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Abstract

We evaluate the performance of nine functionals (B3LYP, M05, M05-2X, M06, M06-2X,
B2PLYP, B2PLYPD, X3LYP, B97D and MPWB1K) in combination with 16 basis sets ranging in
complexity from 6-31G(d) to aug-cc-pV5Z for the calculation of the H-bonded water dimer with
the goal of defining which combinations of functionals and basis sets provide a combination of
economy and accuracy for H-bonded systems. We have compared the results to the best non-DFT
molecular orbital calculations and to experimental results. Several of the smaller basis sets lead to
qualitatively incorrect geometries when optimized on a normal potential energy surface (PES).
This problem disappears when the optimization is performed on a counterpoise corrected PES.
The calculated AE's with the largest basis sets vary from -4.42 (B97D) to -5.19 (B2PLYPD) kcal/
mol for the different functionals. Small basis sets generally predict stronger interactions than the
large ones. We found that, due to error compensation, the smaller basis sets gave the best results
(in comparison to experimental and high level non-DFT MO calculations) when combined with a
functional that predicts a weak interaction with the largest basis set. Since many applications are
complex systems and require economical calculations, we suggest the following functional/basis
set combinations in order of increasing complexity and cost: 1) D95(d,p) with B3LYP, B97D,
MO06 or MPWB1k; 2) 6-311G(d,p) with B3LYP; 3) D95++(d,p) with B3LYP, B97D or
MPWBL1K; 4)6-311++G(d,p) with B3LYP or B97D; and 5) aug-cc-pVDZ with M05-2X, M06-2X
or X3LYP.

The hydrogen bond plays a fundamental role within chemistry and biochemistry. Many self-
assembling systems such as nucleic acids, proteins and nanomaterials owe much of their
stabilities to H-bonds. Consequently, many research groups that use quantum mechanical
methods to study these systems (including our own) depend upon accurate, yet economical,
molecular orbital (MO) methods to calculate hydrogen bonding properties. Density
functional theory (DFT) has become the method of choice for studying large systems due to
the balance of accuracy and efficiency. The B3LYP functional has generally been the
method of choice for H-bonding interactions in self-assembling and biochemical materials
such as peptides in studies by our laboratory1°8 and several others (references are
representative, but not exhaustive).9723 However, several recent reports have found fault
with B3LYP as applied to many chemical problems,24 most of which do not involve H-
bonding. Also, many older functionals poorly describe non-bonding interactions but do
describe H-bonds well.25:26 In fact several reports have indicated that B3LYP and other
similar functionals describe H-bonding systems reasonably well, particularly when properly
corrected for basis set superposition error by performing geometric optimizations on a
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1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Plumley and Dannenberg Page 2

counterpoise (CP) corrected potential energy surface.ield25:27:28 Nevertheless, as new
functionals are introduced, the choice of which to use becomes more complex, especially
when combined with the many basis sets available and the CP-correction. In this paper, we
shall focus on the calculation of the properties of the water dimer using a wide variety of
functional/basis set combinations with and without CP-corrections (both single point and
optimized on a CP-corrected surface). Our focus shall be upon which methods might
provide acceptable accuracy for large systems without excessive computational burden. We
note that one cannot assume that methods that work well for water dimer (or any specific
models) will work equally well elsewhere. However, one should be suspicious of applying
methods that do not properly describe the water dimer.

Among the several new functionals introduced in the last few years, we shall concentrate on
those developed by Truhlar (M05, M05-2X, M06, M06-2X, and MPWB1K), Grimme
(B2PLYP, B2PLYPDand B97D), and Goddard (X3LYP) in addition to B3LYP. Reports
assessing the accuracy of these functionals for describing a wide variety of chemical
phenomena, including some aspects of hydrogen bonding have appeared in the literature.
24,2629 For example, Truhlar and coworkers evaluated the ability of various functionals to
predict the properties of the possible isomeric (H,0)g aggregates.3° In general, these reports
focus upon accuracies of functionals with basis sets too large to be practical for large
systems. Consequently, these reports do not clarify which combinations of functional and
basis set will yield reasonable accuracy for hydrogen bonding properties of large chemical
systems (hundreds of atoms). We have previously tested a variety of levels of theory
(methods and basis sets) for their ability to calculate H-bonding properties,27:28 and another
very recent report containing similar information has appeared. 31 Truhlar has tested many
functionals for non-bonding properties, including many H-bonds.32 We have shown that
accurate H-bonding properties as calculated by high levels of theory can be reproduced by
moderate to low levels of theory when structures were optimized on a CP corrected potential
energy surface (PES). The advantage of the CP optimization procedure (CP-OPT) lies in its
ability to obtain higher quality geometrically optimized structures using smaller basis sets
than possible with an optimization on a PES not corrected for BSSE. As the basis set used
becomes more complete, BSSE disappears, so the utility of the CP-OPT procedure becomes
attenuated. We shall concentrate on the effects of BSSE and the CP correction upon the
applicability of these functionals used with moderate basis sets to the prediction of the
properties of H-bonds rather than repeat the analyses of others. While BSSE can affect the
results of all DFT calculations,33 it has a relatively large effect upon both the energies and
geometries of H-bonding systems calculated with basis sets whose completeness become
restricted due to the size and complexity of the chemical systems studied.

We have chosen the water dimer as our model system for several reasons. Firstly, it has been
exhaustively studied by experimental and theoretical methods. Secondly, the potential
energy surface is rather flat, so that its geometry will be very sensitive to the methods used.
The larger water aggregates, such as the isomeric (H20)g's lie in much deeper minima on the
PESs, making their geometries less sensitive to the methods of calculation used. We report
the energies and geometrical features of the water dimer calculated by several DFT methods
and basis sets, and compare these experimental and computational data. We compare and
evaluate the H-bonding energies and geometries as calculated on the normal and CP
corrected PESs, as well as those predicted by performing single point CP corrections on
geometries optimized without the CP optimization procedure. Ultimately, we recommend a
level of theory with an appropriate balance of accuracy and efficiency for the study of large
H-bonding systems.

J Comput Chem. Author manuscript; available in PMC 2012 June 1.
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Computational Details

Results

We performed molecular orbital (MO) calculations with the GAUSSIAN 0934 suite of
programs using the following functionals: B3LYP,35-38 X3LYP,39 M05,40:41 M05-2X 41
M06,%2 M06-2X,42 MPWBL1K, 43 B2PLYP,44 B2PLYPD,45 and B97D.*6 Two of these
(B2PLYPD and B97D) contain an empirical correction designed to include dispersion
interactions. We tested each functional with the following sixteen basis sets: 6-31G(d),
6-31G(d,p), 6-31++G(d,p), 6-311G(d,p), 6-311++G(d,p), 6-311++G(3df,2p), D95(d,p),
D95++(d,p), cc-pVnZ, and aug-cc-pVnZ a0 (n =D, T, Q, and 5). We optimized the
geometries in all 12 internal degrees of freedom with every combination of functional and
basis set used on both normal and counterpoise corrected (CP-OPT) potential energy
surfaces,*’ followed by vibrational calculations using the harmonic method (the default in
GAUSSIAN 09) to ascertain that the geometries correspond to true minima. In addition, we
calculated the single point (a posteriori) CP corrections on the conventionally optimized
structures (which are not minima on the CP-corrected surfaces).

As expected, the energetic and geometric differences between the normally optimized
dimers and those optimized on the CP-corrected PES generally become smaller as the basis
set improves. These differences become smallest for the best basis sets (Table 1), but can
still be substantial even for aug-cc-pV5Z (from 0.005 kcal/mol for MPWB1K and 0.008
kcal/mol for B3LYP and X3LYP to as much as 0.207 kcal/mol for M06). For moderate
sized basis sets, this difference can be substantial and varies with the functional used, as well
as, the basis set. The results for the CP-optimized dimers using moderate basis sets are
always closer to those for the better basis sets than those for normal optimizations.

Interaction energies, AE's

For each combination of functional and basis set, we calculated the interaction energy three
different ways: 1) optimization on the CP-corrected PES (CP-OPT); 2) optimization on the
‘normal’ (uncorrected) PES; and 3) optimization on the ‘normal’ PES followed by single
point energy evaluation, a posteriori counterpoise correction (CP-SP). Table 1 collects the
best interaction energies for the dimer using the most complete basis set with these three
methods for each of the functionals considered. The data show a variation of about 0.8 kcal/
mol (from -4.42 for B97D with CP-SP to -5.24 kcal/mol for uncorrected B2PLYPD) even
for such a large basis set as aug-cc-pV5Z. Oddly, the two functionals tested that include the
empirical dispersion corrections provide the extreme high and low values for the AE. Tables
2-4 displays the interaction energy for each combination of functional and basis set using
each of these three methods.

Optimized geometries

Tables 5 and 6 displays the optimized O...O and O...H distances for the dimer calculated on
the uncorrected PES's. Optimization with the larger basis sets gives the qualitatively correct
water dimer geometry (figure 1A). However, some combinations of functional and basis sets
yield geometries (figure 1B) containing two hydrogen bonds. Some of these optimizations
converged to a transition-state (one imaginary frequency) resembling the 1A structure. Table
entries in bold typeface indicate parameters for structures with these (1B) geometries. Only
two of the functionals we studied (B2PLYP and MPWB1K) produce the figure 1A geometry
for all basis sets used here. The 6-31G(d) basis leads to anomalous geometries with eight of
the ten functionals used, the cc-pVDZ, and 6-31G(d,p) basis sets lead to such geometries
with six and the 6-311G(d,p) basis sets with five different functionals. D95(d,p) is the
smallest basis set to be free of this anomaly with all functionals tested. When optimized on a
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CP-corrected surface (see Tables 7 and 8), all anomalous geometries encountered disappear,
indicating that these anomalies are due to BSSE. We have previously reported similar
situations.#8:49 For those combinations which give the qualitatively correct structure (A in
figure 1) the O...O distance increases upon optimization on the CP-corrected PES, as
expected.?’

DISCUSSION

We shall compare the present results with both high level molecular orbital (MO)
calculations that do not use DFT (Table 9) and experimental results (Table 10).

Comparison with high level MO calculations

Published calculated binding energies using various high level MO methods vary from -4.88
to -5.18 kcal/mol,507%7 with -4.9 designated as the ‘MP2 limit’. The interaction energies
calculated with CP-OPT using five of the ten functionals considered with the largest basis
set fall within the (approximately same) range of -4.92 to -5.19 kcal/mol. Without CP-OPT,
only three fall within this range without CP and the same five with SP-CP. Xantheas
reported -4.88 and -5.01 for the MP2/aug-cc-pV5Z (the largest basis set used here) with and
without CP-OPT, respectively. The CP-OPT interaction energy calculated with X3LYP/aug-
cc-pV5Z (-4.92 kcal/mol) comes closest to Xantheas's CP-OPT value.

The O...0 distance for the optimized geometries vary from 2.886 to 2.925 A for the same set
of calculations (Table 9), while those calculated here with aug-cc-pV5Z vary from 2.893 to
2.922 A when CP-OPT is used and from 2.883 to 2.919 when without CP-OPT. We do not
see any correlation between the interaction energies and the O...O distances. While the
functional with strongest interaction energy (B2PLYPD) does predict the shortest O...O
distance, the O...O distance calculated with the other functionals present no correlation.

Comparison with experimental results

For a long time the generally accepted experimental value for the enthalpy of interaction for
the water dimer was -3.59 + 0.5 kcal/mol.%® Several older and more recent reports suggest
different values®®-87 (Table 10). However, the enthalpy of interaction cannot be directly
determined by a MO or DFT calculation. The interaction energy determined from such a
calculation must be converted to an enthalpy of interaction through a vibrational analysis
performed on the calculated potential energy surface. Clearly, corrections can be made
either to transform the experimental AH values to the anticipated theoretical AE's, or from
the calculated theoretical AE values to the corresponding expected experimental AH's. Since
some assumptions must be made to make these corrections which can affect them, we have
chosen to present the theoretical results (i.e., AE rather than AH). Hence the experimentally
measured AH's of interaction have been converted to AE's using some kind of vibrational
analyses by the authors of the references cited (Table 10). The ‘experimental’ AE's range
from -4.85 to -5.44 kcal/mol. The largest value comes from Curtis and Blander58 but has a
published uncertainty of +/- 0.7 kcal/mol. Klein, et al used the same enthalpy measurement
to get a AE of -5.4 but reduced the uncertainty to +/-0.2 kcal/mol.68 Only this last value
does not agree with the ‘MP2 limit’ of -4.9 kcal/mol56:59 within the limits of the published
uncertainties. Thus, the best calculated and experimental values for AE agree reasonably
well. Of the functionals that we tested, X3LYP gives the value closest to -4.9 kcal/mol, and
three others (M06-2X, M05, and B2PLYP) predict values within 0.2 kcal/mol of this value.

Due to the relatively high anharmonicity of the water dimer vibrations, the measured O...O

distance (which corresponds to the maximum amplitude of the zero-point vibration that
separates the waters) does not correspond to the minimum O...O distance on the PES. In
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order to obtain the O...O distance that corresponds to the minimum on a calculated PES, one
needs once again to perform a vibrational analysis. Three of the four measured O...O
distances®6:67:70 in Table 10 cluster around 2.98 A. The fourth value is 2.94 +/- 0.03 A.
After correction for the anharmonicity, the three clustered values predict a minimum on the
PES at about 2.95 A, while the outlier predicts 2.924 A. As seen from Table 9, all of the
high level MO optimized structures predict O...O distances considerably shorter than the
2.95 A value and only two agree with the 2.924 A value. Similarly, one sees from Table 1
that the O...O distance calculated using CP-OPT and the aug-cc-pV5Z basis set with almost
all functionals are considerably shorter than 2.95 A (B97D predicts the largest value, 2.94),
while only two functionals (M05 and B3LYP) predict O...O distances close to the 2.924 A
value. Without CP-OPT all of the calculated distances are shorter, thus, further in
disagreement with the experimental reports.

The effect of basis sets

Many research groups, including our own, use DFT to calculate the energies and structures
of large systems including those important to biochemical studies that involve H-bonding.
The size of these systems precludes the use of basis sets approaching the complexity of aug-
cc-pV5Z. How small a basis set can one use while still expecting reasonably accurate results
for the H-bonds?

The qualitatively anomalous geometries (B in figure 1) that result from optimization on an
uncorrected PES for certain functional/basis set combinations (see above) revert to the those
of A in figure 1 when optimized on the CP-corrected PES. These data suggest that the
functional/basis sets mentioned above might be inappropriate for calculations involving H-
bonds. These combinations should certainly be used with caution. However, most H-bonds
in large systems are more geometry constrained, and /or stronger than the H-bond in gas
phase water dimer. Thus, their H-bonding PES's are not so flat as that of the water dimer, so
their minima will be better defined.

The Effect of CP correction

The CP-OPT procedure greatly improves the performance of all basis sets relative to aug-cc-
pV5Z for the calculation of interaction energies and geometries. The smaller basis sets,
which have the most BSSE improve the most (and the geometrical anomalies disappear).
One notes that CP-SP actually provides a closer match to the aug-cc-pV5Z value for many
of the functional/smaller basis set combinations that overestimate the AE (and provide the
qualitatively correct geometry) since the CP-SP procedure overestimates the BSSE
correction, leading to a partial compensation of errors. For example, the CP-SP M06-2X/
6-31G(d,p) interaction energy differs from the M06-2X/aug-cc-pVV5Z CP-OPT value by only
0.11 kcal/mol despite the fact that without CP it overestimates the strength of the interaction
by almost 50% (2.49 kcal/mol). However, the optimized O...O distance for M06-2X/
6-31G(d,p) CP-SP is 0.045 A shorter. For some basis sets, such as cc-pVDZ (where it
provides the qualitatively correct geometry without CP-OPT), the over correction due to CP-
SP reverses the sign of the difference with the large basis set (i. e. from -3.25 to +0.61 for
B2PLYP).

The inclusion of the empirical dispersion correction in B2PLYPD has the effect of
increasing the attraction between the waters by about 0.4 kcal/mol for those calculations that
yield the correct dimer geometries and of converging to the incorrect geometry when used
with four of the smaller basis sets, while B2PLYP converges to the qualitatively correct
geometries for all basis sets used here. B97D unexpectedly gives the least stable dimer when
used with every basis set considered when optimized with CP. It also converges to the
incorrect geometry when used with the same four small basis sets.

J Comput Chem. Author manuscript; available in PMC 2012 June 1.
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Choosing the best combination of functional and basis set depends upon the criteria that one
wishes to employ. As noted above, the interaction energies calculated with the best basis set
vary from -4.54 to -5.19 kcal/mol and the O...O distances from 2.893 to 2.922. We estimate
that the energy criterion to be more critical than the O...O distance as the flatness of water
dimer PES will imply little change in energy for a small variation in this distance. If one
chooses the experimental targets as -4.90 kcal/mol and 2.95 A, one reasonable criterion
would be to choose the smallest basis set that gives the qualitatively correct geometry
together with the functional that gives the best interaction energy. That would be X3LYP/
D95(d,p). However, this combination gives an interaction energy about 1.2 kcal/mol too
strong (after either a CP-OPT or CP-SP correction). Using B3LYP, M06, B2PLYP, B97D or
MPWAB1K all lower the interaction energies to within 0.8-0.9 kcal/mol of -4.9 kcal/mol.
This basis set predicts about the same O...O distance 2.892-2.893 with all of these
functionals except B2PLYP (2.914) and B97D (2.903).

If one can afford to use a basis set as large as aug-cc-pVDZ, M05-2X, M06-2X, B2PLYPD
and X3LYP all provide excellent results for the interaction energy after either CP correction.
Of these functionals M05-2X and B97D produce the best O...O distances. D95++(d,p)
produces AE's within about 0.3 of -4.9 kcal/mol with B3LYP, B2PLYP, B397D and
MPWB1K, while the larger 6-311++(d,p) comes within 0.2 kcal/mol with B3LYP, B97D
and B2PLYP. Another possible choice would be 6-311G(d,p), larger than D95(d,p) but
smaller than aug-cc-pVDZ, either with B3LYP or B2PLYP, both of which predict to be with
0.2 of the target -4.9 kcal/mol, or B97D which yields the target value.. However, the
corresponding CP-OPT O...0 distances are 2.978, 2.989 and 3.018 A, respectively. One
should also note that this basis set yields qualitatively incorrect dimer structures with four of
the other functionals.

Of the functionals studied here, only B2PLYP and B2PLYPD incorporate MP2-like
exchange-correlation contribution, resulting in significantly longer computation times. If we
eliminate these from consideration, the preferred choices become (in order of increasing size
of the basis set) 1) D95(d,p) with B3LYP, B97D, M06 or MPWB1k; 2) 6-311G(d,p) with
B3LYP; 3) D95++(d,p) with B3LYP, B97D or MPWB1K; 4)6-311++G(d,p) with B3LYP or
B97D; and 5) aug-cc-pVDZ with M05-2X, M06-2X or X3LYP.

CONCLUSIONS

Our evaluation of these ten functionals shows that the interaction energies predicted for the
optimized water dimer on a counterpoise corrected PES vary by 0.65 kcal/mol. While the
CP corrections for these functionals combined with aug-cc-pV5Z become negligible for
B3LYP, B97D, X3LYP and MPWB1K, they do not disappear for the other functionals and
reach a high of 0.20 kcal/mol for M06. Some of the small basis sets cause the water dimer to
optimize to a qualitatively incorrect geometry with most functionals. 6-31G(d) does this
with all functionals except B2PLYP and MPWB1K, while cc-pVVDZ, 6-31G(d,p) and
6-311G(d,p) do the same with some functionals. The smallest basis set that consistently
provides the correct geometry with all functions is D95(d,p). As the best non-DFT MO
calculations and the most recent experiments agree with a value of -4.9 kcal/mol, we choose
this value as a target. The experimental O...O equilibrium distance exceed those calculated
with any of these non-DFT MO methods, as well as, the values calculated with aug-cc-pV5Z
and any of the functionals considered here (although B97D/aug-cc-pV5Z comes close).

With few exceptions, the interaction energies calculated with any basis set using fewer than
100 basis functions for the water dimer are more negative than that calculated using aug-cc-
pV5Z with the same functional. Thus, calculated AE's using these functionals and small
basis sets will be closer to the preferred experimental and non-DFT value when the
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overestimation of the interaction caused by the small basis set is countered by a functional
that underestimates the interaction. Thus, the best functionals to use with large basis sets
appear to differ from those that produce the best results with smaller ones. Since many
applications are complex systems and require economical calculations, we suggest the

fo

llowing functional/basis set combinations in order of increasing complexity and cost: 1)

D95(d,p) with B3LYP, B97D, M06 or MPWBLK; 2) 6-311G(d,p) with B3LYP; 3) D95++

«d

p) with B3LYP, B97D or MPWBLK; 4)6-311++G(d,p) with B3LYP or B97D; and 5)

aug-cc-pVDZ with M05-2X, M06-2X or X3LYP.
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Water Dimer Structures: (A) normal; (B) anomalous
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