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Growth factor and adhesion receptors direct changes in cell 
shape and movement by acting on downstream intracellular 
signaling cascades that coordinate cytoskeletal dynamics. For 
example, integrin-mediated adhesion activates Abl family kinases 
to regulate cell shape and motility in several physiological con-
texts: fibroblast migration, breast cancer invasiveness, neuronal 
outgrowth and branching, and synapse and dendrite stability in 
the adult brain.1 In primary pyramidal neurons and other cell 
types, Abelson-related gene (Arg) phosphorylates p190RhoGAP 
in a signaling cascade that ultimately results in the inhibition 
of the RhoA (Rho) GTPase, a master regulator of cytoskeletal 
rearrangement (Fig. 1).2-5 Rho activation induces neurite retrac-
tion, a process required for pruning and refining neuronal con-
nections during development,6 but inappropriate Rho activation 
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The 100 billion neurons comprising the human brain are wired 
together using structural extensions termed axons, dendrites 
and dendritic spines. Addictive drugs remodel dendritic spine 
structure in certain brain regions and with repeated exposure, 
induce psychomotor sensitization and impair behavioral 
flexibility. We recently reported that low-dose cocaine 
exposure, in combination with knockout of Arg—an adhesion-
regulated nonreceptor tyrosine kinase that stabilizes neuronal 
shape starting in adolescence—recapitulates both features of 
chronic drug exposure in rodents. In light of these and other 
recent findings in the field, we suggest that cell adhesion 
receptors and their downstream cytoskeletal effectors act as 
“first responders” to psychostimulant exposure. In this model, 
cell adhesion factors act to stabilize existing dendritic spines 
in response to cocaine, and reduced expression/function 
is expected to increase vulnerability. Moreover, this model 
anticipates that increased sensitivity to psychostimulants in 
adolescence relates to neuronal pruning processes that occur 
during this developmental period.
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in mature neurons leads to synapse loss and dendritic regression. 
Thus, integrin:Arg interactions stabilize existing synapses and 
the dendritic spines that house them.

Spine morphology is regulated by intrinsic biological pro-
cesses, as in the case of dendritic spine pruning during post-natal 
development,7 and external environmental stimuli such as expo-
sure to addictive psychostimulants.8,9 In the ventral striatum, 
acute cocaine robustly increases spine density, corresponding 
with increased expression of PSD95, a postsynaptic marker, and 
the Arp3 subunit of the Arp2/3 complex, which promotes nucle-
ation of new F-actin branches.10 This early immediate spinogenic 
response to cocaine appears to constitute an acute burst in spines, 
while chronic cocaine exposure accelerates spine clearance and 
turnover, increasing cofilin expression, which promotes F-actin 
disassembly.10,11 Infusion of latrunculin A, a neurotoxin that 
results in F-actin depolymerization and spine collapse, potenti-
ates cue-induced reinstatement, an animal model of relapse,12 and 
blocking cocaine-induced spinogenesis using more subtle manip-
ulations potentiates psychomotor sensitization to cocaine,13,14 
suggesting initial cocaine-elicited striatal spine growth, as occurs 
early in drug exposure, protects against vulnerability to repeated 
drug exposure (review in ref. 15).

We recently reported exaggerated psychomotor and other sen-
sitivities to cocaine in arg knockout mice, which have pre-exist-
ing spine density and stability deficits.5,16 Our findings in these 
Arg-deficient mice—particularly exaggerated psychomotor sensi-
tivity to cocaine, recapitulated in Figure 2A—can be interpreted 
as indicating that pre-existing spine deficiency results in mice 
that are “pre-sensitized,” and thus more vulnerable to repeated 
cocaine exposure and to developing reward-seeking behavior.17-20 
An additional possibility is that cocaine sensitivity is enhanced 
in arg-/- mice because these animals lack a major player—Arg 
kinase—in the signaling cascades that would otherwise act to 
stabilize existing spines (via integrin-mediated adhesion) in 
response to cocaine. In support of this possibility, acute cocaine 
increases β1-integrin expression (a likely upstream Arg regula-
tor) and decreases Rho activity (a downstream Arg effector) in 
the ventral striatum21,22—both responses would be expected to 
stabilize existing dendritic spines in response to cocaine and may 



www.landesbioscience.com	 Communicative & Integrative Biology	 31

 Mini-Review Mini-Review

are both characteristic of addiction and promote further drug 
use.37,38 Inability of animals to mount an immediate cell adhe-
sive/cytoskeletal response to cocaine to either maintain existing 
spines or generate new spines in specific regions may exacerbate 
this cyclical decline.

Using an instrumental “reversal learning” task in which mice 
must shift responding from a previously reinforced aperture 
to a newly reinforced aperture within an operant conditioning 
chamber, we tested this hypothesis and found that drug-naïve 
arg-/- mice showed modest deficits in reversal (recapitulated in 
Fig. 2A, left), consistent with the effects of orbitofrontal lesions 
in mice performing the same task.39 arg-/- mice could, however, 
acquire the reversed contingency over time, such that the num-
ber of errors was indistinguishable from wild type (wt) levels for 
a given reversal (Fig. 2B, middle). High-dose psychostimulant 
exposure impairs performance on similar reversal tasks,40-42 but 
we administered subthreshold concentrations of cocaine to wt 
and arg-/- mice, such that wt mice were unaffected. arg-/- mice 
were, by contrast, vulnerable, executing >4-fold more errors a full 
week after the last cocaine exposure.16 These findings, recapitu-
lated here in Figure 2B at right, provide some of the first evidence 
that spine instability and cocaine exposure have synergistic con-
sequences for inhibitory control processes.

As discussed above, previous studies indicate that Arg acts as 
part of a Rho inhibitory pathway in the brain to mitigate syn-
apse and spine pruning processes during post-natal development, 
allowing for the maintenance of dendritic arbors throughout the 
adult life of the animal. Disruption of this pathway via the loss 
of Arg increases Rho activity, leading to a loss of synapses and 
branch points in the cortex3 and hippocampus5 first detectable 
in early adolescence. Also during early adolescence, the neuro-
trophin Brain-derived Neurotrophic Factor (BDNF) stimulates 
growth of cortical neurons by enhancing the rate of dynamic 
branch motility,43,44 and the loss of BDNF signaling through 
its high-affinity trkB receptor results in cortical dendrite arbor 
shrinkage after postnatal day 3.45,46 Like Arg, BDNF is thus 
critical for the outgrowth and maintenance of neurons in the 
transition from prenatal development to adulthood, and like arg-

/- mice, bdnf+/- mice show heightened sensitivity to food reward 
as adults, which can be rescued by replacing BDNF in the orbi-
tofrontal cortex (Gourley and Taylor, unpublished). Obviously, 
BDNF and Arg differ in certain ways—for example, acute 
activity-dependent BDNF release stimulates dendritic growth 
but destabilizes spines,43,44 presumably allowing for the growth 
of new spines, whereas Arg appears to primarily act as a stabi-
lizing factor for both dendrites and spines. Nonetheless, these 
and other findings point to the orbital cortex in particular as a 
site at which disruptions in adolescent cortical development via 
multiple molecular targets may manifest in adulthood as hyper-
sensitivity to reward.

These findings imply that pharmacological agents that pro-
mote cell adhesion or growth factor signaling may be effective 
pharmacological adjuncts to cognitive-behavioral therapies for 
addiction and other diseases in which cytoskeletal abnormali-
ties are thought to play causal or contributing roles. Towards 
this goal, the ROCK inhibitor, fasudil, was recently shown to 

in fact act in the same pathway, with Arg:p190RhoGAP inter-
actions functioning as the intermediary between the two (see 
Fig.  1). In the absence of Arg and related cytoskeletal regula-
tory factors, the cellular response to repeated cocaine would be 
biased towards spine clearance and, as we have shown, exagger-
ated behavioral sensitivity on multiple measures. Thus, emerging 
evidence, including ours, suggests spine stability may have pro-
tective properties in the face of repeated drug exposure.

The serine/threonine kinase Cdk5 has been widely regarded 
as a regulator of cocaine sensitivity since its original identifica-
tion as a DARPP32 binding partner.23 As with Arg deficiency, 
Cdk5 inhibition or forebrain deficiency promotes psychomo-
tor sensitization to cocaine23-25 and also blunts acute cocaine-
induced striatal spinogenesis.26 Recent evidence indicates that, 
like Arg, Cdk5 acts via a p190RhoGAP-Rho-ROCK cascade, in 
this case mediated by Src, such that Cdk5 inhibition promotes 
cytoskeletal reorganization.27 Thus, as we hypothesize with Arg, 
cocaine-mediated activation of Cdk523 may brake psychomo-
tor sensitization by stabilizing existing spines against repeated 
cocaine exposure.

The majority of studies regarding mechanisms of psychostim-
ulant-induced spine reorganization have been conducted using 
ventral striatal tissue extracts or microinfusion, but psychostimu-
lant-induced spine reorganization is documented in several brain 
regions, including orbital subregions of the prefrontal cortex.28 
Human neuroimaging studies document prefrontal hypofunc-
tion,29-32 poor impulse control and behavioral inflexibility33 in 
cocaine addicts. In monkeys, diminished glucose utilization in 
the orbital cortex is associated with both early and late phases 
of cocaine self-administration,34,35 as well as noncontingent drug 
administration.36 These and other findings support the view that 
atrophy of so-called “inhibitory control” processes mediated 
by the prefrontal cortex and associated limbic-striatal circuits 

Figure 1. Arg interacts with β-integrin tails and p190RhoGAP to 
stabilize synapses, spines and dendrites. Arg is activated through a 
physical interaction with intracellular β-integrin tails, which allows 
for p190RhoGAP phosphorylation and recruitment to the membrane 
by p120RasGAP. This complex inhibits RhoA GTPase activity. In the 
absence of RhoA inhibition, RhoA acts on ROCK to destabilize the actin 
cytoskeleton, leading to spine and dendrite collapse and synapse loss. 
Conversely, ROCK inhibition elongates dendritic branches.47
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increase dendritic length during the prodromal period in a 
mouse model of Alzheimer’s Disease (see again Fig. 1).47 This 
compound is clinically approved in Japan to treat cerebral vaso-
spasm,48 suggesting it could be safely adopted as a treatment 
adjunct in addiction. One caveat, however, is that manipula-
tion of putative targets may be expected to have site- or cell 
type-selective effects that could complicate the development 
of novel pharmacotherapies. For example, while orbitofrontal 
BDNF deficiency appears to confer hyper-sensitivity to appeti-
tive reward in the context of instrumental responding for food 
(as described above) or in terms of passive consumption of pal-
atable foods,49 selective gene knockdown in dorsomedial pre-
frontal subregions has the opposite effects.50 These subregions 
supply the striatum with BDNF via anterograde transport,51 
and recent studies indicate that BDNF plays unique and spe-
cific roles in the postnatal growth, development and maturation 
of striatal neurons.52 Moreover, BDNF-mediated cocaine sensi-
tivity appears to be differentially affected by the activation of 
dopamine D1- relative to D2-containing cells, which are largely 
segregated in striatal systems.53 This profile may account for 
evidence that BDNF expression and signaling within the stria-
tum promotes—rather than brakes, as in the case of Arg—psy-
chomotor sensitization to cocaine.54

A role for cell adhesion and growth factor signaling in acute 
reactivity, and subsequent vulnerability, to cocaine is still being 
established, but what our previous report,16 as well as others,12-14 
suggest is that disturbances in the processes that act to stabi-
lize synapses, spines and dendritic arbor engender vulnerability 
to both the rewarding and deleterious properties of repeated 
psychostimulant exposure. That arg-/- mice also lack sensitiv-
ity to haloperidol on orbitofrontal-dependent behavioral tasks 
raises the possibility that adolescent-onset vulnerabilities relate 
to frontal dopamine D2 receptor expression patterns.16 These 
findings also have implications for efficacy of antipsychotic 
drugs acting on the dopamine system, as neuroplasticity within 
the orbital cortex may be associated with therapeutic-like 
outcomes.55

The median age of first illicit drug use among psychostim-
ulant addicts is 16 years, with few adult addicts having first 
administered their drug of choice after the age of 20.56 Given 
that cortical development culminates during these adolescent 
and peri-adolescent periods, further characterization of the 
molecular mechanisms that regulate cortical neuronal shape 
and complexity and their impact upon sensitivity to drugs of 
abuse may provide a significant advance towards a more com-
prehensive view of the cyclical behavioral patterns that char-
acterize addiction, as well as insight into early intervention 
techniques and pharmacotherapies.

Figure 2. Arg deficiency confers vulnerability to cocaine and 
cocaine-induced deficits in a reversal task. (A) Arg-deficient mice 
show heightened psychomotor sensitivity to cocaine, as indicated by 
greater photobeams broken in a locomotor monitoring apparatus after 
low-dose (10 mg/kg, i.p.) cocaine administered across several days. 
Locomotor activity in the absence of cocaine is unchanged (not shown; 
5,16). Because repeated breaking of the same photobeam constituted 
the largest difference between wt and arg-/- mice, these specific counts 
(suggestive of stereotypy) are shown here. (B) During a reversal test 
in which mice must redirect responding from a previously reinforced 
operant aperture to a previously non-reinforced aperture, arg-/- mice 
initially generate more “perseverative” errors than wild type (wt) coun-
terparts (left), consistent with cortical dendritic simplification in these 
mice. arg-/- mice acquired the reversal with repeated training (middle), 
but repeated exposure to low-dose cocaine greatly exacerbated perse-
verative errors (right), despite a prolonged washout period prior to test. 
*p ≤ 0.05; **p < 0.001.
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