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Long noncoding RNAs (lncRNAs) are 
pervasively transcribed and critical 

regulators of the epigenome.1,2 These long, 
polyadenylated RNAs do not code for 
proteins, but function directly as RNAs, 
recruiting chromatin modifiers to medi-
ate transcriptional changes in processes 
ranging from X-inactivation (XIST) to 
imprinting (H19).3 The recent discovery 
that lncRNA HOTAIR can link chroma-
tin changes to cancer metastasis4 furthers 
the relevance of lncRNAs to human dis-
ease. Here, we discuss lncRNAs as regula-
tory modules and explore the implications 
for disease pathogenesis.

Although large-scale analyses of mamma-
lian transcriptomes have revealed that more 
than 50% of transcripts have no protein 
coding potential,2,5,6 the functions of these 
putative transcripts are largely unknown. 
A subset of these noncoding transcripts are 
termed long noncoding RNAs (lncRNAs), 
based on an arbitrary minimum length of 
200 nucleotides. LncRNAs are roughly 
classified based on their position relative to 
protein-coding genes: intergenic (between 
genes), intragenic/intronic (within genes) 
and antisense.2 Initial efforts to character-
ize these molecules demonstrated that they 
function in cis, regulating their immedi-
ate genomic neighbors. Examples include 
AIR, XIST and Kcnq1ot (reviewed in ref. 1, 
7 and 8), which recruit chromatin modi-
fying complexes to silence adjacent sites. 
The scope of lncRNAs in gene regula-
tion was advanced with the finding that 
lncRNA HOTAIR exhibited trans regula-
tory capacities.

HOTAIR is transcribed at the intersec-
tion of opposing chromatin domains in 
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the HOXC locus, but targets Polycomb 
Repressive Complex 2 (PRC2) to silence 
40 kilobases of HOXD,9 a locus involved 
in developmental patterning. A sub-
sequent study revealed that HOTAIR 
is overexpressed in approximately one 
quarter of human breast cancers, direct-
ing PRC2 to approximately 800 ectopic 
sites in the genome, which leads to his-
tone H3 lysine 27 trimethylation and 
changes in gene expression.4 The impacts 
of lncRNA-mediated chromatin changes 
are noteworthy: not only did HOTAIR 
drive metastasis in a mouse model, but 
HOTAIR expression in human breast can-
cer was found to be an independent prog-
nostic marker for death and metastasis.4 
The fact that HOTAIR drives chromatin 
reprogramming genome-wide suggests 
that long-range regulation by lncRNAs 
may be a widespread mechanism. This 
is supported by a study showing that 
>20% of tested lncRNAs are bound by 
PRC2 and other chromatin modifiers.10 
Furthermore, this is an underestimate 
of the total RNAs involved in chroma-
tin modification, as PRC2 target genes 
also transcribe smaller 50–200 nt RNAs 
that interact with SUZ12 to mediate 
gene repression.11 These findings provoke 
questions regarding the initial triggers 
for HOTAIR overexpression and whether 
understanding of lncRNA mechanics may 
have clinical relevance.

Long Noncoding RNAs  
and Disease

The association of HOTAIR with cancer 
metastasis adds to a growing cohort of 
lncRNAs associated with disease.12 For 
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unexplained disease polymorphisms and 
expands the catalogue of potential “first-
hits” in pathogenesis. For example, one 
avenue to explore would be whether the 
gross overexpression of HOTAIR in metas-
tastic tumors can be explained by muta-
tions of the noncoding gene.

Mechanisms for Targeting of Long 
Noncoding RNAs

The role of lncRNAs in disease processes 
creates an urgency to understand the 
mechanisms by which these RNAs seek 
their targets. The earliest lncRNAs sug-
gested a simplistic model where the RNA 
remains tethered to the site of origin to 
regulate transcriptional changes in cis. 
One example is an lncRNA upstream of 
the CCND1 promoter that recruits the 
RNA binding protein TLS to mediate 
heterochromatin formation.23 However, 
with trans acting RNAs such as HOTAIR 
affecting genome wide chromatin changes, 
it is clear that additional targeting mecha-
nisms must be involved. The extensive 
sequence space available to lncRNAs 
provide plausible strategies for highly dis-
criminative binding to the genome in an 
allele- or gene- specific fashion (reviewed 
in ref. 3). Possible RNA targeting schemes 
include the following (see fig 1):

Sequence-specific recognition: RNA-
RNA. Global RNA targeting may occur 
through direct sequence homology, a 
mechanism that is common for anti-
sense lncRNAs such as p15AS24 and an 
RNA antisense to CDKN1A.25 A skewed 
equilibrium between sense and anti-
sense transcripts can lead to disease, as 
seen in vascular anomalies tissues with 
altered ratios of TIE-1 mRNA to TIE1-AS 
lncRNA.26 Since as many as 70% of tran-
scripts have antisense partners,27 antisense 
regulation is likely to be a widespread 
phenomenon.

RNA-DNA hybrids. Sequence com-
plementarity can also be employed in 
more complex configurations such as 
RNA-DNA duplexes and triplexes. An 
example occurs at the DHFR locus, where 
an lncRNA forms a triplex with the pro-
moter to mediate sequence-specific tran-
scriptional repression.28 In the case of 
XIST, a lncRNA that spreads over 150 Mb 
of the inactive X chromosome to mediate 

protein (FMRP),18 which is selectively lost 
in the majority of fragile X patients.19

Functional analysis of a noncoding 
locus within 9p21 that coincides with 
several exons of the 4 kb lncRNA ANRIL 
has bolstered a role for lncRNAs in dis-
ease. Despite a lack of protein coding 
genes, sequence polymorphisms in this 
58 kb region are associated with coro-
nary artery disease,20 including two SNPs 
within exons of ANRIL.21 Targeted dele-
tion of the orthologous 70 kb region in 
a mouse model altered cardiac transcript 
levels of neighboring genes Cdkn2A and 
Cdkn2b and resulted in aberrant cell pro-
liferation.22 Thus, an lncRNA locus may 
provide a mechanistic link between a 
disease polymorphism and its associated 
phenotype.

Altogether, the long range regulation of 
mRNAs by noncoding sequences appears 
to be a reoccurring theme in disease devel-
opment. Yet undiscovered lncRNAs may 
underlie the functional significance of 

example, although the blepharophimosis 
syndrome (BPES) is driven by dysregula-
tion of the FOXL2 gene, numerous extra-
genic mutations have been reported in 
patients.13 One particular deletion occur-
ring 283 kb away from FOXL2 disrupts 
a lncRNA, PISRT1, that was shown by 
chromatin confirmation capture to physi-
cally loop with FOXL2.14 Another exam-
ple is the lncRNA EVF2, which recruits 
the transcription factor Dlx2 to activate 
the protein coding genes DLX5 and DLX6 
that are associated with the Split Hand/
Split Foot malformation disorder.15,16 
Importantly, none of the known disease 
mutations reside within the protein coding 
loci, suggesting that disruption of noncod-
ing transcripts may initiate pathogenesis. 
A third example is the BC200 RNA, a 
primate brain transcript that is reduced 
by 70% in Alzheimer’s brain tissues.17 A 
role of BC200 in neurological disorders 
is further supported by its direct interac-
tion with the fragile X mental retardation 

Figure 1. Possible lncRNA targeting mechanisms.
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DNA repeats.41 Likewise, the telomere 
repeat factor TRF2 forms a stable com-
plex with telomere-repeat-encoding RNA 
(TERRA) and telomere DNA repeats.42 
The strategies used to probe these inter-
actions should be applied to the lncRNA 
field to determine whether these forma-
tions occur beyond the telomere.

Altogether, the diversity and abun-
dance of noncoding transcripts suggests 
that several permutations of the afore-
mentioned mechanisms may exist. In the 
early examples of cis regulatory RNAs, it 
was difficult to distinguish lncRNA tar-
geting from mere diffusion of the RNAs. 
For example, the mechanism by which 
the XIST RNA spreads across the entire 
X chromosome is still undefined. The 
recent analysis of HOTAIR thus provides a 
unique avenue to explore requirements for 
lncRNA targeting. Specifically, analysis 
of sequence elements associated with the 
800+ genes affected by HOTAIR overex-
pression may identify features that guide 
these RNAs. Future analysis of ectopic 
protein localization mediated by other 
disease-associated RNAs would further 
enhance our understanding of ncRNAs 
in disease. As the mechanics of lncRNA 
localization become elucidated, we may 
eventually develop strategies to interfere 
with their targeting, thus blocking the 
epigenetic reprogramming that contrib-
utes to diseases such as cancer.
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