parameters: tidal

volume (i.e. the volume of air displaced between normal

inspiration and expiration,TV), respiratory frequency (i.e., the

number of breaths an individual takes per minute, f), and minute

volume (MV, which is obtained by multiplying TV by f).

On PNDs 16–20, sixty-four pups were tested for their

respiratory responses. Thirty-six RCF pups belonging to 14 litters,

and 28 CT pups belonging to 12 litters were tested; each subject

was exposed to only 1 air mixture condition (air/6%CO2/

10%O2). For each litter a maximum of 2 pups (one male and one

female) were exposed to the same air mixture (air/6%CO2/

10%O2). We used an unrestrained plethysmograph (PLY4211,

Buxco Electronics, Sharon CT) carrying two separate Plexiglass

chambers of 450 ml, allowing for the parallel assessment of two

animals/session.

Before recording, each subject was closed in the chamber for an

acclimatisation of 40 minutes without any air mixture being

administered. Subsequently the recording of respiratory parame-

ters started under air condition (baseline) for 20 minutes. Next, the

first challenge began: this lasted 20 min and could consist of any of

the following three conditions: 1) normal air (20%O2); 2) 10%O2,

3) 6%CO2. A 20 min recovery period (air) followed, then the

second challenge (20 min with the same gas mixture as employed

in the 1st challenge) took place. A 2nd recovery period (air) of the

same duration of the 1st recovery followed, which ended the trial

and the recording time. A complete session thus lasted

140 minutes per animal (Figure 1).

Similarly, on PND 75–90, seventy-six adult mice were tested

with the same device and procedures, except that only normal air

(20%O2) or 6%CO2 were employed for adults, given the negative

results (see results section) with 10%O2- and the positive results

with 6%CO2 stimuli in pups. A with the pups, a maximum of 2

adult subjects (one male and one female) per litter were tested

Repeated Cross-Fostering and CO2 Sensitivity
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under one air mixture (air/6%CO2). Of the 76 adult mice that

underwent the respiratory challenges, 33 had previously been

exposed to an air/6%CO2 challenge as pups: for their challenge in

adulthood we used the same air mixture they had been exposed to

as pups.

Preliminary tests by general linear models were run to assess

whether during the first 20 minutes of pre-challenge baseline

recording with air, the TV, f and MV parameters differed between

RCF and CT pups and adults, and no significant differences were

found. Since TV changes are a major physiological strategy to

reduce blood P CO2, we capitalized on the mean percentage of

TV increment (DTV%) from baseline to air/6%CO2/10%O2 as a

reference measure to compare animals’ respiratory responses to

the air mixtures in the experiments. We also preliminarily tested

the effects of: weight, sex, and chamber (there were 2 separate

plethysmographic chambers) on the respiratory responses of RCF

and CT pup and adult subjects separately, by regression

procedures. For adult mice, we also tested the effect of previous

participation to the challenge as pups. None of these four

predictors influenced the respiratory measurements under air/

6%CO2/10%O2. However, for adult mice, regression of ‘previous

participation to the respiratory challenge as pup’ upon the DTV%

to 6%CO2 provided a r = 0.18, F1,74 = 2,44, which approached

significance: p = 0.12. This variable was therefore added as

covariate in the analyses of adult respiratory responses.

The effects of treatment (air vs. 6%CO2 vs. 10%O2 in pups, and

air vs. 6%CO2 in adults) and postnatal manipulation (RCF vs.

standard rearing in CT) in the two exposure challenges were then

tested by repeated-measures ANOVA; upon confirmation of

significant main effects, differences among individual means were

analyzed with post-hoc Tukey’s HSD test.

Since the respiratory outcomes in the first and second challenge

were highly correlated for all parameters (mean r = 0.82,

p = 0.000001, in pups and adults), for the sake of conciseness we

only show the results with the first respiratory challenge in pups

and adults.

Quantitative Genetic Investigation of Individual
Differences for CO2 Sensitivity

In quantitative genetics, the variance observed for a given

phenotype in a group can be partitioned into a proportion

attributable to genetic factors, and another proportion attributable

to environmental factors, provided that the degree of genetic

relatedness among individuals in the study group is known. Thus,

depending on circumstances, one can derive from the phenotypic

measurements of human monozygotic and dizygotic twin pairs

(additive genetic correlation: 1 and 0.5, respectively), or from the

phenotypic measurements of unrelated, half-sib and full-sib animals

(additive genetic correlation: 0, 0.25 , and 0.5, respectively), the ratio

of genetic variance to phenotypic variance or heritability (h2) [51].

Gene-by-environment interplay (GXE) mechanisms assume that

genetic variance changes as a function of environmental exposure

[20,21]. Likewise, in a typical stress-diathesis GXE model, one may

observe that the heritability for the trait under study increases as a

function of environmental adversities.

To investigate the nature of the proportion of variance of the

respiratory response to CO2 associated with RCF, we crossed 8

unrelated naı̈ve sires with 16 unrelated naı̈ve dams in a 1 sire/2

dam breeding design, yielding litters of 8 pups/dam in full-sib/

half-sib degrees of relatedness. Eight litters were exposed to the

RCF procedure, while the other eight were reared normally,

yielding 64 RCF and 64 CT offspring within a full-sib/half-sib (fs/

hs) design [51], whereby for each sire both litters were assigned to

the RCF- or CT post-natal condition, as appropriate to conduct

variance component analysis, nested ANOVA and heritability

estimates [51]. Pups in the fs/hs design were assessed only for

respiratory phenotypes.

Animal Care and Statistical Analyses
Unless otherwise specified, all animals took part in only one of

the different experiments outlined in this paper, so that they were

all naı̈ve individuals. All experiments were conducted under

license from the Italian Health Department and in accordance

with Italian regulations on the use of research animals (legislation

DL 116/92) and NIH guidelines on animal care.

Data were analysed using general linear model approaches,

nested ANOVA or variance component analysis, as appropriate.

The variability among dams in providing NURSING and GP/

L to fostered (RCF) pups was assessed by two separate ANOVA

(Factor: dam) of maternal behaviour collected from PND1 to

PND7.

We tested whether the degree of variability in receiving

NURSING and GP/L among RCF litters could be assumed as

homogeneous by the Levene test (factor : litter).

Similarly, we assessed whether the degree of variability in

receiving NURSING and GP/L could be comparable between

RCF and CT pups (factor : post-natal treatment) by the Levene

test.

Figure 1. Scheme of the respiratory protocol. During ‘baseline’ and ‘recovery’ periods, subjects inhaled normal air. During ‘challenge’ periods
subjects were exposed to one type of air mixture: 6% CO2-enriched air, or 10%O2 air, or normal air.
doi:10.1371/journal.pone.0018637.g001
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Finally, to dissociate the role played by maternal care received

by the ‘‘final’’ adoptive mother from PND5 onward from the

effects exerted by changes and variation in care received across the

4 cross fostering days (PND1-PND4), we compared the means and

variances for NURSING and GP/L in 10 RCF litters by dividing

the periods of maternal care into 2 periods of respectively 4 days

(PND1–4) and 3 days (PND5–7), as factors.

To ensure sufficient statistical power, the number of subjects in

the experiments was determined on the basis of pilot studies carried

out in pups and adults. For all figures, bars on histograms indicate

standard errors, for all experiments significance was set at p#0.05.

Results

Maternal Behaviour
Nursing decreased significantly in time (F6,119 = 3.48,

p,0.0035, Figure 2A) across the PND1-PND7 time span, but

neither post-natal treatment, nor time-by-post-natal treatment

yielded significant effects (respectively: F1,124 = 0.85 p = NS;

F6,112 = 1.27 p = NS); consistent with these data, there was no

significant difference between RCF and CT mice for weight,

measured at different stages of development from PND8 through

PND90 (see also Table S1).

Grooming/licking (GP/L) did not vary significantly in time

(F6,119 = 1.5 p = NS, Figure 2B), and neither post-natal treatment

(F1,124 = 0.12 p = NS) nor the interaction of post-natal treatment-

by-time yielded significant effects (F6,112 = 1.33 p = NS).

By ANOVA (factor: dam) we found that NURSING did not

differ significantly among dams who took care of the RCF pups

(F9,30 = 1.45 p = NS) as ‘adoptive mothers’, but GP/L differed

significantly among these dams (F9,30 = 2.90 p = 0.01). However,

when we estimated the differences in variance between 10 RCF

litters (estimated across 7 days and 4 different dams/litter) for the

amount of received care (factor: litter) by Levene test, we found

significant differences neither for NURSING (Levene’s 9,60 = 1.14,

p = NS) nor for GP/L (Levene’s 9,60 = 1.46, p = NS). Thus, while

there was a certain degree of variability for maternal GP/L

towards the fostered pups that was attributable to dams as

individuals, the differences in variance of received care among

RCF litters from PND1 to PND7 were not significant. This implies

that although each RCF litter received care from 4 different dams

(i.e., 4 different ‘foster mothers’) in the PND1-PND4 period, the

amount of variability of GP/L and NURSING could be assumed

as homogeneous among RCF litters.

Similarly, the total variance of NURSING and GP/L did not

differ between RCF and CT pups: when we assessed by the

Levene test whether the degree of variability in receiving

NURSING and GP/L could be comparable between RCF and

CT pups (factor: post-natal treatment), we found no significant

differences (NURSING Levene’s1,124 = 2.86, p = NS; GP/L Le-

vene’s1,124 = 0.53, p = NS). This implies that (inasmuch as the

variances of NURSING and GP/L could be assumed as sufficient

indicators of postnatal treatment) RCF and CT pups were exposed

to similar amounts and variability of postnatal care, the only

difference between the two types of postnatal treatment being the

intrinsic instability of the caregiver.

Finally, when we compared the means and variances for

NURSING and GP/L among RCF pups during the PND1-PND4

period, as opposed to the following PND5-PND7 period (factor:

PND1–4 vs. PND5–7), we found that the means and variances for

both indexes could be assumed as equal (NURSING: Le-

vene’s1,68 = 2.43, p = NS; GP/L: Levene’s1,68 = 0.27, p = NS;

NURSING: ANOVA F1,68 = 1.86, p = NS; GP/L ANOVA

F1,68 = 1.03, p = NS). This implies that within the RCF group,

NURSING and GP/L were quantitatively similar when pups were

exposed to changing caregivers, and in the following first 3 days of

stable motherhood.

Offspring’s Behaviour
At PND8, during two different isolation paradigms (conditions:

a) ‘clean bedding’ and b) ‘own cage bedding’, see also methods) we

observed an effect of postnatal treatment upon the isolation

distress calls in the form of more USVs emitted by RCF pups.

Figure 2C (see also caption) shows that there was no ‘postnatal

treatment-by-condition’ interaction. The lower RCF vs. CT

difference in isolation distress calls during the ‘clean bedding’

condition (Figure 2C) may indicate a ‘maximum stimulation’ effect

induced by the absence of any odour in this specific experimental

condition. Consistently, a milder stimulation condition (isolation in

‘own cage bedding’) appeared to unmask the RCF-CT differences

more sharply. Sex of subjects did not yield a significant effect,

alone or in interaction with the other independent variables.

At PND10, when RCF pups were tested for their preference

between own-cage bedding as an alternative to: a) clean bedding,

or: b) to an alien dam’s bedding (Figure 2D), they showed

consistently reduced preference for their own bedding compared

to CT pups (Figure 2D). Sex of subjects did not yield a significant

effect, alone or in interaction with the other independent variables.

Corticosterone basal levels in RCF and CT Individuals
The mean (6SE) basal serum concentration of corticosterone

did not differ in lactating RCF and CT dams (ng/ml:

45.48617.79 vs 53.02611.87 respectively; F1,9 = 0.11, p = NS).

Likewise, variance components analyses showed that serum

concentrations of corticosterone at PND27–28 did not differ

amongst RCF (n = 16 subjects belonging to 4 sibships, n/ml

62.7063.86) vs. CT subjects (n = 14 subjects belonging to 4

sibships, ng/ml 70.2764.25; fixed: maternal effect F1,6 = 1.38,

p = 0.28: random: sibship effect F6,22 = 1.36, p = 0.27).

Assessments of Face Validity for Human Panic (1–4)
1 Corticosterone levels after exposition to CO2-enriched

air. Figure 3A shows that after 20 minutes of 6% CO2

breathing the serum concentration of corticosterone was

heightened in a similar fashion among RCF and CT subjects.
2 Avoidance of CO2-enriched environments. Adult (PND

70–90) RCF mice exposed to a place conditioning protocol

displayed an immediate avoidant response to environments

associated with heightened CO2 concentration, compared to CT

mice, as shown in Figure 3B.
3 Free exploratory test after exposition to CO2-enriched

air. A free exploratory test showed that after exposure to 20%

CO2, RCF subjects have a significant reduction of the percentage

of time spent at the centre of an arena compared to CT subjects

(Figure 3C). After being exposed to room air, on the contrary,

RCF and CT subjects did not differ significantly for this

behaviour. Sex of subjects did not yield a significant effect, alone

or in interaction with the other independent variables.
4 Balance test (Rotarod) in RCF and CT individuals. The

performance at the Rotarod shown in Figure 3D was significantly

worse among RCF than CT subjects, in that the former showed

significantly shorter latency of fall from the rod, which suggests

impaired balance. Sex of subjects did not yield a significant effect.

Respiratory Parameters in RCF and CT Individuals
The RCF procedure was associated with higher mean percent

increment of tidal volume from baseline (DTV%) during 6%CO2.

At PND16–20, the RCF pups showed one-and-a-half times the
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Figure 2. Maternal care and offspring behavioural indices in standard rearing (CT) vs. repeated cross-fostering (RCF) conditions.
Sum of 2 daily observations of maternal behaviour: A) nursing behaviour, encompassing ‘arch-back’+‘blanket’ postures, and B) grooming/licking (GP/
L) behaviour towards adoptive (RCF n = 10) and own (CT n = 8) litter, measured during PND1–PND7. Nursing decreased significantly in time, and was
comparable in RCF and CT pups across the PND1–PND7 time span. Grooming/licking (GP/L) did not vary significantly in time, and RCF and CT pups
received comparable GP/L (see Methods and Results sections for details). Pups’ behaviour: C) Mean number of ultrasonic vocalisations (USVs) emitted
by 8-day old RCF and CT pups. Pups were isolated and exposed for 59 to fresh clean bedding (clean) and own-cage bedding (own). ANOVA showed
that the postnatal treatment (RCF vs. CT) yielded a significant effect (F1,73 = 4.24, p = 0.04) while the condition (‘clean’ vs. ‘own’ bedding) did not exert
a significant effect (F1,73 = 0.84, p = NS); there was no significant postnatal treatment-by-condition effect (F1,71 = 1.29, p = NS). D) Percentage of time
spent during 5 minutes by pups in a compartment containing own-cage vs. fresh clean bedding (own vs. clean), or own-cage vs. an alien dam’s
bedding (own vs. alien dam). RCF pups spent less time in the compartment with own-cage bedding than controls in both conditions (F1,64 = 7.46,
p,0.01).
doi:10.1371/journal.pone.0018637.g002
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DTV% increase shown by CT pups when they were exposed to 6%

CO2-enriched air mixture, but no difference of DTV% in response

to hypoxic air (10% O2), or normal air, compared to CT pups

(Figure 4A). The TV increase determined higher MV amongst RCF

than CT pups in response to 6%CO2 (mean MV during 1st 6%CO2

challenge, respectively: ml/min 53.10618.22 vs.40.98612.65,

p = 0.009), whereas the mean respiratory frequency (f) did not

differ significantly in RCF and CT pups during air, 10%O2, or

6%CO2 conditions. The RCF procedure also appeared to affect

individual sensitivity to 6%CO2 in a stable way, in that adult mice

Figure 3. Behavioural and Endocrinological Phenotypes among RCF and CT subjects. A: Serum concentration of corticosterone. In both
RCF and CT subjects corticosterone was significantly heightened (F1,9 = 49.71 p = 0.0001) after 20 minutes of 6% CO2 breathing compared to the basal
values obtained in room air breathing; neither ‘postnatal treatment’ (RCF vs. CT) nor ‘postnatal treatment-by-air mixtures’ revealed differences for
corticosterone serum concentrations (respectively F1,9 = 0.2 p = NS, and F1,7 = 0.08, p = NS). B: Place avoidance/preference towards environments with
heightened CO2 concentration (6% CO2 air mixture): during the first five minutes of the test session, RCF individuals showed significantly higher
tendency to avoid the compartment that had been previously paired with 6% CO2. (ANOVA-R : postnatal manipulation x time interval effect:
F1,22 = 4.51, p,0.05, Tukey HSD post-hoc test p,0.02). C: Free exploratory test. The percentage of time spent at the centre of an arena was
significantly influenced by the interaction of postnatal treatment-by-air mixtures (F1,74 = 4.03, p = 0.048) whereby RCF subjects spent significantly less
time than CT subjects after exposure to 20% CO2. Neither the ‘postnatal treatment’ (RCF/CT), nor the ‘air mixtures’ (normal air/20% CO2) variables
showed significant effects alone (respectively F1,76 = 1.90 p = NS, F1,76 = 0.13 p = NS). D: Latency to fall from the Rotarod. Analysis of variance showed
that the performance at the Rotarod was significantly worse among RCF than CT subjects (F1,67 = 5.08 p = 0.03), in that the former showed
significantly shorter latency of fall from the rod.
doi:10.1371/journal.pone.0018637.g003
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(age 75–90 days) that had experienced postnatal RCF, but no other

adverse event thereafter, showed higher DTV% than CT mice in

response to 6%CO2 (Figure 4B). For both pups and adult mice, the

respiratory response to 6%CO2 was more marked during the 1st

challenge than during the 2nd challenge, as shown by a significant

effect of ‘time’ in the general ANOVA-R models, but differences

between RCF and CT animals remained consistent and significant

within the first- and second challenge recordings.

Individual Differences for CO2 Responsiveness and
Gene-Environment Interplay

Among the unrelated individuals which underwent the

respiratory challenges shown in Figure 4, the mean variance of

DTV% during 6%CO2 challenges was 57.75 for CT (n = 8) and

124.58 for RCF (n = 13) pups, and: 113.06 for CT (n = 17) and

224.62 for RCF (n = 19) adult subjects (Figure 4). Thus, the RCF

procedure appeared to act not only as an enhancer of the mean

physiological response to 6%CO2, but it also acted as a trigger to

disclose individual differences for the response to CO2 amongst

unrelated individuals.

On the basis of this datum, and to explore the nature of the

proportion of variance of the respiratory response to CO2 that

appeared to be associated with the RCF procedure, we relied on

quantitative genetic analyses of data obtained from the full sib/

half-sib (fs/hs) design, as outlined in the Methods section.

Table 1 shows the DTV% mean increments during 6%CO2 for

RCFfs/hs and CTfs/hs subjects at PND 16–20. According to nested

ANOVA, this response to 6% CO2-enriched air was significantly

influenced by both postnatal treatment (RCF vs. CT) and by the

degree of genetic relatedness, i.e., a ‘sibship’ factor. Consistent

with this result, Variance Component Analysis showed signifi-

cantly higher genetic variance (Va) for the DTV% response to 6%

CO2-enriched air among RCFfs/hs than CTfs/hs individuals, and

almost double heritability, as estimated from half-sibs’ correlations

[51], for DTV% response to 6% CO2-enriched air among RCFfs/

hs compared to CTfs/hs subjects. The 0.21 heritability we found for

DTV% among CTfs/hs is close to the 0.24 heritability value

reported for TV increase under continuous respiration of 7%

CO2-enriched air mixtures in normally-reared rats [52]. The

significant difference between the RCFfs/hsVa and the CTfs/hsVa

for DTV% response to 6% CO2-enriched air, and the sizable

increase in heritability, indicate the presence of genetic control of

sensitivity to the environment [53] evoked by the RCF procedure.

Discussion

Our results show that the respiratory reactivity to CO2-enriched

air can be modified by a form of environmental adversity that is not

primarily associated with breathing, namely repeated cross-fostering

during the first postnatal days. While the RCF protocol used in this

study did not interfere with the pups’ normal development, as shown

by comparable weights and body temperatures in RCF and CT mice,

it may have interfered with the formation of infant-mother selective

bond. Accordingly, our behavioural data show that while the RCF

procedure did not evoke a response of neglect from adoptive mothers,

it induced measurable behavioural distress -such as higher number of

separation calls, typically interpreted as sign of separation anxiety

Figure 4. Respiratory responses to air, 10%O2, or 6%CO2 in CT
and RCF subjects at different ages. Percentage of tidal volume
changes from baseline (DTV%) for: a) 16–20 day-old pups in response to
normal air, 10% O2, or 6% CO2. The ANOVA-R carried out on two
consecutive respiratory challenges (as depicted in Figure 1) indicated a
significant effect of: 1) treatment (type of air mixture): F2,58 = 91.30,
p = 0.000001, 2) time: F1,58 = 4.34, p,0.05, and 3) an interaction effect of
postnatal manipulation-by-type of air mixture: F2,58 = 9.99, p,0.0002);
Tukey HSD post-hoc test p,0.001; b) 75–90 day-old adult mice in
response to normal air or 6% CO2. The ANOVA-R carried out on two
consecutive respiratory challenges (as depicted in Figure 1) indicated a
significant effect of: 1) treatment (type of air mixture): F1,71 = 184.83,
p = 0.00001, 2) time: F1,72 = 35.12, p = 0.00001 and 3) an interaction effect
of postnatal manipulation-by-type of air mixture F1,71 = 6.60, p = 0.012).
Tukey HSD post-hoc test p,0.001. Sample sizes varied between 9 and 13
animals per group. Only the responses to the first of two consecutive
challenges performed for each subject with the same air mixture (air/10%
O2/6% CO2) are shown in Figure 4 for the sake of conciseness.
doi:10.1371/journal.pone.0018637.g004

Table 1. Tidal Volume percent increment (DTV%) in response
to 6% CO2 in RCF and normally-reared (CT) pups at postnatal
day 16–20: Mean Values, Genetic Variance, and Heritability
figures estimated from unrelated, half-sib and full-sib
individuals.

CTfs/hs RCFfs/hs

Mean DTV% response to 6%
CO2-enriched air

34.79614.63 42.50617.43*

Genetic Variance for DTV%
response to 6% CO2-enriched air

60.01 125.25{

Heritability for DTV% response
to 6% CO2-enriched air

0.21 0.37

Fs = Full sibs; hs = Half-sibs.
*Nested ANOVA: ‘postnatal treatment RCF vs. CT ’ : F1,112 = 8.29, p = 0.0048;
‘sibship’: F14,112 = 2.17, p = 0.01.
{Bartlett x2 = 8.3, p = 0.004 by Variance component analysis.
Heritability was calculated on the basis of half-sibs’correlations.
doi:10.1371/journal.pone.0018637.t001
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[54]- amongst RCF pups. The RCF also possibly altered the ability to

orient and approach maternal cues among these pups. More

importantly for the aims of this investigation, the RCF procedure

appeared to impact upon sensitivity to 6% CO2-enriched air

selectively (as responses to 10%O2 and normal air were unaffected

by the RCF), and stably from childhood into early adulthood (as

responses to 6% CO2 were similar in pups and in adult RCF

subjects). Such specificity of effect conforms with the notion that the

regulatory mechanisms of hypercapnic and hypoxic ventilatory

responses are functionally separated and genetically dissociated in

mice [31]. Moreover, these results point towards an effect of RCF

upon the central, more than the peripheral chemoceptors, since the

former are much more sensitive to changes in P CO2 (monitored as

[H+]), than changes in P O2. The ‘classical’ maternal separation

protocol (e.g., 3 hours/day for 10 consecutive days) has been

reported to influence the respiratory responses in rats [55]. However

these effects are less specific, in that both the responses to hypoxia and

CO2 are altered, and less straightforward to interpret, as opposite

patterns of ventilatory response heightened CO2 have been observed

in male and female rats [54]. Unlike what we observed in our RCF

mice via the corticosterone data, in rats the 3 hours/day for 10

consecutive days procedure of maternal separation enhances the

basal hypothalamic-pituitary-adrenal axis function [56].

The RCF procedure appeared to act not only as an enhancer of

the mean physiological response to CO2. It also acted as a trigger

to disclose individual differences for the predisposition to vary the

response to CO2. Our data show significant differences in genetic

variance and in heritability between RCF and CT subjects. This

indicates that mechanisms of genetic control of sensitivity to the

environment are operant here, in the absence of the gene-

environment correlations that often complicate the interpretation

of heritability variation in man [20,57]. In other words, the RCF

procedure brought about a proportion of diversity for CO2

sensitivity that was ultimately attributable to genetic effects. One

may speculate on variations in gene expressions as one likely

molecular explanation of our quantitative genetics results, and

genomics approaches would now be needed to further explore this

paradigm. The results of molecular genetic analyses in this mouse

model of separation anxiety could in turn kindle new molecular

genetic approaches to human PD and SAD.

Turning to behavioural variables, while the separation calls in

RCF and CT pups showed that our procedure evoked more

separation anxiety amongst the former [54], it is tempting to relate

the avoidance towards CO2-enriched environments shown by

RCF mice to the avoidant/escape behaviour that people with PD

display towards crowded, closed environments, where they fear

they might experience smothering sensations and panic [14].

Likewise, previous exposure to heightened CO2 concentrations

reduced free exploratory behaviour significantly more among the

RCF than the CT subjects.

Two further findings appear to establish a parallel between the

RCF mice and humans at heightened risk for the SAD-PD

continuum. First, we found similar post-CO2 corticosterone

concentrations among RCF and CT mice, and cortisol levels

following spontaneous and CO2-provoked attacks do not seem to

bear strongly upon the diagnosis of PD in man [4,10,11,13].

Second, RCF mice performed significantly worse than CT at the

Rotarod. Consistent with this finding, vestibular dysfunctions are

found more often among people with PD than among healthy

controls [9], with dizziness being frequently reported in spontaneous

and CO2-provoked panic attacks in man [8]. On the other hand, we

did not find significant sex-related differences in our respiratory and

behavioural tests. This is a possibly relevant discrepancy compared

to human data, whereby women typically respond more than men

to CO2 stimulation and have higher prevalence of PD [8].

In conclusion, inasmuch as the genetic determinants that

promote overreaction to heightened CO2 concentrations and

naturally-occurring panic attacks in man coincide [16], the

adoption of objective respiratory responses, more than the

inferential assessment of emotionality or behaviour, is a viable

strategy for laboratory animal models of human PD. By these same

strategies the developmental pathways of continuity from childhood

separation anxiety into adult panic disorder, and the association of

both conditions with altered sensitivity to CO2, can be further

clarified, and GXE mechanisms explored in man and animal.

Animal laboratory investigations of the mechanisms by which

environmental adversities -including childhood unstable parental

environment/separation from caregivers- and genetic factors

impinge upon CO2 sensitivity can set a new basis for future,

better-tailored genetic approaches to human neurodevelopmental

anxiety disorders [20,58]. Our findings further support the

investigation of the precise causal mechanisms that connect

environmental adversities occurring in sensitive periods of develop-

ment to health status in childhood and early adulthood [59].
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