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Abstract
Rationale and Objectives—Breast density is a significant breast cancer risk factor measured
from mammograms. Evidence suggests that the spatial variation in mammograms may also be
associated with risk. We investigated the variation in calibrated mammograms as a breast cancer
risk factor and explored its relationship with other measures of breast density using full field
digital mammography (FFDM).

Materials and Methods—A matched case-control analysis was used to assess a spatial
variation breast density measure in calibrated FFDM images, normalized for the image acquisition
technique variation. Three measures of breast density were compared between cases and controls:
(a) the calibrated average measure, (b) the calibrated variation measure, and (c) the standard
percentage of breast density (PD) measure derived from operator-assisted labeling. Linear
correlation and statistical relationships between these three breast density measures were also
investigated.

Results—Risk estimates associated with the lowest to highest quartiles for the calibrated
variation measure were greater in magnitude [odds ratios: 1.0 (ref.), 3.5, 6.3, and 11.3] than the
corresponding risk estimates for quartiles of the standard PD measure [odds ratios: 1.0 (ref.), 2.3,
5.6, and 6.5] and the calibrated average measure [odds ratios: 1.0 (ref.), 2.4, 2.3, and 4.4]. The
three breast density measures were highly correlated, showed an inverse relationship with breast
area, and related by a mixed distribution relationship.

Conclusion—The three measures of breast density capture different attributes of the same data
field. These preliminary findings indicate the variation measure is a viable automated method for
assessing breast density. Insights gained by this work may be used to develop a standard for
measuring breast density.
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1. Introduction
Breast density measured from mammograms is a significant breast cancer risk factor (1–4).
The association between breast density and breast cancer has been explored for many years,
spawned by the pioneering work of Wolfe (5,6). The earlier work in breast density used an
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observational four/five category rating of mammograms based on patterns of increasing risk
developed by Wolfe. These earlier pattern measures of risk were virtually supplanted by the
percentage of breast density (PD) measure developed by these researchers (7,8). More
recently, the pattern analysis has gained attention using a different approach in comparison
with the earlier observational methods. Rather than investigating the raw data directly,
mammographic patterns (or projected breast structure) have been investigated with various
textural related measures. For the most part, these are summary measures that include fractal
analysis, features generated from applying various filtering methods, and co-occurrence
features, as both investigated and reviewed by these researchers (9). Some of these measures
show associations with breast cancer similar to that of the standard PD measure.

There are various methods used to assess breast density as previously reviewed (10). The
operator-assisted PD measure has demonstrated repeatedly to correlate well with breast
cancer without considering the x-ray imaging acquisition influences (2). Another approach
involves calibrating for the inter-image acquisition technique variation (11–15) to produce
normalized data representations. There is little published work showing the efficacy of
calibrating mammograms for breast cancer risk assessments using breast cancer status as the
endpoint comparison. Some work indicates that calibration measures do not produce
stronger breast cancer associations than that of the standard operator-assisted PD measure
(16,17). Other work indicates calibration may be useful for describing the information
captured by the PD measure and for automating its measurement (18). If calibration can be
optimized to improve the precision with which breast density is measured, a more accurate
estimate of the magnitude of association between breast density and breast cancer may be
obtained. It may be too early to assess whether these methods are viable because calibration
represents a newer paradigm in breast density analysis that has not been studied in great
depth.

We investigated the spatial variation in mammograms that were calibrated to account for the
x-ray acquisition technique differences using full field digital mammography (FFDM). The
calibration method was developed previously (12,19–22). The calibration adjusts for
variations in the target/filter combination, x-ray tube voltage, radiation exposure, and
compressed breast thickness to produce a normalized pixel value representation referred to
as percent glandular (PG) that is equivalent to a normalized effective x-ray attenuation
coefficient representation spanning this pixel value range (0–100). The calibration can be
applied at the pixel or local level, which supports analyzing the calibrated pixel distribution
characteristics within a given image.

2. Materials and Methods
To meet our study objectives, we performed a matched case-control study. These three
breast density measures and their association with breast cancer were compared: (a) the
average of the calibrated mammograms [the PG measure], (b) the standard deviation of the
calibrated mammograms [the PGsd variation measure], and (c) the standard PD measure
derived from the raw data (no calibration) using an operator-assisted labeling approach. We
also investigated the measurement correlation with (projected) breast area and the inter-
measure correlation. Breast area was used as a surrogate for breast size. The empirical
probability distributions for the calibrated fibroglandular (abbreviated as glandular hereafter)
and adipose tissue components were constructed. These component distributions were used
to develop a statistical relationship between the three measures of breast density using a
mixed distribution model.
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2.1 Study population
A description of the study population is provided. All study images were acquired with one
FFDM system. Controls were individually matched on age, hormone replacement therapy
(HRT), and screening history to control for possible confounding influences. Breast cancer
cases (n=123) were identified from the pool of women attending the breast clinics at the H.
Lee Moffitt Cancer Center. To be included as cases in the study, women had to have been
diagnosed with a first-time unilateral breast cancer (September 2007–July 2010). For the
purpose of matching controls to cancer cases, three groups of cases were considered based
on their screening history. Group-1 was comprised of women that screened normal within
30 months prior to their breast cancer diagnosis (n1 = 107). Group-2 was comprised of
women who had a history of normal screening that fell outside of the group-1 parameters,
such as a woman who had a screening in 2007 but not again until 2010 at which time she
was diagnosed with cancer (n2 = 12). Group-3 was comprised of women who were just
beginning screening and were diagnosed at their baseline mammogram (n3 = 4). Case data
and images were either located by retrospective records review (n = 40) for those women
with images archived on the study FFDM unit or recruited, consented, and imaged for the
study (n = 83). The recruited case patients were those women found to have breast cancer at
screening clinics in the surrounding area that were referred to the Moffitt Center for
diagnostics or patients that were found to have breast cancer at the Moffitt Center that did
not have mammograms archived on the study FFDM unit. Recruited case participants were
given a standard screening type mammogram with the study FFDM unit before their
treatment commenced. Cancer status was histologically verified for all cancer cases. Height,
weight, and HRT usage were abstracted from patient records.

Controls (n=123) were identified from the pool of women undergoing breast cancer
screening mammography at the H. Lee Moffitt Cancer Center with the study FFDM unit.
Controls were age matched (±2 years), HRT usage/duration matched, and screening history
matched with the cancer cases using the three screening categories discussed above. For
HRT matching, non-users were defined as those women who never used HRT as well as
those that stopped using HRT two years or more prior to when their study mammograms
were acquired. For current users, HRT usage duration (± 1 year) was used as a control
matching variable. All control data and images were located retrospectively by records
review over the same timeframe as the cases and restricted to women with screening
mammograms available on the study FFDM unit. These archived mammograms were used
as study images. Height, weight, and HRT usage were abstracted from patient records.

In this report we used two statistically similar datasets derived from the same patients for the
various explorations. We refer to these as the cancer side and non-cancer side datasets. In
the cancer side dataset, the cancerous breast of a given case was matched with the ipsilateral
breast of the control. In the non-cancer side dataset, the non-cancerous breast of a given case
was matched with the ipsilateral breast of the control. The combined dataset consisting of
both the cancer side and non-cancer side datasets is referred to as the expanded dataset
below. The expanded dataset was used for the correlation and distribution modeling
investigations. The study protocol and informed consent process were approved by the local
Institutional Review Board (IRB). This protocol is reviewed annually.

2.2 Imaging system
One General Electric Senographe 2000D FFDM system was used for this work. This
mammography unit is used for routine breast cancer screening at this facility. This system
has a 100 μm digital spatial resolution. A more detailed description of the detector specifics
and the system can be found elsewhere (23,24). Craniocaudal (CC) views were used in this
analysis to reduce chest muscle interference. The system produces both raw data and
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processed data for clinical display use. Raw data was used in the analyses (not processed
data for clinical viewing). The system processed images (clinical display images) were used
as raw image surrogates to provide display illustration examples. The raw image data is not
useful for display purposes without considerable manipulation.

2.3 Calibrated breast density measures
We applied the PG calibration automatically at a lower resolution by averaging over 10×10
pixel regions to reduce unwanted variation. The PG and PGsd measures were determined by
calculating the average and standard deviation of the calibrated pixel values within the
breast area (defined below) for each image. Related work showed that eroding the breast
area produces an image coincident with where the breast was in contact with the
compression paddle (21). The breast area was first segmented from the background
automatically by setting all pixels within the breast area =1 and setting all other pixels to
zero. A radial coordinate system origin was positioned at the side of the image (chest wall
position- left side in a left CC view) at the vertical direction (parallel to the chest wall)
centroid position estimated from the segmented binary image. The breast area was then
eroded by 25% of the distance measured from the radial coordinate system origin to the
breast perimeter along a given radial direction. The calibration requires an accurate spatial
assessment of the compressed breast thickness and therefore does not apply in the region
where the breast is not in contact with the compression paddle because the thickness is
unknown in this region. The erosion operation produces the portion of the image that
approximates the region where the compressed breast thickness is defined and known.
Figure 1 (top) shows three raw image surrogates. The corresponding eroded segmented
images are shown in the middle row of Fig. 1. Both the average PG and PGsd measures were
calculated from the region in the calibrated mammograms corresponding to eroded area. The
respective calibrated (eroded) image examples are shown in the bottom row of Fig. 1

2.4 Operator-assisted breast density measurements
The standard PD measurements were generated with the Cumulus3 (CM) software
(University of Toronto) using the batch file procedure operating on the raw (non-processed
images) FFDM images. The dataset consisting of all cases-control images (left and right CC
view images) were first de-identified and randomized. The CM operator was blinded to the
case-control status and original image identifiers. To avoid operator fatigue, the PD labeling
was performed in multiple reading sessions (490 images were labeled). Hereafter, we use
PD measure to refer to the standard breast density measurement derived from the CM
labeling.

2.5 Statistical analysis
Conditional logistic regression was used to assess the association between the three
measures of breast density and the case-control status. A standard quartile analysis was used
for the odds ratio (OR) comparisons, where the control breast density distribution was used
to determine the cutoff value for each measure. The first quartile of breast density for each
measure served as the reference group for the second-fourth quartiles. The quartile analysis
also provided a means for comparing the inter-measure OR distributions. We adjusted for
body mass index (BMI) measured in kg/m2 and breast area (pixel units) in the analyses as
continuous variables. The area under the receiver operator characteristic curve (Az) metric
was also used for predictive capability comparisons. This analysis was performed with the
SAS software package (SAS Institute Inc., NC).

Linear regression analysis was used to investigate the inter-breast density measurement
association and their relationship with the projected breast area. All relationships were fitted
to the y=mx+b standard form. The full projected breast area (un-eroded breast area) was
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used in the analysis. This regression analysis was stratified by case-control group for
comparisons of the calibrated measures using the expanded dataset.

2.6 Breast density statistical model
To develop a model that explains the relationships between the three measures of breast
density, the empirical probability distributions (estimates) for the combined case-control
glandular and adipose tissue components were constructed and investigated (expanded
dataset). These two components were used to formulate a mixed distribution that connects
the standard PD, PG and PGsd breast density measures. It was shown previously (18) that a
PD-like measure (PDc) of breast density can be generated from the calibrated PG
representation (eroded) images automatically by first applying a data transform. We let pg(x,
y) = PG(x, y) /100, where PG(x, y) is the calibrated image pixel value located at the (x, y)
spatial coordinates. We note, the pg(x,y) pixel values are constrained to this range (0,1). The
normalized attenuated x-ray exposure representation image is then defined as

(1)

where ts is the system compressed breast thickness readout quantity expressed in cm for
each image, and k =5000 is an arbitrary constant. Using Ac = 3200 as a static threshold,
pixel values within the eroded breast region meeting this condition A(x,y) ≥ Ac were
counted as glandular pixels (the dn count), whereas pixel values meeting this condition
A(x,y) < Ac were counted as adipose regions (the an count). For a given image, the PD-type

measure is given by  with N = dn + an. We have shown previously (18) that
the PDc with breast cancer is similar to that of the PD measure when analyzing the same
dataset. For this work, we generated the PDc labeled images as an intermediate step to
construct the component distributions. These binary labeled PDc images were then used as
overlays for their respective PG representation images. For a given pair of PDc and PG
images, regions (pixel values) in the PG image corresponding to the regions in the PDc
image labeled as dn were assembled into an array. This process was carried out for every PG
and PDc image pair in the extended dataset resulting in one array containing all PG pixel
values corresponding to the dn labeling. The same process was carried out for the an labeled
regions resulting in another array. Normalizing each histogram of these arrays separately to
unity gives an approximation for the respective ensemble probability distribution for each
tissue type. These two component distributions were used to formulate a mixed distribution
relationship for each mammogram. For a two component mixture, the mixed distribution for
a given image can be expressed as

(2)

where pi represents the component distributions (derived from the two arrays referenced
above) with i =1 for the glandular component and i = 2 for the adipose component, c is the
two-component mixing proportion, and z = PG (calibrated pixel values). For a given image,
the mean can be expressed as

(3)
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where m1 and m2 are the respective means determined from the component distributions.
Likewise, the variance for a given image can be expressed as

(4)

where σi represents the respective standard deviations calculated from the component
distributions, and m was defined in Eq. (3). Equations (3–4) redefine the PG and PGsd breast
density measures respectively and show the theoretical connection between the three breast
density measures. The relationship with PD follows from Eq. (3). For a given image, c ×
100% is an approximation of the PD measure. The mixing proportion, c, theoretically
accounts for the fraction of pixels within the breast area that would be labeled as dense
breast tissue by the standard PD measure. We calculated (m1, m2, σ1, σ2) from the respective
component distributions. These quantities were the used with Eqs. (3–4) to estimate the
mixing coefficient breast density measure, c, for each image using the respective PG and
PGsd measures as substitutes for m and σ. A brief analysis of the PDc and the mixing
coefficient measures of breast density was provided to demonstrate the validity of (a) the
methods used to generate the component distributions, and (b) the Eq. (4) approximation.

3. Results
3.1 Breast density measurement comparisons

Demographic and risk factor distributions are provided for the breast cancer cases and
controls in Table 1. Associations between the three breast density measurements (PD, PGsd,
and PG) and breast cancer are summarized in Table 2 (left-side) for the cancer side dataset.
In this table, the OR associations and Az quantities were adjusted for BMI and the
simultaneous adjustments for both BMI and breast area (i.e., the mammogram-based two-
dimensional measure of breast size). For all three measures, the ORs and Az quantities
increased (increased magnitude of association) when controlling for area. Both the PD and
PGsd measures showed significant magnitude of association with breast cancer for all non-
referent quartiles (i.e., the left side OR confidence intervals are greater than unity). In
contrast, the confidence intervals for the PG measure included unity for most quartiles. The
PGsd measure showed greater magnitude of association with breast cancer when comparing
its quartile ORs with the other measures, and the PD measure showed greater association
than the PG measure. The PGsd and PD measures produced similar Az values that were
larger than that produced by the PG measure.

To assess whether the presence of breast abnormalities in the cancer side breast was
responsible for the positive associations between breast cancer and the PGsd measure, the
associations were investigated using the non-cancer side dataset. For comparison purposes,
the non-cancer side analysis was performed for the PD measure for internal control
comparisons. The findings are shown in Table 2 (right-side). The OR associations and Az
values decreased for both measures in comparison with the cancer-side dataset, but the inter-
measure relationships remained similar. Because the breast area for the cancer cases was
larger than that of the controls (Table 1), a subgroup analysis was performed by ordering the
cancer-side case samples by ascending breast area. Starting with the case-sample with the
largest breast area, each case and associated control were removed from the 123 pairs one
pair at a time until the case and control group breast areas were statistically similar. A paired
t-test was used to compare the remaining case-control pair breast areas after discarding a
given pair. When the set was reduced to between 100–110 matched pairs, the t-test began to
lose significance. Our choice of 100 matched pairs (P=0.87) was arbitrary (104 case/control
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pairs would work as well). When these case-control pairs (n = 23) were excluded from the
analysis, similar results were observed (data not shown).

3. 2 Correlation Comparisons
The (PG, PGsd ) regression plot for the cancer cases is shown in Fig. 2. Because of the
apparent nonlinear trend, the analysis was divided into (PG, PGsd) pairs that were either (a)
equal to, or above, the case PG distribution mean, or (b) below this mean. A similar analysis
was performed for the control (PG, PGsd) pairs using the control PG measure distribution
mean as the breakpoint. The regression plot for the controls is not shown due to close
similarities with Fig. 2. The regression analysis is summarized in Table 3. Comparisons of
the regression parameters and linear correlation coefficients indicate the cases and controls
exhibit similar behavior. The overall correlation without considering the break also showed
that the cases and controls behave similarly (last column Table 3). The correlation between
the PD and PG measures was R = 0.76, and the correlation between PD and PGsd measures
was R = 0.78, as determined with the extended dataset (not shown).

The correlation between the breast density measurements and breast area was investigated
Figure 3 shows the (area, PG) regression plot for the cancer cases. This analysis was also
divided into (area, PG) pairs using the same format as above that were (a) either equal to, or
above, the case breast area distribution mean, or (b) below this mean (Table 1). Figure 4
shows the (area, PGsd) regression plot using the same mean area break point. The two
measures show similar correlation with area. A similar analysis was performed for the
control PG and PGsd measures with breast area using the control area distribution mean as
the break point (not shown). The breast density measurement and breast area regression
analysis findings are summarized in Table 3. The correlations and relationships were
stronger and more similar across case-control group for the below mean-area groups. Using
the extended dataset with no break point, the (area, PD) correlation was R = −0.39. The
degree of the negative correlation between the breast density measures and breast area
suggests that area should be controlled for in the association analysis as shown in Table 2.

3.3 Statistical model evaluation
To explain the correlation and relationships between three breast density measures, the
empirical distributions were derived from the expanded dataset for the adipose and glandular
tissue types, which are shown in Fig. 5. These represent a summary of the entire dataset and
they show that the total collection of PG representation images can be decomposed into two
single-mode distributions. These were constructed by first generating the PDc labeled
images. For the PDc measure, Az = 0.69 (for the cancer-side dataset adjusted for BMI and
breast area), which indicates the validity of the method used to form these component
distributions (Fig. 5). These distributions were used to evaluate the Eq. (4) expression
relating the three breast density measures by estimating their (the distributions) respective
means and standard deviations giving: (m1, m2) = (32.3, 9.7) and (σ1, σ2) = (14.6, 4.9). The
mixture coefficient c [see \Eq. (3) and Eq. (4)] was derived from each image as the breast
density measure (approximation for PD) to assess the Eq. (4) approximation. The c measure
quartile associations with breast cancer (cancer side dataset) and Az were similar to that of
PD (Table 2) when adjusting for breast area and BMI [odds ratios: 1.0 (ref.), 2.6, 3.5, and
5.5, and Az = 0.67]. Although Eq. (4) shows the connection between the various measures,
understanding the positive correlation between m and σ, theoretically, requires
manipulation. We generated cs (simulated c variable) over this range (0,1), generated Eqs.
(3–4) as functions of cs using the density quantities (m1, m2, σ1, σ2), and found the
theoretical linear correlation between PG and PGsd [i.e., correlation between Eq. (3) and
square root of Eq. (4)], which gave RT = 0.79. This theoretical correlation is in agreement
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with the measured correlation between the PG and PGsd shown in Table 3 (last column). As
Eq. (4) shows, PGsd is a positive valued function of increasing c but it is not monotonic.

4. Discussion
The analysis resulted in three important findings. First, the PGsd measure showed greater
magnitude of association with breast cancer than the other measures in a side-by-side
comparison. In contrast, the calibrated PG measure was the least associated breast density
measure, which agrees with other calibration investigations (16,17). Secondly, the work
provides evidence for the correlation between the measures. Connecting the image variation
(PGsd measure) with the normalized PG representation, PG measure, and the PD measure
with the mixed distribution relationship is an important contribution to breast density
research. This relationship shows that the three measures are characterizing different
attributes of the same phenomenon and helps to explain the positive correlation between the
measures. Previous work (18) showed that the calibrated PG measure can be used to explain
the information captured by the PD measure. These earlier findings were reinforced by the
mixed distribution formulism. There is also another condition that may contribute to the
positive correlation. Although most likely non-parametric, these distributions (Fig. 5)
individually exhibit skewed right tail behavior similar to that of Poisson, low-order central
Chi-square, and more generally lower order gamma probability density functions for
example. In these non-symmetric parametric densities, the mean and standard deviations are
functions of the same parameters, implying they are related (often termed signal dependent
noise). By hypothesis, our findings suggest that PD is an approximation for the PGsd
measure. These assertions will require further validation. Thirdly, the work showed that
breast area may be a confounding factor for both calibrated measurements as well as for the
PD measure.

The PGsd measure magnitude of association is consistent with previous work that found low
frequency Fourier features show association with breast cancer similar to that of PD (9).
Because the mammograms have approximately a 1/fβ power spectrum (25,26), the majority
of the image pixel intensity variation is captured in the lower frequency portion of its
Fourier power spectrum. Although we did not investigate the power spectrum of the
calibrated FFDM images used in this report, the previous spectral analysis of similarly
acquired FFDM images (26) holds in general for these calibrated images. For a given target/
filter calibration and fixed x-ray tube voltage, the calibration mapping is linear; this linear
mapping preserves the spectral functional form within a constant and scaling factor. Thus
for a given calibrated image, the measured PGsd quantity is heavily influenced by the low
frequency portion of its power spectrum.

Both the choice of dataset and breast area influenced the findings. Previous work showed
that choosing the cancer-side or non-cancer side breast was of little consequence in the
association analyses for the PD measure (27). At this time, it is not clear if this relation holds
for the PGsd measure. We found that the PGsd measure is more predictive in the cancer-side
dataset in comparison with non-cancer-side dataset. However, the same relationship held for
the PD measurements as well. Previous work showed that the left breast has a tendency to be
larger than the right breast and this asymmetry is exaggerated in women with breast cancer
(28), but these asymmetries do not explain the differences noted here in the case-control
breast areas. The mammography type-unit used for this work was the first FDA approved
FFDM unit in the US (24). This system has a smaller detector than newer FFDM systems
and has a problem accommodating larger breasts in a single acquisition (24). In multiple-
mammography unit facilities that have mixed detector sizes, x-ray technicians (as
ascertained from technicians at this center) direct women with larger breasts (by
observation) to units with larger detectors. All of the control image samples were derived
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from images acquired with this selection process for this FFDM unit under normal screening
conditions. In contrast, a portion of our cancer cases was recruited and imaged without
regard to this selection process indicating that their projected breast areas may be greater
than those of the controls. The breast area distribution summaries (Table 1) show this holds.
The findings for the reduced dataset indicated that this bias has negligible influences when
controlled for it in the full dataset analysis. The findings indicate that controlling for breast
area is as important as controlling for BMI when investigating measures of breast density.
Evidence also indicates larger breasts tend to have less breast density as reviewed by these
researchers (29), which agrees with the overall negative breast density measurement
correlation with breast area relation found here.

There are several limitations with this study. The x-ray attenuation characteristics of the
adipose breast tissue equivalent phantom (used for the calibration) composition deviates
somewhat from that of adipose breast tissue, which introduces error in the mapped pixel
values (18). We used the Eqs. (3–4) relationships to connect the various breast density
measures, which are approximations. The theoretical PG measure expression [Eq. (3)]
indicates that the maximum PG measure (average PG quantity calculated over the breast
region) for a given image occurs when c = 1, which should not exceed the value of m1. In
practice, the measured values fell within this m1 limit for approximately 87% of the case-
control samples (expanded dataset) or 88% of the controls and 86% of the cases. These
measured distribution quantities will vary according to the PDc generation (changing the
static threshold), which is also influenced by the adipose phantom artifact and its correction.
Similarly, the extent of the erosion may also impact these quantities. The findings presented
in this report will require further evaluation with larger datasets and different study
populations. Nevertheless, these approximations assisted in decomposing a rather
complicated problem into simpler elements.

Calibration may involve considerable initial effort to develop its infrastructure. Thus, a case
must be made for its utility. Related work (16,17) indicated calibrated measures did not
produce associations with breast cancer beyond that of the PD measure. Even if calibration
produced a measure with statistically equivalent breast cancer associations as the standard
PD measure, it may have clinical utility given the efficiency gained from automation. The
operator-assisted PD measure requires considerable effort to label large databases. We
speculate that calibration may be the price paid for automated breast density measurements.
Additionally, the calibration produces a normalized (effective x-ray attenuation coefficient)
representation related to an intrinsic physical property of the breast that may provide some
quantitative benefit. Without calibration, the relationships connecting the three measures of
beast density would be difficult to discern. Insights gained from this work may be useful for
developing a standardized quantitative measure of breast density, leading to a better
understanding of the true magnitude of the association between breast density and breast
cancer.
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Figure 1.
Image examples. From left to right, the top row shows three processed images created by the
study FFDM unit used as raw image surrogates for display purposes only. The middle row
from left to right shows the corresponding segmented and then eroded breast image areas.
The bottom row shows the corresponding percent glandular (PG) calibrated images. As in
film mammograms, larger pixel values imply greater x-ray attenuation and greater breast
density. For the bottom row from left to right, the measured (PG, PGsd ) values for each
image were: (14.3, 5.8), (27.5, 5.4), and (14.9, 5.1), respectively.
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Figure 2.
Percent glandular breast density measure and percent glandular standard deviation breast
density measure regression analysis. This shows the percent glandular (PG) and PG standard
deviation (PGsd) ordered pairs and fitted lines (solid) for the case samples (Table 3). The
regression analysis was split into two parts for above (×) and below (+) the case PG
distribution mean.
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Figure 3.
Breast area and percent glandular breast density measure regression analysis. This shows
breast area (area) expressed in 105 pixel units and percent glandular measure (PG) ordered
pairs and fitted lines (solid) for the case samples (Table 3). The regression analysis was split
into two parts for above (×) and below (diamond) the case breast area distribution mean.
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Figure 4.
Breast area and percent glandular standard deviation breast density measure regression
analysis. This shows the breast area (area) expressed in 105 pixel units and the percent
glandular standard deviation measure (PGsd ) ordered pairs and fitted lines (solid) for the
case samples (Table 3). The regression analysis was split into two parts for above (×) and
below (diamond) the case breast area distribution mean.
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Figure 5.
Glandular and adipose percent glandular ensemble probability distribution functions. This
shows the adipose (dash) and fibro-glandular (dot) empirical ensemble probability
distribution function approximations derived from the expanded dataset. These are the
component distributions used for the mixed distribution model.
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Table 1

Patient Characteristics. The number (n) of patients and percentages are provided for the breast cancer cases
and controls stratified by hormone replacement therapy (HRT) usage and duration by years (yrs) of usage. The
parenthetical entries cites current HRT users as defined in section 2.1 The mean body mass index (BMI), age,
and breast area are given for each group. The associated standard deviations (SDs) for the BMI, age, and
breast area distributions are also provided.

Characteristic Case, n Case mean / SD or % Control, n Control mean / SD or %

Age 123 59.4 / 9.7 123 59.2 / 9.6

HRT

 Never-used 62 50.4% 68 55.3%

 1–5 yrs 24(4) 19.5% 21(4) 17.1%

 6–10 yrs 15(5) 12.2% 15(5) 12.1%

 11–15 yrs 9(5) 7.3% 7(4) 5.7%

 > 15 yrs 13(7) 10.6% 12(8) 9.8%

BMI (kg/m2) 123 27.1 / 5.1 123 25.7 / 4.7

Breast area (pixel) 123 1548303 / 69476 123 1310576 / 443321
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