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Abstract
Background—Many laboratory assays measure biomarkers via a 2-stage process. Direct
measurement yields relative measures that are subsequently transformed to the unit of interest by
using a calibration experiment. The calibration experiment is performed within the main
experiment and uses a validation set for which true values are known and relative values are
measured by assays to estimate the relation between relative and absolute values. Immunoassays,
polymerase chain reaction, and chromatographic approaches are among assays performed in this
manner.

Methods—For studies with multiple batches, data from more than a single calibration
experiment are available. Conventionally, calibration of assays based on the standard curve is
performed specific to each batch; the calibration experiment from each batch is used to calibrate
each batch independently. This batch-specific approach incorporates batch variability but, due to
the small number of calibration measurements in each batch, may not be best suited for this
purpose.

Results—Mixed-effects models have been described to address interassay variability and to
provide a measure of quality assurance. Conversely, when interbatch variability is negligible, a
model that does not incorporate batch effect may be used to estimate an overall calibration curve.

Conclusion—We explore approaches for use of calibration data in studies with many batches.
Using a real data example with biomarker and outcome information, we show that risk estimates
may vary depending on the calibration approach utilized. We demonstrate the potential for bias
when using simulations. Under minimal interbatch variability, as seen in our data, conventional
batch-specific calibration does not best utilize information available in the data and results in
attenuated risk estimates.

Correspondence: Brian W. Whitcomb, Division of Biostatistics & Epidemiology, School of Public Health & Health Sciences, 408
Arnold House, 715 North Pleasant Street, University of Massachusetts, Amherst, MA 01003-9304. bwhitcomb@schoolph.umass.edu.
SDC Supplemental digital content is available through direct URL citations in the HTML and PDF versions of this article
(www.epidem.com).

NIH Public Access
Author Manuscript
Epidemiology. Author manuscript; available in PMC 2011 April 11.

Published in final edited form as:
Epidemiology. 2010 July ; 21(Suppl 4): S44–S50. doi:10.1097/EDE.0b013e3181dceac2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



INTRODUCTION
Many laboratory assays measure biomarkers via a 2-stage process; direct measurement of
the biomarkers yields a relative measure (eg, optical density [OD]) that subsequently must
be transformed to the unit of interest through use of a calibration experiment. Regression
calibration (RC) has been well described in other contexts.1,2 Similarly for biomarker
assays, the calibration experiment uses a validation set for which the true values are known.
These known concentration values in combination with the assay measurements may be
used to estimate the link function between the assay measurements and the desired unit. This
relationship is then used to convert assay measurements to units of concentration. Such an
approach affects quantification of assay results as well as the effective detection limits.3,4

Many assays use calibration techniques for quantification. These include
chemiluminescence techniques such as enzyme-linked immunosorbent assay (ELISA) and
similar antibody–antigen capture systems, chromatographic approaches, and real-time
polymerase chain reaction, among others. In this paper, we focus our discussion on
multiplex immunologic assays for assessment of protein concentrations in a sample.

A large and rapidly growing number of multiplexing assays are available for detection and
measurement of ligands. These assays allow simultaneous assessment of more than 1 ligand
and are performed in multiwell plates, with each well containing 1 of the calibrator
standards or study subject samples to be analyzed. When there are more samples to be
analyzed than available wells, multiple batches must be utilized. When this is the case and
more than 1 batch is processed, data from more than a single calibration experiment are
available. Conventionally, the calibration of relative assay results into a unit of
concentration based on the standard curve is performed in a batch-specific fashion; the
calibration experiment and assay quantitation are performed for each batch independently.
The results of each calibration experiment are used to estimate the shape and range of 1
calibration curve for each separate batch. When using some approaches, quantitation is
limited to only those values in the linear range of the calibration curve, such that the assay
quantification limits are essentially established during this step.

The availability of larger calibration datasets in large-scale studies raises the question of
how best to utilize these data. The batch-specific approach for estimating calibration curves
incorporates batch variability but may not be best suited for this purpose. Batch-specific
calibration—using calibrator data from each assay for calibrating unknowns only from that
assay—relies on limited calibration measurements in each batch, resulting in imprecise
estimation of the calibration curve and making it difficult to differentiate measurement error
from batch variability. A mixed-effects model estimating fixed and random effects has been
described for addressing interassay variability that may arise for a variety of reasons—true
assay variation, experimental conditions including weather, laboratory technician variability,
among others—and, in measuring deviations from fixed effects within each batch, have the
benefit of providing a measure of quality assurance.5–9 Conversely, when there is negligible
interbatch variability, a model that does not incorporate batch effect may be used to estimate
an overall calibration curve.

In this paper, we explore various approaches for utilization of calibration data in large-scale
studies with many batches and make comparisons with conventional laboratory approaches.
We utilize log base 10–transformed observed ODs and known concentration values for the
calibration experiments for the cytokine granulocyte colony–stimulating factor (GCSF) from
a large study in which 24 batches were used. We consider linear and curvilinear calibration
models in a batch-specific fixed-effects manner, mixed-effects models that incorporate batch
effects as random effects, and linear models that collapse across batches (ie, do not account
for a batch effect). Each of these approaches is evaluated in calibration models with the
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known concentration as the dependent variable as in RC10 and alternatively, with observed
ODs as the dependent variable—inverse regression calibration (IRC). We apply these
approaches to a dataset of cytokine levels measured in 943 women in a case-control study of
miscarriage and 1) compare each approach; 2) evaluate factors that result in disagreement
between the approaches; and 3) compare estimates from logistic regression models of
miscarriage by using each of the proposed calibration approaches. Additionally, results of a
simulation study are presented. Using a 4-parameter logistic model to generate data, as has
been described in the literature,11,12 we evaluate the effect of choice of calibration approach
on risk estimates under a range of conditions.

METHODS
Study Population

Participants were selected from the Collaborative Perinatal Project (CPP) cohort. The CPP
was a multisite prospective study of early childhood outcomes, conducted from 1959 to
1974, that enrolled participants at presentation for prenatal care and is described in detail
elsewhere.13 Serum samples were collected at entry to the CPP and at subsequent bimonthly
visits and stored at −20°C. Gestation was estimated using self-reported date of last
menstrual period. Miscarriage was defined as involuntary loss of a clinically recognized
intrauterine pregnancy at less than 140 days of gestation. Participants with serum samples
collected fewer than 10 days prior to miscarriage (n = 355) or for whom serum samples were
unavailable (n = 36) were excluded. After exclusions, 462 serum samples from cases of
miscarriage and 481 serum samples from nonmiscarriage controls were selected for this
study. These samples were used for assessment of GCSF, among other cytokines, to
evaluate the relation between levels of inflammatory markers in early pregnancy and
adverse pregnancy outcomes, including miscarriage and preterm delivery.

GCSF Assessment
Serum GCSF levels, along with other assayed cytokines, were measured using the multiplex
Fluorokine MAP Human Cytokine detection system (R&D Systems, Inc., Minneapolis, MN)
as previously described.14 Briefly, the assays use 96-well plates with 50 μg of sera in
duplicates in a sandwich ELISA-based approach. The solid phase consists of fluorescent
beads covalently linked with cytokine-specific monoclonal antibodies, allowing capture of
each cytokine and corresponding biotinylated antibody. After addition of streptavidin-
phycoerythrin, intensity is measured using the Luminex 100 IS system (Luminex Corp.,
Austin, TX). Utility of these assays for evaluation of serum cytokine levels in samples from
the CPP repository has been previously been described.14,15 Cytokine measurement was
observed with high test–retest reliability, and cytokine levels measured in frozen CPP
samples selected from the repository for these investigations were similar to those observed
in freshly collected serum samples. Running 40 samples in duplicate per batch, a total of 24
separate assays were performed and analyzed. Each plate included 8 standards run in
duplicate to generate calibration curves, including a diluent-only blank and 7 serial dilutions.
Samples were randomly ordered by case status and batches were organized by gestational
age at sample collection. Case samples and matched controls were analyzed in the same
batch. Because specimens had been collected previously and identifying information had
been removed, the Office of Human Subjects Research at the National Institutes of Health
and the institutional review board at the University of Florida determined this study was
exempt from full institutional review board review.

Statistical Analysis
Information from the calibration series on the evaluated cytokines was used to assemble the
calibration data, which in turn was used to generate the calibration curves that model the
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relation between the calculated concentration of each cytokine in picogram-per-milliliter
units and the relative fluorescence units (RFUs) produced by the assays, as quantified by the
Luminex system. A total of 6 approaches for creating calibration models were evaluated.
Simple linear regression models were run that disregarded the batch information, as:

(1)

where batch is i =1 to 24, y⃗cal is a vector of log10-known concentrations for the jth standard

(j=1 to 7) that are fixed across batches and with corresponding measured optical density ,
the log10 -observed light intensities in RFUs for each of the standards. A batch-specific
fixed-effects model was fit including a batch–biomarker interaction and can be represented
as:

(2)

where the δi are the batch-specific deviations from the overall intercept β0 and the γi are the
batch-specific deviations from the overall slope β1.

Similarly 2 random effect models were evaluated. One incorporated a random intercept term
b0i along with a fixed slope term. The other model included a random intercept b0i and slope
b1i; in this model, the random effects characterize the deviations of the batches from the
overall fixed effects, and have mean zero and variance B as:

(3)

Each of these approaches was also explored assuming a higher-order polynomial rather than
a simple regression relationship. Quadratic models were fit with square terms to allow for a
curvilinear relation between known picograms per milliliter and measured RFUs. All mixed
models included the same number of fixed and random terms; linear mixed models included
fixed terms for intercept and slope; quadratic mixed models also considered fixed and
random square terms.

Each of the aforementioned models was run with the known concentrations of the
calibration standards, y⃗cal, as independent (RC) and as dependent (IRC) variables. For either
approach, the calibration models were used to relate known concentration to observed assay
measurements. Subsequently, calibration model estimates were used to calibrate the
unknowns, that is, estimate concentration of a sample from its measured OD. For the
curvilinear models with a square term (quadratic models) with the IRC approach, we used
the larger/positive root from the quadratic formula in calibration.

After generating each calibration model, parameter estimates were used to calibrate data for
participant samples according to the previously described approaches. Agreement between
methods was evaluated graphically, and overall goodness of fit was evaluated using -2 log
likelihood and the Akaike information criterion. A case-control study analysis was
performed to illustrate the effect of the choice of calibration approach on risk estimation.
Concentration data generated by each method were used to model risk of miscarriage by
logistic regression. Odds ratios (OR) and 95% confidence intervals (CIs) were estimated for
each approach and compared.
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ANALYSIS RESULTS
A scatter plot of the data from the calibration experiment for all 24 batches is shown in
Figure 1. Log base 10 transformation of both signal and response results in an approximately
linear relation between the variables. Several clearly visible outliers resulted from a few of
the experiments. Specifically, 1 replicate of the fourth standard (true concentration = 222.2
pg/mL) in batches 21 and 24, and 1 replicate of the most concentrated standard (true
concentration = 6000 pg/mL) were discrepant from the majority of points within those
batches; however, concentrations were assigned to those points, which factored into the
mean across replicates. Analysis was also performed after removal of the 3 outlying points,
and the influence of the outliers on analysis is further discussed later.

eTable 1 (available in the electronic version of this article) displays the parameter estimates
averaged across batches for linear and quadratic calibration models, strictly for purposes of
illustration. In linear RC models, the mean of the estimates from the batch-specific (intercept
= −1.05; slope = 1.24) and mixed-effects models (intercept = −1.04; slope = 1.23) were
similar to each other and similar to the estimates from the collapsed model (intercept =
−0.98; slope = 1.21). On the other hand, quadratic model parameters were observed to differ
between the collapsed (intercept = 0.79; slope = 1.06; square term = 0.13) and batch-specific
models (intercept = −1.02; slope = 0.17; square term = 0.002). The curvilinear mixed model
was inestimable due to a singular variance matrix for the random effects. In part, this may
have occurred due to the minimal curvature in the calibration curves, which would result in
a near-zero variance estimate for the quadratic random effect term.

Among linear IRC models, mean parameter estimates from the batch-specific fixed-effects
models and mixed models were approximately equal to those of the collapsed, with an
intercept of 0.87 and a slope of 0.80. Differences in parameter estimates were observed for
curvilinear models, although the differences were minimal. The mixed-effects IRC model
was estimable up to the square term as random effects. Examining different RC and IRC
models separately, mixed models had the lowest values of the Akaike information criterion,
followed by collapsed and then the batch-specific interaction model.

The agreement between a subset of the different approaches taken to calibration is illustrated
in the panels of Figures 2 and 3. The top left panel shows collapsed RC models against
batch-specific RC models. The data fall along several distinct roughly 45° lines, reflecting
method agreement within batch but systematic differences between batches. Conversely, the
top right panel comparing the collapsed model against mixed models illustrates a single line
off the 45° line and with a nonzero intercept, which illustrates a strong correlation between
the methods, but systematically higher levels determined by the collapsed approach. In the
left lower panel comparing IRC collapsed to batch-specific models, a greater degree of
agreement is apparent in comparison with the RC models; however, certain batches display
discrepant classification related to the effect of the estimated square term. The bottom right
panel displays similar overall agreement between the collapsed and mixed-model calibrated
data, but those batches with outliers in the calibration series illustrate systematic differences.
Inverse regression calibration adds leverage to the outlying calibrator replicates in the
middle of the RC regression. As Figure 3 illustrates, removal of these few outlying points
substantially affects the agreement between methods for data calibration.

Results of logistic regression models of spontaneous abortion are shown in eTable 2.
Estimates for the effect of log base 10 GCSF concentrations, as determined by each of the
previously described approaches, are shown with 95% CIs on the OR. Point estimates were
observed to vary widely by the calibration approach, although CIs largely overlapped.
Estimates and their 95% CIs varied in regard to inference; among models in which GCSF
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levels were determined from RC models, those from collapsed calibration were statistically
significant, whereas CIs for all others crossed the null. Among models in which GCSF
levels were determined from IRC models, estimates and 95% CIs were similar for the
collapsed and mixed models, with ORs ranging from 0.37 to 0.50 and 95% CI endpoints as
low as 0.15 and as high as 0.95. Odds ratio estimates from batch-specific calibrated data
were closer to the null and had CIs crossing the null. Importantly, we note that all CIs are
conditional on the values of the assay and do not account for measurement error.

SIMULATION STUDY
A simulation study was conducted to assess further the effects various methods/models have
on risk estimation–based data from multiple batches of biomarker measurements. Data were
generated for the simulated study participants in a case-control study (lognormally
distributed) with differing levels of true risk as well as for the calibration series data. For the
latter, 7 replicate measures of calibration points were generated for every simulated batch.
Variability parameters in the calibration function, as well as the functional shape parameters,
were based on the observed variability in the case-control data.

Simulated calibration data were created using a 4-parameter model to describe the true
overall relation between the relative ODs and the concentration in picogram-per-milliliter
units. The 4-parameter logistic describes a sigmoidal function that has been shown to fit
similar functional data well.11,12 The 4-parameter logistic models concentration as a
function of OD, making it an inverse regression approach. Random batch variability was
added to simulate varying conditions over batches; at each known, fixed calibration
concentration, random measurement error was added to the corresponding true OD for that
batch resulting in the 14 points, 2 per concentration, used for the batch calibration curve.
Additionally, laboratory failures affecting measurement of the calibrator series were
simulated. Simulated true concentration data, ODs, and case-control status were simulated
as described in the Appendix.

The simulated calibration data were used to estimate calibration curves by using each of the
previously described methods after applying a simple log-log transformation. Case and
control ODs were converted to the log scale and to log concentration “measurements” based
on each method. The OR was then estimated from these simulated log concentrations by
using logistic regression models with the form:

where Y is “measured” concentration and OR = exp{θ1}.

Results of Simulation Study
Figure 4 displays empirical bias as a percentage of the true OR for sample size n = 800 and
true OR = 1.65. Standard error for estimates was similar across approaches (range from 0.22
for linear RC collapsed to 0.28 for linear IRC batch-specific models). Root mean square
error was primarily determined by bias and is not displayed. With RC models, not
accounting for the batch effect (collapsed) resulted in less negative bias (attenuation) than
either the batch-specific fixed-effects or the mixed-effects model. Bias was similar between
the linear and curvilinear models. Parameter estimates from the mixed-effects calibration
model were similar to the batch-specific model. The largest bias was seen in the batch-
specific calibrated data, as great in magnitude as 14% for the linear model with true OR of
1.65.
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A similar pattern was observed for IRC models, although bias was generally larger for these
approaches than for RC models. Collapsed models again had the lowest bias of those
evaluated, whereas the mixed models and batch-specific models resulted in similarly biased
estimates of the OR. There was less variability in estimates between approaches among the
IRC models,. Both linear and curvilinear batch-specific calibration models resulted in
underestimates of effect. To illustrate the impact of the use of the log-log-linear calibration
models, percentage of bias is also shown for the 4-parameter logistic models in Figure 4.
The collapsed IRC and collapsed IRC and batch-specific IRC models had similar biases to
the log-log linear models. For all evaluated scenarios, percentage of bias increased with
increasing true risk and was not decreased with increasing sample size.

eTable 3 shows the bias in OR estimates when biomarker quantification is based on a 7-
point calibration experiment compared with that of a 14-point calibration experiment using
the four-parameter logistic model to fit the calibration data. Collapsing across batches and
batch-specific models were considered. Bias was uniformly reduced under the expanded 14-
point calibration experiment; however, the reduction in bias was small. The factor with the
greatest impact on bias was the true OR, showing that measurement error in the calibration
experiment was not eliminated under any of the approaches evaluated.

DISCUSSION
A wide range of immunoassays are used in the quantification of biomarkers in
epidemiologic investigations; these assays rely on calibration experiments to convert the
relative measures corresponding to light intensities produced in the assay into data in units
of concentration. This calibration experiment is conventionally run repeatedly for each
individual assay performed, even in large-scale studies that may entail a large number of
assays to account for interbatch variability. The calibration data within an individual batch
are frequently utilized independently of those of other batches. In this study we evaluated
alternatives to this approach to determine best use for calibration data. We compared
conventional batch-specific calibration with 2 alternatives: 1) considering all calibration data
as a single calibration experiment, and; 2) using mixed models to estimate fixed effects
corresponding to the overall with random, batch-specific estimates of the deviation of each
batch from the overall. Using these approaches for calibration of GCSF from a case-control
study of spontaneous abortion, we observed not only differences between the methods in the
calibrated data, but also found substantial differences in the estimates derived from logistic
regression models based on these different approaches. Our findings suggest that the
calibration approach utilized has the potential to change the conclusions of investigators of
epidemiologic investigations.

The problem of calibration is not a new one. Approaches for calibrating data by using a
validation set have been well described in the literature.1,2,10,16 In the context of laboratory
assays, calibration has also received a substantial amount of attention.5–8, 17–19 Considering
the conditions for performing immunoassays in large-scale studies, various investigators
have advocated use of mixed models.5,6 Such an approach has been suggested to address
sources of random error including technician variability, variability by lot number, and
conditions that may affect receptor–ligand binding such as temperature and light exposure.8
Moreover, by combining data from multiple assay runs, one may use the deviations
estimates, in combination with other information, to perform quality assurance.5,6 In
comparison with fixed-effects batch-specific models that make no assumptions regarding the
relation between batches, use of mixed models implies the existence of an overall relation
with batch-specific deviations as the random effects; the assumption of an overall relation is
explicit in models collapsed across batches. The assumption of batch exchangeability is
important for determining whether estimates of an overall relation are valid, and approaches
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for testing this source of variability have been proposed.8 This assumption of independence
between batch and concentration is important; investigators should take care when allocating
specimens to batches to achieve a random distribution of factors that may affect
concentration (eg, case status or time of sampling).

We evaluated models utilizing a RC-based approach 1,2,10 and IRC models to reflect
calibration curve fitting as is conventionally done in laboratory science, and that previously
used in the literature.5–9,18 We noted several interesting observations in comparing these
approaches. Regression calibration—modeling the concentration as a function of OD in both
the calibration and unknown measurement phases of the experiment—models the
relationship of interest for calibrating the data but is inconsistent with many of the model
assumptions and resulted in issues with the response distribution for calibration. With only 7
(or 8, if the blank is included) fixed values in replicates for all batches, there are major
limitations in estimating more complex models; both collapsed and batch-specific models
were estimable with quadratic (and cubic) regression but only linear mixed models
converged.

Inverse regression calibration—modeling OD as a function of concentration and calibrating
the data to concentration—corrects the violation of assumptions in the fixed-dependent
variable RC models and solved the problem of nonconvergence. Certain outlying points on
the regression line with minimal leverage in the RC models increased leverage in the IRC
model and affected the estimated parameters. These effects were evident in plots from
collapsed compared with mixed-effects RC models and collapsed compared with mixed-
effects IRC models; in the latter, a batch effect is apparent for several batches with outlying
points from a discrepant single replicate in the middle of the curve. Similarly, plots of
collapsed compared with batch-specific approaches illustrate that the latter approach appears
to actually add batch variability in some circumstances. Predominantly, these occur with
flaws in the calibration experiment and might be remedied by rejecting the assay for
tolerance violations, and rerunning. In multiplexing, multiple analytes are simultaneously
measured, and failure of measurement of a single one may not justify the expense of
repeating the experiment.

The results of simulations further illustrate the performance of each of the approaches when
studies with large numbers of biospecimens—and accordingly larger calibration datasets—
are conducted. We generated data with a true underlying calibration function, batch
variability, and sources of error chosen to reflect the real data we observed. Under these
conditions, batch-specific fixed-effects calibration performed decidedly worse than other
evaluated approaches. Additionally, models based on modeling OD as the response variable
—IRC models—resulted in increased bias to risk estimates in comparison with RC models.
By estimating calibration model parameters in the same orientation as the calibration model
is to be used for calibrating the unknowns, random error in the calibrated data was reduced.
The IRC approach appears highly sensitive to outlying points and overmodels batch
variability. In the real data example, removal of a small number of outlying points had
substantial consequences to risk estimates, illustrating the sensitivity of results to
mismeasurement in the calibration series. Investigators are cautioned to take heed of the
importance of a good calibration experiment.

Despite the presence of interbatch variability, models that collapse over batches (ie, do not
incorporate batch effect) resulted in less bias to risk estimates than did batch-specific
calibration. Although counterintuitive on the surface, the benefit of collapsing comes from
its exploiting the availability of a large dataset to model the underlying relation between
optical density and concentration, and preventing true batch variability being swamped by
uncertainty from attempting to model a relation per batch based on only 7 replicated points
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in each batch. Use of the collapsed model is premised on a relatively small batch-to-batch
variation across batch-specific calibration curves.

In our simulations, the estimates of association (log OR estimates) were attenuated for all
calibration methods; we evaluated the source of this systematic underestimation through
additional simulations. We initially considered model misspecification. The 4-parameter
model was chosen to maintain the complexity displayed in the real data, whereas the linear
RC models were utilized for purposes of illustration, relative simplicity, and thus increased
likelihood of being practically employed using standard statistical software. Regardless, in
comparing use of log-log models and 4-parameter models, we did not observe significant
differences for any of the models evaluated. Rather than misspecification of the model, the
source of the underestimation appears to be related to the number of data points available for
the calibration experiment. We compared risk estimates based on data calibrated from a
standard 7-point curve with those of a curve with additional dilutions and found bias
reduced in the latter. The reduction in attenuation with an increased number of points on the
calibration curve may be because we do not explicitly account for the measurement error
associated with the concentration levels. Future research could focus on incorporating this
measurement error into the logistic regression modeling. For this paper, we have focused on
the impact of the calibration approach on risk estimation and illustration of the potential
variability thereof. We have not described other issues that may affect calibration, such as
heteroscedasticity in the calibration regressions 9,20,21 and serial dilution error.19 In addition
to the issue of minimal variance in the known concentrations of the calibrator data, the
problem of serial dilution error may arise when a laboratory error in dilution is propagated in
subsequent dilutions, resulting in a nonindependence among the calibrator series. Although
the use of micropipettes for volumetric dispensing is very precise, errors in preparation of
the calibrator series can adversely affect calibration inference.19

A comparison of multiple approaches to calibrating data from immunoassays illustrates that
the resulting differences may lead to important differences in conclusions of models of risk.
We used a batch-specific approach that is used conventionally for laboratory sciences, along
with alternatives including a mixed-effects model for generating concentration information
for GCSF measured in multiplex assays to use in logistic regression models of spontaneous
abortion; OR estimates for batch-specific approach ranged from 0.63 to 0.86 with all 95%
CIs crossing 1.0, whereas statistically significant protective OR estimates were observed for
alternatives. Simulation study results further illustrate the differences between calibration
approaches. These observations support previous investigators who have advocated for more
comprehensive use of the data from multiple calibration experiments performed within
studies that entail multiple assays.6,7 Investigators of epidemiologic studies that include
similarly measured biomarkers should consider use of these data to greater advantage than
convention. Failure to do so may contribute to failures to detect small effects in
epidemiologic studies of complex disease.
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Appendix
Simulations were conducted to assess various techniques for the utilization of calibration
data to achieve the best estimation. For each method a calibration curve was generated.
Then, using each curve, simulated ODs were converted into biomarker levels. We next
estimated ORs (for a 1-unit change in transformed data) by using the biomarker levels from
each method and calculated bias, standard error, and root mean square error over B = 2000
iterations to compare the estimators. Various parameter scenarios were investigated, OR =
1.05, 1.15, and 1.65, using several sample sizes of biomarker levels n = 400, 800, and 2000,
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where each batch consists of 40 measurements resulting in m =10, 20, and 50 batches,
respectively.

Two phases of random data were implemented. First, n lognormally distributed “true”
biomarker values, yt, were randomly generated. Next, case and control status were simulated
based on a logistic regression model where

where Y is the biomarker concentration generated in the first stage and OR = exp{β1}.

The second phase started with a “true” overall 4-parameter logistic model

that models OD as a function of concentration. The parameters β = (0.000, 1.025, 8.841, and
9.698) were based on cytokine values in the CPP dataset and used as the true underlying
calibration curve. From here, batch variability was introduced to create m sets of “true”
batch-specific curves by randomly samplingβi, i = 1,…,m, from a multivariate normal
distribution centered at the true β, parameters are drawn to establish “true” batch-specific
calibration curves. From these “true” batch-specific curves, “true” ODs, x&rarr;*t, were
generated batch wise for the “true” biomarker measurements, yt, from step 1.

Next, 7 fixed calibrating concentrations x = (6000, 2000, 666.67, 222.22, 74.07, 24.69, and
8.23) and the “true” batch-specific calibration curve were used to get corresponding ODs,

, j = 1,…,7. Random error was then added to) these ODs such that replicate
variability (measurement error) is introduced on the log scale to each of the 2 calibration
measurements per fixed concentration, yijk = exp{log(yij)+εijk}, where k = 1,2 and εijk ~
N(0,σε = 0.25). The level of replicate error used was based on the cytokine measures in the
CPP dataset and introduced through a power function as suggested by Zeng and Davidian.7

Using these replicate measures, , at fixed concentration, , each of the calibration
modeling techniques described in the paper is applied and those estimated calibration curves
are used to convert the biomarker ODs, xt, into “measured” biomarker concentration levels,
ym. Disease status along with the ym biomarker “measurements” are then used to estimate
ORs based on each technique. These estimators are the unit of comparison for the various
techniques.
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Figure 1.
Scatter plot of the log10 calibration data from 24 batches, each with 14 data points with
known concentration and observed OD.
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eFigure 2.
(available online only). Agreement between different calibration approaches in 943 serum
samples from the Collaborative Perinatal Project: GCSF concentration in picograms per
millileter.
The top panels show linear RC models for collapsed compared with batch-specific fixed
effects models (panel a) and compared with mixed models (panel b). The bottom panels
show curvilinear IRC models for collapsed compared with batch-specific fixed-effects
models (panel c) and compared with mixed models (panel d). The solid diagonal line reflects
perfect agreement.
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eFigure 3.
(available online only). Agreement between different calibration approaches in 943 serum
samples from the Collaborative Perinatal Project after elimination of three outliers from the
calibration experiment data: GCSF concentration in picograms per millileter.
The top panels show linear RC linear models for collapsed compared with batch-specific
fixed-effects models (panel a) and compared with mixed models (panel b). The bottom
panels show IRC fit curvilinear models for collapsed compared with batch-specific fixed-
effects models (panel c) and compared with mixed models (panel d). The solid diagonal line
reflects perfect agreement.
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Figure 4.
Results of simulation study—percentage of bias by calibration modeling approach for true
OR = 1.65 and n = 800.
On the left of the figure, percentages of bias to estimated ORs are shown for biomarker data
calibrated using RC log-log linear approaches—collapsed models in light gray, mixed
models in dark gray, and batch-specific fixed-effects models in black. On the right,
percentages of bias for select 4-parameter logistic (4PL) models are shown.
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