
Regularized Estimation for the Accelerated Failure Time Model

T. Cai1,*, J. Huang2,**, and L. Tian2,***
1Department of Biostatistics, Harvard University, Boston, MA 02115, USA
2Department of Preventive Medicine, Northwestern University, Chicago, IL 60611, USA.

Summary
In the presence of high dimensional predictors, it is challenging to develop reliable regression
models that can be used to accurately predict future outcomes. Further complications arise when
the outcome of interest is an event time which is often not fully observed due to censoring. In this
paper, we develop robust prediction models for event time outcomes by regularizing the Gehan’s
estimator for the AFT model (Tsiatis, 1990) with LASSO penalty. Unlike existing methods based
on the inverse probability weighting and the Buckley and James estimator (Buckely and James,
1979), the proposed approach does not require additional assumptions about the censoring and
always yields a solution that is convergent. Furthermore, the proposed estimator leads to a stable
regression model for prediction even if the AFT model fails to hold. To facilitate the adaptive
selection of the tuning parameter, we detail an efficient numerical algorithm for obtaining the
entire regularization path. The proposed procedures are applied to a breast cancer dataset to derive
a reliable regression model for predicting patient survival based on a set of clinical prognostic
factors and gene signatures. Finite sample performances of the procedures are evaluated through a
simulation study.
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1. Introduction
Global gene expression profiling using microarrays has the potential to lead a better
understanding of the molecular features corresponding to different phenotypic disease
outcomes. Prediction of disease outcomes using genomic markers is challenging due to the
fact that the number of covariates could be large relative to the sample size. To incorporate
such high dimensional data, dimension reduction methods such as principal component
regression (Jolliffe, 1986) and partial least square methods (Martens and Naes, 1989) have
been proposed. These methods essentially search for low dimensional projections of the
covariates to optimize the trade-off between bias and variance and thus achieve reduced
mean squared errors (Park, 1981). An alternative approach to handle high dimensional
predictors is through penalized estimation. Penalized methods have been studied extensively
in the literature for non-censored outcomes. Examples include the ridge regression (Huang
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et al., 2007), the support vector machines (Vapnik, 1995), the LASSO (Tibshirani, 1996),
the gradient directed regularization method (Friedman and Popescu, 2004), and the Adaptive
LASSO (Zou, 2006; Zhang and Lu, 2007). These methods modify (“regularize”) the
minimization of a usual empirical risk function  by adding a penalty λP(θ) to the risk
and thus instead minimize

where θ is the unknown parameter associated with marker effects and λ ≥ 0 is the penalty
parameter that controls the degree of regularization. Larger values of λ provide increased
regularization producing more stable estimates (Friedman and Popescu, 2004). For any
given λ, one may obtain a regularized estimator for θ. Typically, both the empirical risk
function  and the penalty function P(θ) are convex and thus the penalized risk function
remains convex which ensures the existence and uniqueness of the minimizer for any given
λ. The LASSO type regression procedures based on the L1 penalty have become useful tools
to incorporate high dimensional data because these methods achieve the shrinkage and
variable selection simultaneously by producing sparse solutions. Another attractive feature
of these procedures is that efficient numerical algorithms such as the Gradient LASSO and
(Kim and Kim, 2004) and LARS (Efron et al., 2004) have become available for
implementation.

Regularized methods for combining high dimensional markers to predict failure time
outcomes are less well developed. Tibshirani (1997) and Gui and Li (2005) developed
regularized Cox regression methods by adding an L1 LASSO penalty to the partial
likelihood. A more comprehensive review of related literatures can be found in Li (2008).
However, the proportional hazards assumption may not be appropriate for certain
applications. A useful alternative to the Cox model is the Accelerated Failure Time (AFT)
model (Wei, 1992) which has been studied extensively in recent years for the standard
regression setting. Inference procedures for the regression parameters under the AFT model
include the inverse probability weighting (IPW) method, Buckley-James iterative method,
rank-based method and (Koul et al., 1981; Buckely and James, 1979; Tsiatis, 1990). To
incorporate high dimensional covariates, the LASSO regularization has been applied to the
IPW and Buckley-James (BJ) estimators for the AFT model (Huang et al., 2006; Datta et al.,
2007; Wang et al., 2008). The LASSO regularized IPW estimator inherits most of the nice
properties of the common LASSO regularization in linear models. However, the validity of
the IPW approach relies on the correct specification of the conditional censoring
distribution, which may be difficult in practice. Furthermore, it requires the support of the
censoring time to contain that of the failure time. This assumption is likely to be violated in
practice, since most of the clinical studies have pre-specified duration of follow-up which
may not be sufficient to observe all failures. The BJ procedure needs less stringent
conditions on the censoring time. However, it also relies on the identifiability of the entire
residual distribution which may not be available in the presence of censoring. Furthermore,
the LASSO regularized BJ estimator can not be interpreted as a constrained minimizer of a
convex objective function, since it is based on an estimating equation motivated from the
self-consistency principle. Lastly, the computation of the BJ estimator is based on an
unstable iterative algorithm which may lead to multiple limiting values (Currie, 1996;
Huang and Harrington, 2005; Huang et al., 2006). To overcome such difficulties, we
propose to regularize the rank based estimation procedure with LASSO type penalty to
develop parsimonious prediction models for failure time outcomes. The proposed
regularization methods have several advantages. First, we only require the censoring to be
independent of the event time conditional on the covariates without any additional
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specification of the censoring distribution. Furthermore, the resulting estimator is well
defined for any given penalty parameter and can be viewed as a solution to a linear
programming optimization problem. In fact, the exact LASSO path can be easily identified
through an efficient numerical algorithm detailed in Appendix C. Another advantage of the
proposed method lies in its robustness with respect to model mis-specification. When the
AFT model is correctly specified, our proposed estimator provides a consistent estimator for
the regression coefficients and thus would be the optimal prediction rules asymptotically. On
the other hand, when the AFT model is only an approximation to the true model, the
convexity of the proposed objective function would ensure the convergence of the
estimation procedure and thus lead to a stable regression model for prediction.

The rest of the paper is organized as follows. In section 2, we detail the estimation method
and procedures for making inference about the estimator. We discuss the selection of the
regularization parameter in section 3. Procedures for computing the exact LASSO path are
shown in section 4. We illustrate the proposed procedure with the data from a breast cancer
study in Section 5. Simulation results are summarized in Section 6 and some final remarks
are provided in section 7. The detailed algorithm for computing the exact LASSO path is
given in the Appendix.

2. Method
Let {(Ti,Ci,Zi), i = 1, ⋯, n,} be n independent and identically distributed random vectors,
where T and C are the log-transformed survival and censoring times, respectively, and Z is
the p-dimensional covariate vector. Due to censoring, the observed data consists of {(Yi, δi,
Zi), i = 1, ⋯ , n}, where Yi = min(Ti, Ci) and δi = I(Ti ≤ Ci). We assume that the distribution
of T given Z follows an AFT model:

where {∊i, i = 1, ⋯, n} are n independent random errors with an unspecified common
distribution function.

2.1 Estimation Procedure
To estimate the covariate effect β0, Tsiatis (1990) proposed a set of estimating equations
motivated from inverting a class of rank tests. Specifically, a consistent estimator of β0 can
be obtained as the solution to the estimating equation

(1)

where ei(β) = Yi − β′Zi and Wn(·; ·) is a known weight function convergent to a deterministic
limit. A common choice of Wn(·; ·) is the Gehan’s weight function

. This corresponds to a simple monotone estimating function,
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which is the “quasi-derivative” of a convex objective function,

Therefore, a valid estimator of β0,  may be obtained as a minimizer of the convex function
L(β) (Ritov, 1990). In practice,  may be obtained through linear programming (Jin et al,

2003) by minimizing  subject to the constraints

(2)

When the sample size is not large relative to the dimension of β0, the conventional estimator
 may have poor performance (Huang et al., 2006). To obtain a more accurate estimator for

β0 in such settings, we propose the LASSO-regularized Gehan’s estimator,

where λn > 0 is the penalty parameter and for any vector a, we use notation ak to denote the
kth component of a. Equivalently,  is the minimizer of L(β) under the constraint

for some sn that corresponds to the penalty parameter λn. As for , the computation of the
regularized estimator  can be achieved through linear programming by minimizing

 subject to constraints

in addition to the constraints given in (2).

The LASSO method penalizes all the regression coefficients in the same way and may not
be consistent in identifying all the nonzero regression coefficients. Recently, Zou (2006) and
Zhang and Lu (2007) proposed the adaptive LASSO method, which penalizes the regression
coefficients according to an initial estimator. The adaptive LASSO approach penalizes the
regression coefficients based on the magnitude of their initial estimators. It entails more
stringent constraints or equivalently larger penalties on coefficients that are likely to be zero
according to the initial estimator. The adaptive LASSO has been used for variable selection
in different models (Leng and Ma, 2007; Lu and Zhang, 2007; Wang et al., 2007) and can be
easily applied to regularize the Gehan’s estimator. Specifically, one may estimate β0 by
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minimizing  or equivalently minimizing L(β) under the
constraints

Let  denote the corresponding adaptive LASSO regularized Gehan’s estimator. In pratice,
we may obtain  based on the same procedure as for  with the re-scaled predictors

.

2.2 Large Sample Properties and Inference Procedures

In Web Appendix A, we show that  almost surely if λn → 0. Since L(β) can be
locally approximated by a quadratic function, we show in Appendix A that if n1/2λn → λ0 ≥

0, then as n → ∞,  converges in distribution to argminuV (u,W), where

W follows a multivariate normal distribution with mean zero and a variance covariance

matrix of ,  at β = β0, and .

For the adaptive LASSO estimator, we require  and . Under such an
assumption and regularity conditions given in the Appendix,  almost surely.
Furthermore, in Web Appendix B, we establish its “oracle” property (Zou, 2006;Zhang and

Lu, 2007). Specifically, let ,  and let  denote the sub-vector
of β that corresponds to . Using similar arguments as given in Zou (2006), we show that as

n → ∞,  and  converges in distribution to ,

where  at β = β0, and  where  is the sub-
vector of S(β0) corresponds to .

Although the foregoing theoretical asymptotical properties provide some justifications on
the large sample performance of the LASSO and adaptive LASSO regularized estimators in
practice, they are not directly applicable to make statistical inference about β0 in finite
samples. It is generally difficult to approximate the distribution of the LASSO regularized
estimators well or to provide desirable interval estimates for β0. Routinely used procedures
such as the bootstrap may fail in such settings (Knight and Fu, 2000). In practice, we
propose to approximate the variance covariance of the proposed estimators based on the
local quadratic approximation of the Gehan’s objective function (Fan and Li, 2001).
Specifically, we suggest to estimate the variance of  and  by
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respectively, where  and  are the respective consistent estimators of  and ,

 and

. An extra layer of difficulty arises when
obtaining a consistent estimator of  due to the non-smoothness of the Gehan’s objective
function. One possible solution is to take advantage of the local linear property of S(β),

and approximate the kth column of  based on the estimated regression coefficients ak in

the linear regression model, , where Sk(β) is the k-th
component of S(β). To estimate the slope for each k, we first obtain B realizations of  by

generating B bootstrap samples of , denoted by ; and then fit the linear

regression model based on the “responses”  and

the corresponding“covariate vectors” .

3. Selection of the Regularization Parameter
The selection of the regularization parameter is crucial to the performance of the final
prediction model. Various methods have been proposed to select the penalty parameter in
the LASSO regularization. In general, there are two different objectives one may wish to
achieve when selecting the penalty parameter: (1) optimizing the prediction accuracy of the
final model; and (2) identifying the “true” prediction model or, more realistically, the set of
non-zero β coefficients in the regression model. These two goals are similar, but may be
inconsistent and thus require substantially different penalty parameters in the absence of a
true model. In this paper, we focus on optimizing the prediction accuracy and suggest to use
cross-validation methods for selecting an appropriate penalty parameter.

To optimize the prediction accuracy, one needs to first choose a desirable accuracy measure.
A convenient choice is to measure the accuracy by L(β) itself. Since

 in a small neighborhood of β0, the value of L(β) can be
interpreted as a weighted mean square error of using β to approximate β0. When interest lies
in the prediction of t-year survival, one may consider the corresponding c-statistic as a
measure of accuracy (Zheng et al., 2006). For any given accuracy measure, we propose to
use the K-fold cross validation to select λ that achieves the optimal accuracy. Specifically,
we randomly partition the data into K subgroups of approximately equal sizes and for any
given λ compute the cross-validated accuracy based on

where  is the estimated accuracy function based on the observations in the k-th
subgroup and  is the LASSO or adaptive LASSO regularized Gehan’s estimator
based on observations not in the kth group with the penalty parameter λ. One may carry out
the foregoing K-fold cross validation procedure repeatedly and obtain λn as the optimizer of
the average  among all the replicates.
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4. Computation of the Exact Regularization Path

With the linear programming techniques, one may easily obtain , the minimizer of

L(β) under the constraint , for any given s. However, the data-dependent
selection of an optimal penalty λn or the corresponding sn may be time consuming if one
directly evaluates the accuracy measure function  via a naive application of the linear
programming techniques. To overcome the computational burden, the threshold gradient
descending method may be applied to find an approximated solution to the LASSO path
(Friedman and Popescu, 2004). However, this approximation may not be accurate in some
settings and leads to solutions that are markedly different from the exact LASSO path. In the
following, we propose an efficient numerical algorithm to compute the exact entire LASSO
regularization path. Since the exact path of  is piece-wise linear due to the Karesh-
Kuhn-Tucker condition, the entire path is determined by all the changing points {β[1], β[2],
⋯ } in the path.

To illustrate the algorithm, we consider a simple example by taking the first 7 observations
from the well known Mayo Clinic Primary Biliary Cirrhosis (PBC) study (Fleming and
Harrington, 1991) with age and log(albumin) as the only two predictors. With p = 2, figure 1
plots part of the two-dimensional parameter space divided by lines Yi − Yj − β′(Zi − Zj) = 0,
1 ≤ i < j ≤ 7. Since L(β) is linear within each segment bounded by straight lines, the fastest
descending direction has to be along the edges in the figure. To illustrate how the algorithm
explores the regularization path, suppose that β[2] and β[3] are the points “A” and “B” in the
figure, respectively. After reaching point “B”, we need to determine the next optimal
direction. First, the optimal direction must be along the edges “BE” or “BC” due to the
convexity and local linearity of the objective function. To decide which direction to take, we
need to calculate and compare the descending rate of L(β) along these two directions relative
to the increasing rate of ∥β. Specifically, from point “B” to “E”, L(β) decreases from 11.04

to 9.67, while  increases from 0.21 to 0.34. This suggests a relative descending
rate of (9.67 – 11.04)/(0.34 – 0.21) ≈ −10.77. Similarly, from point “B” to “C”, maintaining
the same direction as from “A” to “B”, L(β) decreases from 11.04 to 8.64, while ∥β increases
from 0.21 to 0.39. This implies a faster relative descending rate of −13.73. Therefore, the
optimal direction should go from “B” to “C”. After reached point “C”, we face a similar
question: keep the same direction or turn left to the point “D”. With the same method, it is
straightforward to obtain the relative descending rates along these two directions: the
relative descending rates are −8.96 and −11.60 along the y axis and edge “CD”,
respectively. Therefore, the joint after “C” is “D”. In this manner, one may progressively
explore the entire LASSO regularization paths highlighted in the figure. Note that in the
foregoing discussion, we purposely ignored the possibility of turning

5. Example
In this example, we are interested in constructing optimal prediction models for survival
time using patient level clinical and genetic information based on a breast cancer study. The
study involves 295 patients with primary breast carcinomas from the Netherlands Cancer
Institute (Chang et al, 2005). The survival time information was extracted from the medical
registry of the Netherlands Cancer Institute. Potential clinical predictors include age, tumor
size, lymph node status, tumor grade, vascular invasion status, estrogen receptor status, NIH
risk grade, the use of breast conserving therapy and the use of the adjuvant therapy.
Available also are gene signatures that represent distinct analytic strategies and have been
validated in independent studies. Specifically, there are seven potential gene signatures:
basal-like, ErbB2, luminal A, luminal B, normal-like, a 70-gene, and the wound response
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gene signatures. The basal-like, ErbB2, luminal A, luminal B and normal-like gene
signatures were identified by an unsupervised clustering method (Perou et al, 2000). The 70-
gene signature was constructed based on the association between the gene expression level
and the risk of metastasis (Vijver et al, 2002). The wound response gene signature was a
hypothesis-driven signature proposed by Chang et al (2005).

To identify the optimal prediction model, we fit the data with the AFT model with the
logarithm of the survival time as the response variable and 18 potential predictors: age,
tumor size (diameter, cm), the number of lymph nodes, tumor grade (grade 2 vs 1, grade 3
vs 1), vascular invasion (1-3 vessels vs 0 vessel, > 3 vessels vs 0 vessel), estrogen receptor
status (positive vs negative), NIH risk status (high vs. intermediate or low), the use of breast
conserving therapy (mastectomy vs breast conserving therapy), the use of adjuvant therapy
(No adjuvant therapy vs chemotherapy or hormonal therapy) as well as the seven gene
signatures. All the genetic signatures used in the model are continuous correlation measures.
In the analysis, to avoid potential biases we excluded a subset of 61 patients, which was
used to construct the 70-gene signature. Among the remaining 234 patients, the median
follow-up time was 7.2 years and the number of observed deaths is 55.

To construct prediction models based on these 18 predictors, we considered three
aforementioned estimators for β: (1) the standard Gehan estimator; (2) the LASSO
estimator; and (3) the adaptive LASSO estimator. The entire LASSO and adaptive LASSO
regularized paths of the proposed estimators are shown in Figure 2 (a) and (b). To examine
how well the path obtained based on the threshold gradient descending algorithm
approximates the exact path, we also obtained the approximated LASSO path in Figure 2(c).
Although the overall patterns of the two sets of paths are fairly similar as anticipated, there
are subtle differences in paths of some individual predictors and in general the threshold
gradient descending paths are much “smoother” than the exact paths. To determine the
penalty parameter λ, we use L(·) as the accuracy measure and choose λ by optimizing the
average of five independent 5-fold cross validated estimators of the accuracy function as
shown in Web Figure 1. The corresponding point estimators of the regression coefficients
are summarized in Table 1. It is interesting to note that according to adaptive LASSO, the
only non-zero regression coefficients in the AFT model are tumor size, tumor grade (grade 3
vs 1 or 2), vascular invasion (> 3 vessels vs 0-3 vessels), basal-like, luminal A, ErbB2, 70-
gene and wound response gene signatures, which suggests that the conventional clinical
prognostic factors and selected gene expression signatures are complementary to each other
in terms of predicting future survival time. Reported also in Table 1 are the standard error
estimates for both LASSO and adaptive LASSO regularized point estimators. However, as
discussed in section 2.2, the finite sample distribution of the proposed regularized estimators
may be far from normal and the standard error may not be a good summary for the precision
of these estimators.

To internally validate the prediction performance of the models constructed based on the
regularization methods, we randomly split the data into a training sample and a validation
sample of equal sizes. We fit the training data with the AFT model via the proposed
procedures to obtain estimates of the regression coefficients. Based on these estimates, we
then predict the risk of failure for subjects in the validation sample and classify them as high
or low risk based on whether the predicted risk exceeds the median risk. The selection of the
penalty parameters in the training stage was based on the 5-fold cross validation. This
process was repeated 500 times. The results demonstrate the LASSO and adaptive LASSO
estimators achieve better risk stratifications compared to the unregularized counterpart with
respect to their significance in testing the difference between the two risk groups. For
example, the observed proportions of p-values being smaller than 0.05 are 96.6%, 91.2%
and 82.2% for predictions based on LASSO, adaptive LASSO, and unregularized estimators,
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respectively. The entire empirical cumulative distribution functions of the 500 p-values for
comparing the two risk groups identified by the LASSO, adaptive LASSO and unregularized
Gehan’s estimators are shown in Web Figure 2. Furthermore, the LASSO and adaptive
LASSO procedures led to prediction models with an average of 8 and 7 predictors,
respectively.

6. Simulation Study
In this section, we examine the finite sample performance of the proposed methods through
simulation studies. We mimic the simulation setup considered in Tibshirani (1997).
Specifically, we generate the survival time from the exponential distribution with rate

, i.e., , where Z = (Z1,⋯,Z9)′ is generated from a multivariate
normal with mean zero and the variance covariance matrix ΣZ = (σij) = (ρ∣i−j∣) and ε follows
the standard extreme value distribution. We considered two sets of regression coefficients:
β0 = (0.35, 0.35, 0, 0, 0, 0.35, 0, 0, 0)′ and (0.7, 0.7, 0, 0, 0, 0.7, 0, 0, 0)′, to represent weak
and moderate associations between the predictors and the survival time, respectively. Three
different values of ρ was considered, ρ = 0, 0.5 and 0.9, corresponding to zero, moderate and
strong collinearity between the predictors. The censoring time was generated from a
uniform[0, ξ], where ξ was chosen to achieve about 40% of censoring.

For each scenario, the three estimation procedures were evaluated based on 100 simulated
datasets at sample sizes of n = 50 and 100: the Gehan’s rank-based, BJ iterative and IPW
methods. For each estimation method, we investigated four regularization procedures: (a)
the oracle procedure with β3, β4, β5, β7, β8, and β9 given as 0; (b) the unregularized
procedure including all predictors in the model; (c) the LASSO; and (d) the adaptive
LASSO. The oracle procedure, while not available in practice, may serve as an optimal
benchmark for the purpose of comparisons. The penalty parameters used in the LASSO
(adaptive LASSO) regularized rank estimator were selected based on the 5-fold cross
validation assisted by the proposed efficient algorithm for computing the exact
regularization path. We implemented the procedure proposed by Wang et al. (2008) to
compute the LASSO (adaptive LASSO) regularized BJ estimator with regularization applied
to the least square fitting within each iteration. The procedure failed to converge for a
significant number of datasets due to non-convergent loops. For such cases, we selected the
first member in the loop as the point estimator. The penalty parameter of the regularized BJ
estimator was adaptively selected by the generalized cross validation method given in Wang
et al. (2008). The regularized IPW estimator is constructed as in Datta et al. (2007).

Specifically, we replaced the unobservable response log(Ti) by 
and applied the LASSO (adaptive LASSO) regularization method to the synthetic dataset

 where  is the Kaplan-Meier estimator of P(C > t). The
penalty parameters were simply selected using the Mallow’s Cp criteria based on the
synthetic data.

For each estimate  obtained from the proposed methods, we generate an independent
validation set of size 100n and evaluate the prediction performance of  based on the

mean squared prediction errors, , where  are
covariate vectors in the validation sample. To examine how well the proposed procedures
perform with respect to variable selection, we recorded the frequency of the regression
coefficients being set to zero correctly and incorrectly for both the LASSO and adaptive
LASSO procedures.
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The results, summarized in Tables 2 and 3, exhibit several interesting patterns. First, with
respect to mean squared prediction errors, the rank based methods outperform both the BJ
and IPW methods. Compared with the MSEs of the regularized BJ estimators, the MSEs of
the regularized Gehan estimators are about 30% to 40% smaller when the signals are weak.
The difference between the two procedures is less apparent when the signals are moderate
and the correlation ρ is not large. The IPW method performs the worst among the three
methods, especially when the signals are moderate (Table 3). This is in part due to the
violation of the assumption on the censoring support. Secondly, both the LASSO and
adaptive LASSO regularizations can significantly improve the prediction MSE compared to
their un-regularized counterpart for both rank based and BJ procedures. Thirdly, both the
regularized rank based and BJ estimators can correctly identify the majority of the zero
regression coefficients. Furthermore, the precision increases with the sample size and the
signal strength. It is interesting to note that, when the sample size is relatively small and the
signal is relatively weak, the adaptive LASSO may not be more accurate than the LASSO
with respect to correctly identifying the zero coefficients or reduction in MSE. This could in
part be attributed to the large variations of the initial estimator used to determine the weights
in the adaptive LASSO regularization. Fourthly, for both LASSO and adaptive LASSO, the
ability in correctly identifying zero coefficients weakens as the collinearity among the
predictors becomes higher. This may be explained by the fact that it is more difficult to
differentiate two highly correlated predictors, among which only one is truly associated with
the response. Lastly, the improvements in the prediction performance and the ability of
identifying the correct model may not be simultaneously realized. For example, with smaller
sample size and weaker association, the relative improvement in the prediction mean
squared error over the usual Gehan’s estimator is greater, while the probability of correctly
detecting the true model is smaller.

Since the support of the censoring is shorter than that of the failure time, the IPW procedure
may lead to biased estimators under the current simulation setting. Consequently, in the
second set of simulation for examining the finite sample properties of the regularized
methods with high-dimensional covariates, we focused on the proposed rank based and BJ
iterative procedures. Specifically, we adopt the similar simulation set-up as described above
with β0 = (0.7, 0.7, 0, 0, 0, 0.7, 0, ⋯ , 0)′, and the sample size fixed at n = 50. The dimension
of β0, p, was set at 15, 20, ⋯ , 45, and 50. Considering the 40% censoring, the average
number of observed failure is 30 and thus p ≥ 25 can be considered as high dimension. For
the high-dimensional set-up, there is a substantial proportion of simulated datasets, in which
the finite unregularized rank or BJ estimator does not exist and thus we only calculate the
LASSO-regularized estimators.

The detailed results about the mean squared prediction errors for the second set of
simulation are summarized in Figure 3. The patterns shown in the first set of simulations are
in general maintained: the LASSO regularization can drastically improve the prediction
accuracy especially when p is big relative to n; the performance of the adaptive LASSO
estimators deteriorates more rapidly than their LASSO counterpart as p increases; and the
regularized rank based estimators outperform their BJ counterparts, especially when the
covariates are highly correlated.

7. Discussion
The proposed regularization methods for the AFT model can be easily extended to
incorporate other types of penalty functions such as the L2 or the more general elastic net
regularization Zou and Hastie (2005). The entire regularization path with the L2 or elastic
net penalty would also be piece-wise linear and can be obtained by modifying the algorithm
proposed by Hastie et al. (2004). The Gehan’s initial estimator determining the weights used
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in the adaptive LASSO may be too unstable or even not available for a high dimensional β.
For such settings, one may instead use the L2 regularized Gehan’s estimator as the initial
estimator.

When fitting the AFT model in the standard setting with a small p, a more efficient estimator
may be obtained by using different weight functions in (1). In such cases, the root of the
estimating equation may be obtained by an iterative algorithm, in which each iteration
amounts to minimizing a weighted Gehan’s objective function (Jin et al, 2003). Therefore, a
simple regularization strategy for the general rank based estimating equation is to apply
LASSO or adaptive LASSO regularization within each iteration. However, the resulting
regularized solution may lose the simple interpretation as a constrained minimizer. It is
important to note that while the proposed procedure may be carried out when p increases
with the sample size, the asymptotical properties derived in the appendix only holds when p
is a fixed constant. Using similar arguments as given in (Huang et al., 2007), one may
extend the results to the setting when p = pn → ∞ as n → ∞ but at a slower rate. When p is
much bigger than the sample size, e.g., in the context of gene expression data analysis,
operationally, the proposed regularization method can be performed with a large number of
individual gene expression as covariates in the regression analysis. However, since the
theoretical results require that the dimension of predictor is fixed while the sample size n →
∞ we suggest to perform an initial screening step, in which relatively few covariates were
selected/constructed from the original gene expression measurements, and then conduct the
regularized multivariate analysis with the covariates formed in the first step. Note that even
after the initial dimension reduction step, the dimension of predictors may still be not small
relative to the sample size for performing the standard unregularized estimation as in the
breast carcinomas example and this is where the proposed regularization methods are
intended to be applied.

The selection of an appropriate penalty parameter is crucial to the performance of
regularized estimators. If the primary goal of the regularization is variable selection, i.e., to
identify non-informative predictors whose true regression coefficients are zero, one may
consider approaches different from optimizing a cross-validated loss function. Intuitively,
the penalty parameter should be set such that the LASSO estimators for most non-
informative predictors are zero. One possible ad-hoc approach to achieve this is to first
augment existing predictors by several randomly generated noise variables that are
independent of the survival time and then calculate the entire LASSO regularization path
with the augmented predictors. In the end, one may choose the smallest penalty parameter
such that all the LASSO regularized regression coefficients of those augmented noise
predictors are zero.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The simple example explaining the algorithm for computing the exact LASSO regularization
path. right into the other half of the parameter space for simplicity. The same calculation for
the relative descending rate can be easily carried out to confirm that those directions are
indeed sub-optimal. This algorithm is similar to the procedure given by Zhu et al. (2003) for
solving the regularized support vector machine. We present the detailed algorithm for
computing the exact path in the Web Appendix C.
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Figure 2.

Paths of the regression coefficients (a) as a function of  for the exact LASSO (b) as

a function of  for the adaptive LASSO; (c) as a function of  based on
the threshold gradient descending approximation (Approximate LASSO), for the breast
cancer example. The vertical lines correspond to the estimated optimal penalty parameters.
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Figure 3.
Mean squared prediction errors for the unregularized (solid), LASSO (dotted) and adaptive
LASSO (dashed) estimators based on Gehan’s rank based (circle) and Buckley & James
iterative (solid square) procedures with p = 9, 15, 20, ⋯ , 45 and 50.
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