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Abstract
In vivo proton magnetic resonance spectroscopy (1H MRS) is rapidly becoming useful as a clinical
tool for diagnosing and characterizing breast cancers. Alterations of the levels of choline-
containing metabolites are associated with malignancy. High-field MR scanners at 1.5 T, 3 T, 4 T,
and 7 T have been used to evaluate the role of 1H MRS measurements of total choline containing
compounds in patients with breast cancer. This article will review clinical use of MRI/MRS in
vivo. Newer developments in high field MR scanning and quantitative MRS may help breast
imagers improve sensitivity and specificity in diagnosing and treating breast cancer.

Introduction
Over the past few years researchers have used proton magnetic resonance spectroscopy (1H
MRS) for characterizing breast cancers. The clinical application of this research will help
breast imagers improve diagnostic accuracy and also help oncologists in monitoring the
response to breast cancer therapy.

In vivo breast MRS can show a resonance at ~ 3.2ppm that is associated with malignancy.
This peak includes contributions from choline, phosphocholine, glycerophosphocholine, and
several other metabolites. The contributions of the various metabolites can be separated in
ex vivo MR studies, but in vivo, the resonances are broader and appear as a single peak,
called total choline, tCho. It is the phosphocholine metabolite that is increased the most in
breast malignancies, and this aberrant increase in concentration parallels tumorgenesis, with
high grade breast cancers associated with increased phosphocholine concentrations (2,3).
The root cause of this increased phosphocholine is still under investigation, but may be due
to increased choline kinase activity (4,5), increased phospholipase C expression (5), and
increased activation of phospholipase (3,6) phospholipase D (7). The elevated tCho at 3.2
ppm that is observed in many in vivo breast cancers is attributed to both increased
intracellular phosphocholine concentration and increased density of breast cancer cells in the
lesion.
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The use of tCho as a diagnostic biomarker in breast cancer has been successfully shown at
many institutions using 1.5T MR with many different acquisition and analytical techniques.
Most studies on 1.5T scanners have not performed quantitative tCho measurements but
rather aimed to detect the tCho 3.2 peak, under the assumption that a detectable tCho peak
indicates malignancy. MRS tCho measurements are greatly improved on higher field
scanners (i.e. 3 Tesla and above). The increased sensitivity (8,9) and greater spectral
resolution (10) improves the detectability and quantitation of tCho. The ability to detect
tCho in smaller lesions is enhanced at higher field strengths, and quantitative measurement
errors also decrease.

The quality of MRS measurements depends on MR sensitivity, spectral resolution, voxel
localization performance and the elimination of artifacts. Sensitivity increases linearly with
voxel volume, increasing magnetic (B0) field strength, and the square root of the number of
averages acquired in the MRI/MRS sequence. In addition, breast coil design shows a large
variation in sensitivity (14–16). Spectral resolution is increased by higher B0 field strengths
and by optimizing B0 shimming to improve MRI field homogeneity over a given region of
interest (ROI) of a breast tumor.

The majority of breast MRS studies have been performed using single voxel spectroscopy
(SVS) with localization techniques such as PRESS (17,18), STEAM (19), and LASER (20).
These SVS methods are good for studying a single breast lesion. These techniques provide
good localization and the operator (radiologist or MRI technologist) can optimally adjust the
MRS acquisition parameters (power, B0 shim, water suppression) over a small volume.

Another MRS technique called spectroscopic imaging (SI) gives information about the
spatial variation of spectroscopic signals across a series of voxels obtained in the same
acquisition. Several investigators have shown it is feasible to perform SI in the breast on
clinical MR systems (21–24). SI could provide MRS data for an entire breast to help localize
and diagnose a breast cancer. This SI technique is presently used clinically in prostate cancer
MRI/MRS imaging (13). Spectroscopic imaging is more complicated technically because
magnetic field (B0) shimming, fat suppression, localization and quantification are more
difficult than for single voxel spectroscopy (SVS). The majority of MRS breast cancer
published work has used the SVS technique.

The placement of the voxel for SVS imaging requires high quality 3D imaging to identify
the cancer on dynamic contrast enhanced (DCE) imaging and an experienced radiologist to
plan the ROI for MRS acquisition. This planning should be done using multiplanar
reformats of the 3D images acquired within the first 1–2 minutes after contrast is injected.
The size and position of the voxel must cover the solid lesion while minimizing adjacent
fibroglandular or adipose tissues. Increasing the voxel size will increase SNR but it also can
cause artifacts from adipose tissues. Multiple errors in SVS can be caused by patient
positioning, changes in tumor size after treatment, and changes with DCE after treatment. In
the follow-up of large cancers, MRS voxel placement should avoid areas of tumor necrosis,
cysts, and voids from radiographic markers (figure 1).

Including some adipose tissue inside the voxel is commonly unavoidable but leads to
sideband artifacts that can hide the tCho peak. A technique called TE averaging has also
been shown to reduce artifacts in breast spectra (25). Another alternative is to use lipid
suppression to reduce the large 1.3 ppm lipid resonance. (21,30,31). This approach will
eliminate sidebands but if lipids are contained in the voxel this will lead to a partial volume
effect. This can artificially increase tCho when the water/fat ratio is less than 2. One must
readjust the voxel placement to reduce adipose tissues and this can be difficult in irregularly
shaped breast lesions.
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A variety of methods have been used for analyzing the tCho resonance in breast spectra. The
most widely used technique on 1.5T MRI is to simply observe whether or not a resonance is
present at 3.2 ppm. Most researchers assume if the tCho peak is visible that this indicates
malignancy. A more objective method is to measure the SNR of the region around the
suspected tCho resonance, and if it is greater than a pre-defined threshold (SNR >2) then the
spectrum is considered positive for tCho. Both of these methods simply determine if a
resonance is detectable, which is assumed to be a malignant indicator. The problem with this
method is that choline is measured in normal and benign tissues (e.g., fibroadenomas) on
higher field MRI scanners (3T, 4T). Quantitative methods have been developed that
calculate a numerical concentration of all choline containing compounds in a voxel (26).
The area under the 3.2 ppm tCho resonance in the frequency domain is proportional to the
number of 1H atoms resonating at that frequency. Quantitative spectral analysis consists of
estimating the signal amplitudes of various metabolites and concentrating the signal
amplitude using a referencing strategy (32–36). Gadolinium-based contrast agents can also
affect relaxation rates and cause a small increase in spectral line widths due to magnetic
susceptibility changes, but these effects are relatively small (38–41).

Clinical Applications of MRI/MRS
Diagnostic MRS

The most widely used application of breast MRS is for diagnosing suspicious breast lesions
which enhance on MRI. There have been multiple publications from 1.5T showing
sensitivities of 70–100% and specificities of 67–100% (27–29,41–44,46). A retrospective
review combining the results of 5 of the 8 studies showed a sensitivity and specificity of
83% and 85%. The ability of numerous institutions with varying MRI/MRS systems and
different measuring techniques demonstrates that breast MRS is clinically practical and
useful to a breast imager. These studies all have used the detection of tCho by visual
inspection of a 3.2 ppm peak or a threshold SNR to determine if tissue within the voxel is
cancerous. The problem with these methods is that the use of delectability of tCho as a
cancer biomarker assumes a constant sensitivity across all measurements. In reality,
variations in pulse sequences, MR systems, breast coils, and voxel sizes could all potentially
affect these findings. A recent report compared breast MRI/MRS at 3T and 1.5T and
reported that tCho could be detected in smaller cancers at 3T than at 1.5T (19). tCho can be
detected in healthy lactating subjects at 1.5T (27,29,41) and also in normal breast tissues at
higher field strengths.

A fast computer analysis (CAD) of dynamic contrast enhancement MRI (DCE-MRI) would
help voxel placement greatly, although this would have to be within the first few minutes
after contrast uptake. A recent study by Meisamy et al.(8,12) showed that by adding in vivo
quantitative 1H MR spectroscopy, there was improved diagnostic accuracy of the breast MR
interpretation by all expert radiologists in an observer performance study at 4 T. This study
shows the promise of improving sensitivity and specificity in interpreting breast MRI/MRS
cases. With improvement in field strength, breast coils, software sequencing and faster
CAD, MRI/MRS may become useful as an adjunct to all breast MRI studies.

Monitoring treatment response
Breast MRI/MRS can be used to evaluate treatment response to chemotherapy. The clinical
principle is that increased tCho reflects aberrant metabolism of tumor cells and cell viability,
and if the treatment is effective, a decrease in the tCho concentration will be seen before
there is a detectable change in the tumor’s size, vascularity and morphological
measurements. Multiple studies showing decreased tCho after therapy indicate a response to
the chemotherapy. These results would suggest that the decrease in tCho measured 24–48
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hours after the first dose of chemotherapy could serve as an early indicator of clinical
response to treatment for locally advanced breast cancer (figure 3). Most of this work was
performed at higher field strengths (3T and 4T); however, several clinical studies at 1.5T
MR have shown mixed results (35,37,46). The variation in results may in part be due to
differences in the timing of the post-therapy MR measurement, and further studies are
needed.

Meisamy et al. (11,12) used post-treatment measurement of tCho concentration one day
after treatment (figure 3). It appears that MRS is measuring the acute period of response
within the tumor cells (one day after treatment) at which time the size and morphological
changes are small. Note that the ability to measure tCho decreases as tumors shrink; a total
responder may show no contrast uptake as well as no measurable tCho. Higher fields and
more sensitive coils should enable tCho measurements in smaller voxels. This may help
determine biomarker response in smaller breast cancers. As lesion size decreases during
therapy, variations in voxel placement and partial volume averaging of adipose tissue
becomes more of a problem.

Ultra High Field MRS
Higher field MRI scanners can increase sensitivity and spectral resolution. The sensitivity
of 1H MRS spectroscopy increases linearly with increased field strength (8,9), so smaller
voxels can be used. With advanced magnetic field (B0) shimming techniques, the higher
field gives an increase in spectral resolution, potentially allowing more chemical resonances
to be resolved. For example, at 4 T the increased SNR and spectral resolution often allows
the detection of creatine and taurine resonances, although the SNR is substantially lower
than that of tCho. At these higher field strengths one may obtain additional metabolic
information from healthy tissues. There are additional challenges associated with higher
field strengths: 1) B0 shimming is more difficult; 2) radiofrequency (B1) inhomogeneities
make coil designs more complicated; 3) relaxation rate constants change; and 4) longer T1
values require longer TR’s. At higher field strengths, quantitative analyses will be required
as tCho resonance can be detected in normal breast tissues. There are newer techniques
available to solve all these problems so that the benefit of higher field strengths MRS can be
used to improve the clinical value of MRS.

Conclusion
Proton spectroscopy can provide useful clinical information of patients with breast disease.
With improvement in quantitative MRS and high field MR systems, breast imagers and
researchers have the ability to improve the detection and characterization of breast cancer.
By using a combination of new techniques including DCE, diffusion, and tCho MRS, one
can develop measurements of breast tumor tissue and use this information as a biomarker for
tumor diagnosis and treatment response.
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Figure 1.
The effect of radiographic markers on shim quality. Both (a) and (b) show a three-view
multi-planar reconstruction of a 3D, fat-suppressed, post-contrast image acquired at 4 T in a
patient with an invasive ductal carcinoma. The voxel ROI (box) in (a) is placed directly over
a metallic radiographic marker. Even after manual adjustment of the linear B0 shims, the
spectral quality is very poor. In (b) the voxel ROI was repositioned in the center of the
lesion away from the marker, and a high-quality spectrum showing tCho and other
metabolites could be obtained. We now use a carbon coated ceramic marker for this reason.
(Figure previously published in NMR Biomed. Haddadin et al 2007).
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Figure 2.
Breast MRI/MRs showing increased diagnostic accuracy which helps avoid unnecessary
biopsies. a). Example of benign fibrocystic breast changes with tCho=.88 mmol/kg; b).
Example of IDC with elevated tCho 1.5 mmol/kg.
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Figure 3.
Monitoring response to treatment with 4 T quantitative breast MRS. This is an update of
findings previously reported in Meisamy et al. (11). These data include 28 patients measured
with 4 T breast MRI/MRS before the start of chemotherapy, 1 day after the first dose of
therapy, and after the complete course of treatment. The tCho measurements are shown for
the baseline and day-1 measurements in (a): 75% of the objective responders showed a
decrease in tCho at day 1 after therapy, whereas 92% of non-responders showed no change
or an increase at the same time point. (b) An example of an objective responder, showing
decreased tCho at day 1, and a clear anatomical response by the end of therapy (ACx4).
(Figure previously published in NMR Biomed. Haddadin et al 2007).
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Figure 4.
Baseline before treatment showing 0.9 mm mmol/kg. After 1 dose of adriamycin-cytoxan
(AC), the tCho decreases to 0.7. Note that the tumor does not show a change in size. After 4
AC treatments at day 84, no choline is detectable in the lesion. This illustrates early response
at 24-hours. Clinical oncologists could predict at 24-hours that this tumor would respond to
chemotherapy.
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