Skip to main content
. Author manuscript; available in PMC: 2011 Apr 11.
Published in final edited form as: Epidemiology. 2010 Jul;21(Suppl 4):S44–S50. doi: 10.1097/EDE.0b013e3181dceac2

eTable 1.

(available online only). Average parameter estimates from regression calibration (RC) and inverse regression calibration (IRC) models.

Calibration approach Average parameter estimates Model fit characteristics
Model Shape Intercept Slope Square −2LL AIC
RC
 Collapsed L −0.9813 1.2090 N/A −220.0 −218.0
 Batch specific L −1.0521 1.2351 N/A −293.3 −291.3
 Mixed models L −1.0428 1.2312 N/A −375.1 −367.1
 Collapsed CL −0.7882 1.0574 0.0274 −216.1 −214.1
 Batch specific CL −1.0167 0.1667 0.0025 −243.1 −241.1
 Mixed models* CL ~ ~ ~ ~ ~
IRC
 Collapsed L 0.8709 0.8021 −349.3 −347.3
 Batch specific L 0.8651 0.8029 −382.6 −380.6
 Mixed models L 0.8657 0.8031 −492.0 −484.0
 Collapsed CL 0.8847 0.7882 0.0029 −341.9 −339.9
 Batch specific CL 0.7675 0.8153 −0.0076 −341.5 −339.5
 Mixed models* CL ~ ~ ~ ~ ~
*

Inestimable due to singularity of covariance matrix.

Abbreviations: L, linear; CL, curvilinear, -2LL, -2 log likelihood; AIC, Akaike Information Criterion.