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Abstract
Cancer models relating basic science to clinical care in oncology may fail to address the nuances
of tumor behavior and therapy, as in the case, discussed herein, of the complex multiscale
dynamics leading to the often observed enhanced invasiveness paradoxically induced by the very
anti-angiogenic therapy designed to destroy the tumor. Studies would benefit from approaches that
quantitatively link the multiple physical and temporal scales from molecule to tissue in order to
offer outcome predictions for individual patients. Physical oncology is an approach that applies
fundamental principles from the physical and biological sciences to explain certain cancer
behaviors as observable characteristics arising from the underlying physical and biochemical
events. For example, the transport of oxygen molecules through tissue affects phenotypic
characteristics such as cell proliferation, apoptosis, and adhesion, which in turn underlie the
patient-scale tumor growth and invasiveness. Our review of physical oncology illustrates how
tumor behavior and treatment response may be a quantifiable function of marginally stable
molecular/cellular conditions modulated by inhomogeneity. By incorporating patient-specific
genomic, proteomic, metabolomic, and cellular data into multiscale physical models, physical
oncology could complement current clinical practice through enhanced understanding of cancer
behavior, thus potentially improving patient survival.

Introduction
Advances in multiscale modeling and dynamical systems theory, supported by emerging
computational power, have now reached a stage where mathematics and numerical
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simulation could be productively applied to address the urgent need for nonlinear analysis of
cancer behavior. Nonlinearity means that the behavior of cancer as a system may be greater
or less than the simple “linear combination” (e.g., addition) of effects of its individual
components. Founded on biophysics and nonlinear mathematics, physical oncology strives
to link patient-specific genetic/phenotypic/microenvironmental information at the molecular/
cellular scales to a quantitative prediction of tissue behavior at the critical patient scale, i.e.,
tumor growth, invasion, drug transport and pharmacodynamics (see[1] for applications to
breast and brain cancers). This approach enables the study of cancer as a complex
heterogeneous system, which typically spans seven orders of physical magnitude (from
genes to tissue, 10−9–10−2m) and many orders of temporal magnitude (from the sub-second
scale to tens-of-years).

A key feature of cancer progression is instability—dynamic changes in individual cell
(epi)genetics, mitotic and metabolic rates result in heterogeneous cellular/
microenvironmental domains within the central tumor mass, which in turn influence
diffusion rates, local oxygen/nutrient consumption and supply, as well as less easily
measurable inhomogeneities in pH, extracellular-matrix forces, toxic cell debris, and growth
factors. Dynamic instability and tumor mass inhomogeneities likely play major roles in
tumor progression, and occur on multiple scales with distinct timeframes.

Current clinical practice
The current clinical strategy of treating cancer with a combination of surgery, radiotherapy,
and drugs based on clinical and molecular staging may be less targeted than is required for
curative intent. Furthermore, detection methods are at present relatively crude not only for
cancer screening, but also for gauging metastatic spread. These practices, while pragmatic
and based on “best evidence” (evidence where it exists and eminence-based opinion) are
limited.

Individualization of therapy is probably best exemplified in breast cancer, where clinicians
currently evaluate patient features (age, menopausal status, family history), tumor
characteristics (size, histology, histological grade, node metastasis, lymphovascular
invasion), and cancer biology (expressions of ER, estrogen receptor, and HER2, human
epidermal growth factor type 2) together with transcriptome measurements (Oncotype
Dx[2], Agendia 70 gene signature[3], and disease-specific arrays). Models combining
specific risk factors (see “Adjuvant! Online” program[4]) are used clinically to indicate
subgroup risks of recurrence and death and to guide therapeutic decision-making. Through
extensive and ongoing clinical trials, these strategies have generally benefited patient
subpopulations. Except for a small subset of tumors responsive to HER2 inhibitory
antibodies[5], however, the quantitative contribution of each of the known parameters in
progression and therapy response (morphology, histopathology, invasion, and associated
molecular phenomena) remains elusive.

Histopathology is the “gold-standard” for cancer diagnosis and has developed diagnostic
criteria useful in prognostics. In the case of glioma these criteria may seem simplistic:
necrosis, hemorrhage, palisading, nuclear and cytoplasmic atypia and increased cellularity.
Histologic patterns of increased vasculature interspersed between necrosis and bounded by
palisading malignant cells are a common diagnostic feature of the more aggressive
glioblastoma multiforme.—a glial brain tumor with no known cure that usually results in
death within 15 months of diagnosis. Because gliomas arise where no basement membrane
restricts invasion, they grow radially, often along neuronal fiber tracts. However, tissue and
cellular histologic patterns are lacking in molecular and mechanistic detail. Histopathology
opens the door to new questions that could be answered by physical oncology. One question
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is whether this modeling enables a leap from the extensive and reliably predictive value of
histopathologic patterns to identify the missing mechanisms and molecular derangements as
potential therapeutic targets.

Physical modeling overview
Mathematical modeling and numerical simulation have been employed to provide insight
into the complex interactions in cancer, with the ultimate goals to aid in the development of
individualized therapy, further the understanding of experimental and clinical observations,
and enable targeted experimental design[6].

Most models are either discrete or continuum, based on how the tumor tissue is represented.
Discrete models represent individual cells according to a specific set of bio-physical and -
chemical rules, which is particularly useful for studying carcinogenesis, natural selection,
genetic instability, cell-cell and cell-microenvironment interaction[6]. Analyses of cell
population dynamics have also been employed to study biological characteristics applying to
cells in a particular population, such as therapy response.

Continuum models treat tumors as a collection of tissue, drawing upon principles from
continuum mechanics to describe cancer-related variables as continuous fields by means of
partial differential and integro-differential equations[6]. Variables may include cell volume
fractions and substrate concentrations such as oxygen and nutrients. Multiphase (mixture-
theory) continuum models are capable of describing detailed interactions among multiple
solid cell species, extra-cellular and intra-cellular liquids. Solid tumors are described as a
saturated medium, comprising at least one solid (cells, extracellular matrix) and one liquid
(water) phase.

A third modeling category consists of a hybrid approach using both continuum and discrete
representations of tumor cells and microenvironment components. This methodology aims
to develop multiscale models where the discrete scale can be directly fitted to molecular and
cell-scale data, and then upscaled to inform the phenomenological parameters of continuum
models, which lump multiple information in each parameter. These models can be directly
and accurately informed from the small scale and thus could be used for clinically relevant
predictions of tumor size, spread, and drug transport and response[6].

Recent reviews include[6-13]—owing to space limitations we only mention a fraction of
recent work; details can be found in the references therein. In addition to avascular growth,
recent models have focused on stem cells[14], intra-cellular pathways[15], tumor-induced
angiogenesis and vascular growth[16,17,18], invasion and metastasis[19], and
treatment[20,21,22]. The development of more sophisticated and quantitative individual-
based models coupled with an increase in computational power has paved the way for more
realistic multiscale models, where multiple spatial and temporal scales are tightly coupled in
one unified framework[7,17,18]. Hybrid models representing the tumor tissue at both single-
cell and tissue levels have also been recently developed[23].

Illustration of quantitative and predictive physical oncology
Building upon a formulation of classical tumor models[6], a nonlinear modeling of complex
tumor morphologies[24] predicted that highly vascularized tumors would stay compact and
without invasive fingering, even while growing unbounded, implying that invasiveness is
associated with vascular anisotropy and other microenvironmental inhomogeneties (oxygen
diffusion gradients, metabolic activity, local differences in oxygen consumption).
Employing a continuum model, morphology was predicted to be determined by the
competition between heterogeneous diffusion-modulated cell proliferation and migration,
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driving shape instability and invasive tumor morphologies, and stabilizing mechanical forces
(cell-cell adhesion). Subsequent work further elaborated this “morphological instability”
hypothesis[25]. Using computer simulations and in-vitro experiments[26], evidence was
provided that tumor-scale invasion could be suppressed by spatially homogeneous oxygen
and nutrient supply because these conditions act both by decreasing gradients and promoting
phenotypic stability, and, therefore, the mechanical forces maintaining a well-defined
boundary. Interestingly, avascular tumor growth stability was also investigated in discrete
models with similar results[27].

Another important advance has been the application of multiphase computational models to
simulate multiple solid (cell) species and extra-/intra-cellular liquids. This work has
facilitated the representation of solid tumor growth in 3D[6], which combined with models
for tumor-induced angiogenesis[28], was successfully compared to patient histopathology,
thus further suggesting that tumor-scale growth and invasion may be predictable processes
driven by diffusion gradients and regulated by heterogeneity in genotypic, phenotypic, and
microenvironmental parameters[29] (Figure).

This physical modeling provides evidence that tumor behavior in-vivo may for some cancers
be a quantifiable function of marginally stable molecular/cellular conditions influencing and
in turn influenced by inhomogeneities in nutrients, oxygen, and growth factors. Recent
cancer therapy models have shown that dramatically decreasing microenvironment
oxygenation (as in anti-angiogenic treatment), or inducing large-scale cell death, not only
tends to promote tumor fragmentation and invasion[25], but can also increase drug
resistance[22]. Conversely, increasing oxygen/nutrient supply in the microenvironment may
enhance the tumor response[21]. Since such strategies may also increase chemotherapeutic
agent access, these analyses may offer a more quantitative approach for targeted anti-
angiogenic therapy adjuvant to chemotherapy or resection.

For glioblastomas, physical oncology has provided answers to basic biological questions of
tumor behavior. The modeling found that as new clones arise, those with more survival
capabilities invade the original tumor as well as adjacent tissue[29]. These aggressive clones
replace original tumor cells, which are more likely to die as growth rate increases and
oxygen levels decrease. This sequence produces an “engine” of instability, and results in
further inhomonegneities in cellular behavior and architecture, metabolic consumption,
oxygen levels, extracellular matrix fluidics/tension/density, and vascular permeability.
Moreover, the physical modeling suggests that oxygen/nutrient gradients are a major driver
of malignant progression. Cells that can escape and survive at low oxygen tension likely
have increased invasive and mitotic potential[29]. This prediction preceded results from
bevacizumab (Avastin, Genentech) therapy, where therapy withdrawal results in rapid tumor
regrowth. Avastin is a monoclonal antibody against VEGF, which blocks VEGF-induced
neovascularization and thus decreases tumor oxygenation. Avastin may thus exert a
selective pressure promoting survival of the most malignant cells. We are currently testing
this model in more depth.

The nonlinear interaction among various determinants representing cell and tumor
phenotype at multiple scales is a unifying theme of these modeling results. The synergy/
antagonism of combined therapeutic strategies depends heavily upon this interaction. By
quantifying the patient-specific links between tumor growth/regression and the underlying
phenotype, physical oncology may become a tool for more targeted study of cancer response
to therapy.
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Conclusion
The goal of physical oncology is to provide information about tumor behavior in predictive,
diagnostic and therapeutic domains by integrating information from individual or multiple
specimens across many variables from genetic alterations to mitotic rates, tumor size, and
vascular parameters; and across multiple dimensions, from molecular distribution, dynamic
diffusivity to cellular organelle and cell body shape and behavior, to tumor growth
dynamics, to whole body physiology. This modeling can provide a system in which
parameters for tumor behavior at various physical scales can be evaluated as targets for
diagnosis and therapeutics, and also tested for efficacy without the expense and pain of
clinical trials. This effort promises to enhance the knowledge gained from experiments and
clinical observations by transforming cancer from a biological challenge into an engineering
problem.

In order to attain this goal, physical modeling will need to incorporate ever-increasing
amounts of laboratory and clinical knowledge at multiple temporal and physical scales, thus
continuously evolving to a more accurate multiscale representation of the underlying
connection between the biological/clinical “complexity” and the tumor behavior of
individual patients. To sharpen predictivity, model parameters need to be uniquely
constrained by values measured from independent datasets. Experiments need to be
designed to be conducive to the measurement of parameters co-localized in space and along
successive timepoints. An expanded dialogue and collaboration between biologists, physical
scientists, and clinicians will be indispensable for the advancement of physical oncology as
a practical bench-to-bedside quantitative and predictive approach.
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Figure.
Physical modeling predicts tumor behavior and morphology as a quantifiable function of
inhomogeneous environmental conditions modulated by diffusion gradients in cell substrates
(VT:viable-tumor; NT:necrotic-tumor; MV:vessel). A:Invading and detached clusters are
predicted to migrate up cell substrate gradients when cell-cell adhesion is sufficiently low.
B:Glioblastoma histology shows invading cluster (left) invading into more normal brain
(dashed line:tumor/brain margin). Vascularization at margin (darker spots) implies that cell
substrate gradients drive collective cell infiltration via proliferative growth. C:Histology
predicted by the model reveals viable tissue surrounding blood vessels, and peripheral
necrosis. Tissue is within 100-200μm of blood-conducting intra-tumoral vessels and of brain
parenchyma (red:vessels-conducting; blue:non-conducting). Diffusion gradients (not-shown)
indicate higher oxygen/nutrient near blood-conducting vessels and lower otherwise, thereby
determining viable regions. D:Glioblastoma histology reveals viable cells cuffing blood
vessels, and necrosis in inter-vessel zones. Cuff thickness corresponds to oxygen/nutrient
diffusion gradients. Bar,200 μm. [A,B:From Cancer Research, Vol. 69, Bearer et al., p.
4496,4499, Copyright (2009), with permission from the American Association for Cancer
Research. C,D:From NeuroImage, Vol. 37, Frieboes et al. [30], p. S65, Copyright (2007),
with permission from Elsevier].
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