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in our recent paper, we demonstrated 
that the hypervirulence exhibited by 

a lineage of the fatal fungal pathogen 
Cryptococcus gattii is associated with its 
mitochondrial gene expression and an 
unusual mitochondrial morphology. as 
an important organelle, the mitochon-
drion has been linked to various cellu-
lar activities, but its role in modulating 
virulence of pathogens remains unclear. 
in this addendum, the potential role of 
mitochondria in determining virulence 
in eukaryotic pathogens is discussed 
along with future experiments that may 
lead to an improved understanding of 
this topic.

Cryptococcosis is a fatal fungal disease 
of humans and other animals, primarily 
caused by Cryptococcus neoformans infec-
tions in immunocompromised hosts. 
The related species Cryptococcus gattii can 
also cause disease, but this is generally 
restricted to very rare infections in tropical 
or subtropical areas. However, in 1999 this 
species was identified as the cause of an 
ongoing outbreak of cryptococcal disease 
in residents of Vancouver Island, Canada,1 
an outbreak that has since spread to main-
land Canada and the northwest region 
of the USA.2,3 This so-called Vancouver 
Island Outbreak (VIO) is remarkable for 
two reasons; firstly, because it represents a 
major expansion of C. gattii into a temper-
ate area and, secondly, because most of the 
VIO infections have occurred in immuno-
competent individuals.

Work by many groups over the last 
decade has clearly demonstrated that the 
VIO lineage of C. gattii is hypervirulent,4 
but the underlying molecular reasons 

for this hypervirulence remain unclear. 
However, we have recently demonstrated 
a potential role for mitochondrial func-
tion in regulating virulence within this 
organism. Our study showed that C. gat-
tii strains from within the VIO lineage, 
but not related control strains, exhibit 
enhanced intracellular proliferation 
within host macrophages.5 By compar-
ing fungal gene expression whilst inside 
host macrophages between hyperviru-
lent (VIO) and hypovirulent (non-VIO) 
strains using microarray approaches, we 
identified mitochondrial gene expression 
as the major hallmark of virulence within 
this species. Furthermore, we showed that 
VIO strains respond to the environment 
within the macrophage by producing 
long, tubular mitochondria (as opposed to 
the normal punctate mitochondria found 
in non-VIO strains during intracellular 
growth or in VIO strains that are grown 
in normal media).

In the past, the mitochondrion has 
been demonstrated to play a role in the 
fitness of microorganisms, as the organ-
elle is essential for energy production and 
response to stress. For example, in S. cer-
evisiae, when mitochondria of wine yeasts 
were transferred to a laboratory strain, 
the latter showed increased viability and 
increased tolerance towards ethanol and 
high temperature.6 Furthermore, a fun-
gal pathogen of plants, Heterobasidion 
annosum, exhibits differential virulence 
depending on the mitochondrial (but not 
nuclear) genotype.7 Our finding that the 
mitochondria of virulent C. gattii strains 
are more likely to fuse with each other 
during growth within host cells provides a 
potential explanation for the involvement 
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such crosses may still provide valuable 
information about the mitochondrial con-
trol of virulence.

Given the relatively well-conserved 
mitochondrial genome structure and gene 
synteny between cryptococci (fig. 2), and 
the demonstration that mitochondrial 
genotype alone does not predict viru-
lence in C. neoformans,16 one would also 
suspect that the observed mitochondrial 
differences between virulent and avirulent 
strains is at least partially due to changes in 
nuclear-encoded proteins that affect mito-
chondrial morphology and gene expres-
sion. In fact, our data identified several 
nuclear-encoded proteins that function in 
mitochondria and are upregulated in the 
VIO strains. The nuclear-encoded mito-
chondrial proteins are usually synthesised 
in the cytoplasm and then imported into 
mitochondria. They interact with mito-
chondrially encoded proteins (e.g., in the 
electron transport system), control mito-
chondrial biogenesis, regulate mtDNA 
copy number, influence mtDNA stability 
and alter mitochondrial morphology in a 
sophisticated manner.17,27-29

Mitochondrial morphology can be 
affected by many genes as demonstrated 
by Ichishita et al.30 In yeast and mammals, 
several factors including Drp1/Dnm1 and 
Mfn/Fzo1 are known to regulate mito-
chondrial morphology by controlling 
membrane fission or fusion.28 Given our 
discovery that mitochondria in virulent 
(VIO) cryptococci adopt a tubular mor-
phology during intracellular growth, such 
genes are prime candidates for regulators 
of virulence capacity in this pathogen. 
Interestingly, we find that FZO1 is upregu-
lated in the VIO strains. Fzo (Fuzzy onions 
gene), first isolated from a screen for genes 
involved in Drosophila spermatogenesis, is 
the first molecule to be identified in regu-
lating mitochondrial fusion.31 It is known 
as mitofusin and Fzo1p in mammals and 
yeast respectively.32,33 The protein contains 
a GTPase domain (exposed to the cyto-
plasm) at the N-terminus and a bipartite 
transmembrane domain (which spans the 
mitochondrial outer membrane twice) near 
the C-terminus.34,35 In S. cerevisiae, the 
mitochondrion of fzo1∆ mutants is highly 
fragmented due to ongoing fisson32,36 and 
overexpression of Fzo1p alters the fusion/
fission protein ratio and thus inhibits cell 

may involve complex interactions between 
nuclear and mitochondrial genes.

Based on our study, the ideal experi-
ment to test the role of mitochondrial 
genotype in virulence of VIO strains 
would be to replace mitochondria of a 
poor intracellular proliferator (i.e., hypo-
virulent) strain with those from virulent 
(highly proliferative) strains or vice versa. 
However, such an experiment is technically 
challenging as, unlike S. cerevisiae, which 
can produce enough ATP by glycolysis (a 
pathway occurring in the cytoplasm that 
is independent of functional mitochon-
dria17) the presence of mitochondria seems 
to be essential to cryptococcal viability.16 
Fortunately, cryptococci exhibit a largely 
mating-type dependent uniparental mito-
chondrial inheritance: the offspring pre-
dominantly receive their mitochondria 
from the MATa parent, though a low 
level of leakage was also observed, during 
which biparental inheritance and mito-
chondrial recombination can occur.16,18-22 
This means it is theoretically possible to 
cross two strains (one a good proliferator 
and one a poor proliferator) and generate 
F1 progeny that contain mitochondria 
only from their good or poor proliferator 
parent (see fig. 1 for experimental design). 
In this case, the effect of mitochondrial 
genotype on virulence can be tested inde-
pendently of nuclear genotype.

Attempts to explore this experimen-
tally are currently ongoing in our group. 
Regrettably, both we and others have 
failed to produce viable progeny from 
crosses within the C. gattii group that 
contains the VIO isolates (the so-called 
VGII group), despite the fact the VGII 
strains are believed to be more fertile than 
the other C. gattii isolates.23-25 However, 
crosses between groups (e.g., VGII crossed 
with VGIII isolates) are feasible. It has 
been shown that such an inter-genotype 
mating can result in a loss of viability in 
the basidiospores (<5%) and the genera-
tion of many diploid and even aneuploid 
progeny,26 as the meiosis between the two 
genotypes is impaired because of their 
genomic divergence. This leads to the con-
cern that progeny from such crosses may 
be generally less fit and, in addition, will 
contain part of the VGIII nuclear genome, 
which may lead to disruption of nuclear-
mitochondrial crosstalk. Nonetheless, 

of mitochondria in virulence regulation. 
Since mitochondrial fusion is generally 
thought to protect cells from the detri-
mental effect of mtDNA mutations and 
cell death,8-11 we proposed that the tubular 
morphology could be a protective response 
of the pathogen against the hostile intrac-
ellular environment.

Intriguingly, tubular mitochondrial 
formation inside host cells is very limited 
in less virulent strains within the same spe-
cies, suggesting this trait is likely to have 
evolved very recently. Within the C. gattii 
species there are four genotypes, known as 
VGI, VGII, VGIII and VGIV, and most 
of the VIO strains belong to the VGII 
genotype. It has been demonstrated that 
the VGII C. gattii population has much 
lower within-lineage divergence in both 
the nuclear and mitochondrial genome in 
comparison with other groups, despite the 
fact that VGII is considered to be basal for 
the C. gattii species.12 This may point to a 
recent bottleneck event within the VGII 
population, during which both mitochon-
drially-regulated virulence and a generally 
fitter population may have been selected. 
It is tempting to speculate that the same-
sex mating event that has been proposed 
as the source of the VIO lineage4 may 
provide just such a bottleneck during the 
recent evolution of this pathogen.

Although mitochondrial involvement 
in virulence of C. gattii species has not pre-
viously been proposed, indirect evidence 
from earlier studies suggest that the organ-
elle might be involved in regulating viru-
lence of another cryptococcal species, C. 
neoformans. Global in vivo transcriptional 
profiling of C. neoformans cells at the site 
of a central nervous system infection dem-
onstrated that several respiratory genes 
were highly expressed by this yeast.13 Two 
other studies have shown the importance 
of mitochondria in responding to hypoxic 
conditions and oxidative stress,14,15 both of 
which occur during intracellular growth. 
However, a study conducted by creating 
stable AD hybrids to place serotype A and 
D mitochondria under different nuclear-
genomic influences suggested that the 
mitochondrial genome itself is unlikely to 
have a significant influence on the differ-
ences between serotypes in their virulence 
composite in C. neoformans.16 This indicates 
that mitochondrial virulence regulation 
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pathogens, and have been implicated in 
virulence in at least one other fungus (H. 
annosum),7 mitochondrial regulation of 
pathogenicity may be a widespread phe-
nomenon. More detailed experiments are 
therefore urgently needed to provide a 
clearer understanding of how mitochon-
dria fulfil such a role.
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