
Calorie Restriction: What Recent Results Suggest for the Future
of Aging Research

Daniel L. Smith Jr.1,2, Tim R. Nagy1,2, and David B. Allison1,2,3
1Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham AL, 35294
USA
2Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham AL,
35294 USA
3Department of Biostatistics, University of Alabama at Birmingham, Birmingham AL, 35294 USA

Abstract
Background—Calorie Restriction (CR) research has expanded rapidly over the past few decades
and CR remains the most highly reproducible, environmental intervention to improve health and
extend lifespan in animal studies. Although many model organisms have consistently
demonstrated positive responses to CR, it remains to be shown whether CR will extend lifespan in
humans. Additionally, the current environment of excess caloric consumption and high incidence
of overweight/obesity illustrate the improbable nature of the long-term adoption of a CR lifestyle
by a significant proportion of the human population. Thus, the search for substances that can
reproduce the beneficial physiologic responses of CR without a requisite calorie intake reduction,
termed CR mimetics (CRMs), has gained momentum.

Material & Methods—Recent articles describing health and lifespan results of CR in nonhuman
primates and short-term human studies are discussed. Additional consideration is given to the
rapidly expanding search for CRMs.

Results—The first results from a long-term, randomized, controlled CR study in nonhuman
primates showing statistically significant benefits on longevity have now been reported.
Additionally, positive results from short-term, randomized, controlled CR studies in humans are
suggestive of potential health and longevity gains, while test of proposed CRMs (including
rapamycin, resveratrol, 2-deoxyglucose and metformin) have shown both positive and mixed
results in rodents.

Conclusion—Whether current positive results will translate into longevity gains for humans
remains an open question. However, the apparent health benefits that have been observed with CR
suggest that regardless of longevity gains, the promotion of healthy aging and disease prevention
may be attainable.
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Introduction
Research interest in aging and age-related disease progression has rapidly increased during
the last half century. Particularly over the last 2 decades, model organisms including yeast,
worms, flies and mice have produced a wealth of information demonstrating an interaction
between genes and environment in determining longevity. One particularly active area of
research has been the influence of diet on longevity and age-related disease. In this field,
calorie (energy) restriction (CR), sometimes referred to as dietary restriction (DR), has been
repeatedly shown to significantly increase lifespan and reduce age-related disease compared
with ad libitum (AL) feeding conditions. Other works report much of the background and
historical context for the benefits observed with CR [1;2]. The focus of this article is the
expected results of CR in primate models, including human outcomes, as well as the
potential of alternatives to CR, particularly the rapidly growing area of calorie restriction
mimetic (CRM) research, to improve health and delay death.

Should CR be expected to produce health and longevity benefits in
nonhuman primates?

Most CR research on longevity in mammals has been performed in rodents, with laboratory
mice, Mus musculus, predominant during recent history [1–3]. However, it should be noted
that a host of other organisms have shown similar benefits including yeast, nematodes, flies,
rotifers, spiders, fish, rats, hamsters and dogs [1–4]. Considering the breadth of organisms
that respond positively to CR, should it be expected that nonhuman primates would likewise
show similar results? There are two active randomized, nonhuman primate studies testing
the benefits of long-term CR on longevity and disease in rhesus monkeys, Macaca mulatta –
one at the University of Wisconsin at Madison and another at the National Institute on
Aging (NIA) [5–7]. A third, non-randomized study at the University of Maryland with a
smaller number of restricted monkeys on a weight maintenance diet has interpreted results in
the context of CR as well. [8–11]. The two randomized studies were begun approximately
two decades ago, such that results currently being reported benefit from the forethought of
multiple researchers [5;7].

The recent results reported by Colman et al. (2009) are the first results from the Wisconsin
CR study showing a significant benefit in reducing age-related mortality and disease with
CR in rhesus monkeys [12]. When measuring mortality in a longevity study, consideration
should be given to the cause of death, when possible. This can be exemplified by a study
subject who dies in an accident (e.g. an automobile collision), which results in a mortality
event, but not necessarily a result of the experimental treatment or aging process. In a
similar way, even in a well-controlled longevity study, animals can encounter “accidents”
which result in mortality, potentially independent of their underlying biological aging
process. Thus, after censoring monkeys for what were considered non-age-related mortality
events, like gastric bloat, anesthesia complications, endometriosis and injury (7 control and
9 CR monkeys), a significant lifespan benefit with CR (P=0.03 [Cox Regression Analysis])
was observed (age-related mortality events/group: Control:n=14, CR:n=5) [12]. However,
when assessing “all-cause” mortality in all monkeys in the study and considering the interim
mortality results for each group (all cause mortality events/group: n=21/38 control and 14/38
CR), CR does not currently provide a statistically significant lifespan increase (P=0.16 [Cox
Regression]), although there is a difference in the expected direction [12]. The significance
of the lifespan benefit observed on “age-related” mortality with CR is noteworthy,
considering the reduced power of this analysis due to the relatively small sample size [12].

Although the demonstrated health and lifespan benefits are significant findings, a number of
previously published interim reports and other studies have suggested the plausibility of this
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outcome. Similar to rodents, CR in rhesus monkeys results in reduced circulating glucose
and improved insulin function, decreased core body temperature, decreased body weight and
fat, improved blood lipids and maintenance of dehydroepiandrosterone levels [8;9;13–23].
Despite the delay in knowing the final outcome of the full longevity study, the positive
outcomes of the available data merit consideration. For example, CR resulted in a significant
reduction of age-related diseases, when considering neoplasias, glucoregulatory impairment
and cardiovascular disease (respective incidence controls: 8, 16, 4 vs. CR: 4, 0, 2) [12]. This
reduction of age-related disease and a potential increase in longevity are promising, although
the results on total mortality are not yet definitive with CR [12]. Moreover, results
demonstrating a significant benefit on longevity in the NIA's CR monkey study are not yet
available [24;25]. However, available data point to a reduction in disease risk and incidence.
Based on these prospects, if CR does indeed improve health and potentially increase lifespan
in monkeys, will it do so in humans?

Even if CR works in monkeys, will CR work in humans?
Extensive knowledge exists about human responses to energy restriction or CR. However,
with a few notable exceptions [26–28], the supporting data are largely derived from the
implementation of a dietary reduction to cause weight loss among overweight or obese
persons. As informative as this may be, the ultimate question of whether CR will extend
longevity and slow age-related disease in humans cannot be answered in the context of pre-
existent obesity. By CR, one could simply be returning an unhealthy, disease-promoting
state back to the norm without altering the underlying aging process [29]. Others have
proposed this may be the case in rodent CR studies [30–33] and could potentially influence
the interpretation of the non-human primate studies as well. Although this may be a potential
confounder in laboratory studies of CR, it also has implications for the majority of the
human population in the developed world, particularly with the rise in overweight/obesity
prevalence in modern times [34]. Nevertheless, the ultimate question of whether CR alters
aging and disease in otherwise healthy individuals has much less data available. One
argument proposes that CR is not a universal phenomenon, and in combination with the
variability of the response, the life history theory of longevity suggests there is no reason to
believe that the relatively small reproductive costs of humans will result in a favorable
tradeoff of lifespan extension [29;35;36]. On the other hand, because of the breadth of
organisms that respond favorably to CR, the potentially conserved molecular and cellular
mechanisms, and the evidence from the nonhuman primate and short- to medium-term
human studies, it is reasonable to expect that the observed health benefits would translate
into longevity gains [37–39].

To better address this question, the NIA has recently funded a multi-site human randomized
clinical research study to assess the effects of two years of CR (~25% restriction) in non-
obese, healthy individuals through the CALERIE study (Comprehensive Assessment of
Long-Term Effects of Reducing Intake of Energy) (http://calerie.dcri.duke.edu/index.html).
Preliminary results from these human studies are reproducing many of the metabolic and
physiologic responses observed in rodents and monkeys. These include reduced body
weight, along with reductions in subcutaneous fat, visceral fat and lean muscle mass,
reduced insulin and improved lipid profiles, reduced energy expenditure and core body
temperature [40-50]. Assuming this type of dietary restraint is sustainable beyond the short
term (six-month to two-year) duration of the study one would expect these physiological
changes to predict a reduction in age-related disease. Researchers have also studied
volunteers who have adopted a self-restricted lifestyle and maintained it for longer durations
than the current CALERIE study [51–56]. In agreement with the research results from
animal studies, voluntary CR in humans results in significant improvements in
cardiovascular profiles, glucose control, body composition and circulating hormones [51–
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56]. The combined results from these randomized control studies and the self-restriction
groups demonstrate that CR has beneficial short-term physiological effects in humans,
particularly contributing to a reduction in cardiovascular and metabolic-related diseases risk
factors, conditions which account for a significant proportion of the healthcare related costs
and morbidity/mortality in the US [57;58]. Whether long-term CR would significantly
increase longevity in humans will likely remain a matter of debate. The advancement of
alternative restriction paradigms may ultimately aid in understanding this potential. Two
types of DR, alternate day/intermittent fasting, sometimes called every other day feeding,
and single nutrient restriction (e.g. protein or methionine restriction), are increasingly
reported to produce positive health and longevity benefits similar to sustained, daily CR
[59–68]. Although current data are intriguing and suggestive of potential implications for
human health, these interventions also lack a clear, defined mechanism of action, much like
CR. Future studies in a variety of organisms with varied dietary compositions will be
necessary to further validate the significance of these findings.

Is there a short-cut to CR? Progress in mimetics research
As it is impractical and of questionable desirability to maintain long-term CR, starting in
early life in humans and sufficient to produce beneficial effects on health and longevity
commonly observed in the laboratory models, other alternatives have been pursued. It is
proposed that identifying the genetic and physiological mediators of CR could aid in the
discovery of compounds/treatments that would act on those pathways, thereby mimicking
the positive aspects of CR without imposed food restriction [24;69–73]. An ideal calorie
restriction mimetic (CRM) is proposed to: i) produce metabolic, hormonal and physiological
effects similar to CR, ii) not induce a significant reduction of long-term food intake, iii)
activate stress response pathways similar to CR iv) while providing beneficial effects on
mortality and age-related disease [70]. This area of research has progressed rapidly over the
past decade as large-scale genomic, proteomic and metabolomic studies are performed in
model organisms, attempting to unravel the complex interactions of genetics and nutrition
that regulate aging and disease [74–85]. The National Institute on Aging has established the
Interventions Testing Program
(http://www.nia.nih.gov/ResearchInformation/ScientificResources/InterventionsTestingP
rogram.htm) as a multi-institutional program to collaborate with partner researchers and test
substances predicted to “extend lifespan and delay disease and dysfunction” [86–91]. Thus
far approximately a dozen agents have been investigated in the program, yielding both
promising and mixed results (see Table II). The structure of the program utilizes three
separate test sites (the University of Michigan, the Jackson Laboratories and the University
of Texas Health Sciences Center at San Antonio), with each candidate compound being
tested for longevity effects in a total of 108 female and 132 male mice (n=36/F, 44/M per
site) and untreated control groups with twice as many mice (n=72/F, 96/M per site) [87;88].
This provides a sufficient sample size to detect a 10% change in mean lifespan with 80%
power even if data from one site is for some unforeseen reason unusable [87;88;90]. Results
from one of the most recent test compounds, rapamycin, are discussed below.

Resveratrol
Of the CRMs thus far investigated, few have received more attention than resveratrol.
Resveratrol is a plant-derived polyphenol, most well known for its presence in the skins of
red grapes. Studies in yeast, worms and flies over the past decade have suggested that CR
works by activating members of the Sirtuin family of protein de-acetylases to mediate the
lifespan benefits [92–96]. Resveratrol is reported to activate Sir2 [97], thus mimicking the
benefits of CR in the absence of actual nutrient alteration [97]. Additionally, treatment with
resveratrol is reported to mimic CR by increasing lifespan in yeast, worms, flies and fish,
potentially through the activation of sirtuins [97–100]. However, the fundamental role of the
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sirtuins in mediating the benefits of CR in yeast has been challenged by demonstrations that
CR can extend lifespan in the absence of Sir2 or other sirtuins [101–104], while the in vivo
activation of Sir2 by CR or resveratrol to extend lifespan has been challenged in multiple
organisms [105–113]. Recent reports have expanded previous work which showed the in
vitro activation of SIRT1 by resveratrol is substrate specific, challenging the basic
mechanism of sirtuin activating compounds currently being tested [105;114–116].

Despite these disparate data, it appears resveratrol treatment produces a transcriptional
response similar to CR [117], and in the presence of a high-fat diet, both health and
longevity benefits have been reported [118]. However, when resveratrol was added to a
normal diet, no significant lifespan benefits were observed in mice [119], suggesting it is not
a true CRM. Based on the current data, resveratrol supplementation produces a variety of
physiological benefits [120], but whether these are mediated by the sirtuins and are a bona
fide mimic of CR is questionable and will require further data and clarification [105;114–
116].

Rapamycin
Rapamycin (RAP), another proposed CRM, is an antibiotic and inhibitor of TOR (Target of
Rapamycin) signaling in cells, with known immunosuppressive and anti-proliferative effects
[121]. TOR has been identified as a mediator of nutrient signaling in cells, and is proposed
to play a role in aging and the CR response [121–131]. A recent ITP study reported a
significant mean lifespan extension in both male (9%, P<0.0001 [log-rank test]) and female
(13%, P<0.0001 [log-rank test]) mice fed a standard diet and administered RAP beginning at
approximately 20 months of age [90]. This is the first compound to provide such robust
lifespan benefit in the ITP. Interestingly, CR is usually initiated prior to 6 months of age,
and although CR can extend lifespan even when started at older ages [1;132] the effect at
older ages is less pronounced and less reliable [3]. Notwithstanding the increase in lifespan,
no significant differences were observed in the distribution of lesions found at necroscopy
with RAP treatment, suggesting the longevity benefits of RAP treatment may be mediated
by pathways partially independent of the normal CR response [90]. However, no measures
of glucose, insulin or body temperature were reported to permit a comparison of RAP
treatment with the expected results of CR, although body weight was not reduced with RAP
treatment [90]. The authors recognized and reported differences in the composition of the
pre-study diets, which although all were based on the same standard (NIH-31), varied in the
specific formulations [90]. Nevertheless, one of the test sites (The Jackson Laboratory)
utilized the control diet for the duration of the study and observed a significant increase in
lifespan in both male (P=0.02 [log-rank test]) and female (P<0.0001 [log-rank test]) mice
[90]. An additional cohort of mice with RAP treatment initiated at 9 months of age will
likely further validate the potential benefit of RAP on lifespan [90]. A fundamental question
that arises from these results is whether CR, when combined with RAP treatment, would
provide additional health and lifespan benefits, particularly if RAP is acting on the pathways
mediating CR's longevity effect? Likewise, these results should be tempered with the reality
that RAP is used as an immunosuppressant, of limited consequence in rodent longevity
studies since mice are maintained in specific pathogen free facilities. However, its utility for
administration to healthy humans, which rely on a robust immune system in daily life, is
currently unclear.

Other Potential CRM
Metformin—A hallmark of the CR response is reduced circulating glucose and insulin,
while the role of insulin/IGF-1 in aging has received much support from model organism
studies [133–137]. Therefore, it was proposed that drugs that could reduce insulin and
glucose would be potential CRM candidates [24;70;133]. The biguanide metformin is used
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in the treatment of diabetes where it functions to suppress gluconeogenesis and increase
insulin sensitivity [138], suggesting it could mimic CR. Metformin is also reported to
partially mimic the CR transcriptional response in mice [80] and increase median lifespan in
C. elegans [139]. In addition, a number of studies have shown that metformin and related
biguanides, phenformin and buformin, delay the incidence and development of cancers and
other disease conditions [134;140–149]. However, a test of metformin as a CRM with a
normal diet and in a non-disease rodent model has not been reported. To address this
deficiency, a longevity study of healthy male Fischer-344 rats fed a standard diet with
metformin supplementation (300 mg/kg/day) has been performed. Metformin did not
significantly increase lifespan compared to control rats (unpublished data), although only
one dose of metformin was tested and the CR group did not extend maximum lifespan in the
study. Therefore, we await data showing a significant lifespan benefit in the absence of a
disease state with metformin supplementation before a final verdict regarding its status as a
true CRM.

2-Deoxyglucose—2-Deoxyglucose (2DG) is a non-metabolizable glucose analogue,
which is taken up by cells where it accumulates while inhibiting glycolysis [69;133]. Thus,
2DG is proposed to reduce the metabolic flux of glucose, resulting in a reduced energetic
flow in cellular metabolism resembling CR [69;133]. However, one difficulty with 2DG is
the dose dependent inhibition of basic cellular function, resulting in toxicity with increasing
concentration [70;133]. Preliminary experiments with 2DG supplementation resulted in
lowered plasma insulin and body temperature, similar to CR [133]. When administered
long-term by diet supplementation (either 0.2% or 0.4% 2DG) in male Fischer 344 rats,
rather than increasing lifespan, a dose-dependent reduction in lifespan was observed [150],
suggesting there is a fine line between pharmaceutically mimicking the effects of CR with
2DG without causing toxicity and death [72].

Longevity and Quality of Life, do we desire one without the other?
Should we be concerned about the potential for increased human lifespan? Clearly life
expectancy has risen over the last century and appears to be continuing to do so, although
disagreement exists regarding the potential of future increases [151–156]. However, some
reports warn of a potential plateau or impending reversal of these lifespan gains in
developed countries as a result of multiple factors, perhaps most notably the current obesity
epidemic [157]. What is of most concern is the potential that lifespan will increase, while the
onset of age-related disease and co-morbidity will remain the same, resulting in the
unpleasant outcome of reduced quality of life for a greater duration in old age. Although
much of aging research has focused on lifespan, the number of days of life until death, an
alternate measure of aging termed the healthspan, or the length of time prior to the onset of
age-related disease, has been considered and may be of particular importance to humans as
life expectancy continues to increase [158–161]. The results from the Wisconsin Rhesus
monkey CR study [12], as well as other nonhuman primate studies, suggest even if longevity
benefits are realized with CR, they may be secondary to the health gains achieved. Thus, the
academic or esoteric question of whether lifespan can be truly extended by CR in humans
may not be as important as the potential prolongation of healthspan. If these types of health-
promoting and disease-reducing results can be achieved in humans, as short-term CR studies
suggest, the answer may be that quality of life can be extended, potentially into advanced
age. Likewise, the search for CRMs that extend lifespan, without altering the underlying
disease pattern, would be of little utility. Therefore, careful examination of multiple
outcomes beyond lifespan should be considered in any CRM intervention study to assess the
effect on disease. Further study to identify the central pathways which mediate the beneficial
responses of CR should be of high priority as these may serve as useful targets for
interventions to improve health and possibly lifespan.
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Concluding Remarks
The recent reports of Colman et al. (2009) and Harrison et al. (2009) illustrate the potential
of translating fundamental discoveries across organisms in the effort to retard aging and
disease. Due to the nature of a longevity study in primates, the final answer regarding the
effect of CR on total and maximal lifespan is still probably a decade away. Whether these
types of interventions will reduce disease incidence/severity and increase lifespan in humans
is still unknown. Nevertheless, these results are pointing in a positive direction and suggest
that finding a means to implement or mimic the CR response in humans could significantly
affect the health and well-being of our species, regardless of the eventual lifespan result.
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Table I

Abbreviations

AL Ad libitum

CALERIE Comprehensive Assessment of Long-Term Effects of Reducing Intake of Energy

CR Calorie Restriction

CRM Calorie Restriction Mimetic

2DG 2-Deoxyglucose

ITP Interventions Testing Program

NIA National Institute on Aging

RAP Rapamycin

TOR Target of Rapamycin
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