

Psychiatr Genet. Author manuscript; available in PMC 2012 February 1.

Published in final edited form as:

Psychiatr Genet. 2011 February; 21(1): 51–52. doi:10.1097/YPG.0b013e328341333f.

Association study of polymorphisms in the autosomal mitochondrial complex I subunit gene, NADH dehydrogenase (ubiquinone) flavoprotein 2 (*NDUFV2*), and bipolar disorder

Glenn A. Doyle, John P. Dahl[§], Paul J. Bloch, Andrew E. Weller[‡], Falk W. Lohoff, Thomas N. Ferraro, and Wade H. Berrettini

Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA

Summary

The mitochondrial dysfunction hypothesis of bipolar disorder (BPD) was proposed based on a maternal inheritance pattern in family-based studies (McMahon *et al.*, 1995). For the BPD linkage signal around human chromosome 18p11.2, Gershon *et al.* (1996) found a parent-of-origin effect only when maternal *and* paternal inheritance was considered. An *autosomally* encoded mitochondrial protein imported into mitochondria to perform important functions might explain this finding. *NDUFV2*, encoding the 24 kDa subunit of mitochondrial complex I, is one such gene found within the aforementioned BPD linkage region.

Single nucleotide polymorphisms (SNPs) in *NDUFV2* showed nominally significant associations with BPD in various ethnic populations (Washizuka et al., 2003; Xu et al., 2008; Zhang et al., 2009). To replicate or extend these findings, we studied three SNPs in *NDUFV2* (Chr18:9,102,675-9,134,336; build GRCh37:Feb2009:hg19): -3188C>T (rs2377961, Chr18:9,099,554) and -602G>A (rs1156044, Chr18:9,102,140) in the promoter, and +86C>T (rs906807, Chr18:9,117,867), a missense (A29V) SNP in exon 2, using the National Institute of Mental Health (NIMH) Caucasian control (no psychiatric or chronic neurological disease history) and BPDI (ascertained by DSM-IV criteria) populations. Informed consent was obtained from all individuals according to Institutional Review Board (IRB) requirements. 741 control and 569 BPDI individuals were genotyped using the Taqman® Genotyping Assay system (Applied Biosystems, Inc., Foster City, CA). Individuals with "undetermined" genotypes at any locus, representing 1.5% of control and 6.0% of BPDI samples, were removed from further analysis. Thus, 730 control and 535 bipolar individuals were included in our data analyses.

All SNPs were in Hardy-Weinberg equilibrium (rs2377961, BPDI p=0.140, Controls p=0.281; rs1156044, BPDI p=0.494, Controls p=0.794; rs906807, BPDI p=0.408, Controls p=0.889). rs2377961 was in strong LD with rs1156044 (D'=0.843, r²=0.288) and rs906807 (D'=0.832, r²=0.325), and rs1156044 was in strongest LD with rs906807 (D'=0.914,

Corresponding Author: Glenn A. Doyle, Translational Research Laboratories, Room 2109, 125 South 31st Street, Philadelphia, PA 19104, phone: 215-573-4583, gadoyle@mail.med.upenn.edu.

Current address: University of North Carolina, Chapel Hill, NC

[‡]Current address: Drexel University College of Medicine, Philadelphia, PA

Doyle et al. Page 2

 r^2 =0.721). There were no statistically significant associations between genotypes and BPDI at rs2377961 (X^2 =3.873; p=0.144), rs906807 (X^2 =4.711; p=0.095) or rs1156044 (X^2 =5.798; p=0.055). Neither allele at rs2377961 (X^2 =0.572; p=0.449) showed association with BPDI; however, the "A" allele at rs1156044 (X^2 =5.362; p=0.021) and "C" allele at rs906807 (X^2 =4.173; p=0.041) were nominally associated with BPDI. Notably, association of the "A" allele at rs1156044 agrees with a study of a smaller Caucasian population (X^2 at al., 2008), but is opposite the trend observed for BPDII in a Japanese population (Washizuka et al., 2003). While our findings may bolster those of X^2 at al. (2008), statistical significances of the allelic associations in the present study were not upheld after Bonferroni correction (α =0.0167 for 3 tests).

Washizuka *et al.* (2003) found association of a "CTGT" promoter haplotype in *NDUFV2* with BPD, where "G" is rs1156044. Haplotype (rs1156044-rs906807) analysis of our data revealed no statistically significant association of the "GT" (X^2 =2.765; p=0.096) or "AT" (X^2 =1.259; p=0.262) haplotypes, but the "AC" haplotype showed statistical significance (X^2 =7.033; p=0.008) after Bonferroni correction (α =0.0125 for 4 haplotype comparisons). However, after 10,000 permutations of our data, no associations remained statistically significant (lowest permutation adjusted p-value=0.064 for the "AC" haplotype). Thus, we cautiously conclude that the "AC" haplotype in *NDUFV2* may be associated with BPDI in this Caucasian population.

Acknowledgments

This work was funded by grants to WHB by the Tzedakah Foundation, a grant from NIH (R01 MH59553) and a grant from Philip and Marcia Cohen. Falk Lohoff was supported by the Daland Fellowship Award from the American Philosophical Society and by NIH grant K08 MH080372.

References

- Gershon ES, Badner JA, Detera-Wadleigh SD, Ferraro TN, Berrettini WH. Maternal inheritance and chromosome 18 allele sharing in unilineal bipolar illness pedigrees. Am J Med Genet. 1996; 67:202–207. [PubMed: 8723048]
- McMahon FJ, Stine OC, Meyers DA, Simpson SG, DePaulo JR. Patterns of maternal transmission in bipolar affective disorder. Am J Hum Genet. 1995; 56:1277–1286. [PubMed: 7762550]
- Washizuka S, Kakiuchi C, Mori K, Kunugi H, Tajima O, Akiyama T, et al. Association of mitochondrial complex I subunit gene NDUFV2 at 18p11 with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet. 2003; 120B:72–78. [PubMed: 12815743]
- Xu C, Li PP, Kennedy JL, Green M, Hughes B, Cooke RG, et al. Further support for association of the mitochondrial complex I subunit gene NDUFV2 with bipolar disorder. Bipolar Disord. 2008; 10:105–110. [PubMed: 18199248]
- Zhang J, Li X, Wang Y, Ji J, Yang F, Feng G, et al. Association study on the mitochondrial gene *NDUFV2* and bipolar disorder in the Chinese Han population. J Neural Transm. 2009; 116:357–361. Epub 2009 Feb 5. [PubMed: 19194776]