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Abstract
Purpose—Statistical and cost efficiency can be achieved in population-based samples through
stratification and/or clustering. Strata typically combine subgroups of the population that are
similar with respect to an outcome. Clusters are often taken from pre-existing units, but may be
formed to minimize between-cluster variance, or to equalize exposure to a treatment or risk factor.
Area probability sample design procedures for the National Children’s Study required contiguous
strata and clusters that maximized within-stratum and within-cluster homogeneity while
maintaining approximately equal size of the strata or clusters. However, there were few methods
that allowed such strata or clusters to be constructed under these contiguity and equal size
constraints.

Methods—A search algorithm generates equal-size cluster sets that approximately span the space
of all possible clusters of equal size. An optimal cluster set is chosen based on analysis of variance
and convexity criteria.

Results—The proposed algorithm is used to construct 10 strata based on demographics and air
pollution measures in Kent County, MI, following census tract boundaries. A brief simulation
study is also conducted.

Conclusions—The proposed algorithm is effective at uncovering underlying clusters from noisy
data. It can be used in multi-stage sampling where equal-size strata or clusters are desired.
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Introduction
Population-based sample surveys often use stratification for statistical efficiency and cluster-
based sampling for cost efficiency. Stratification is a general tool that allows samplers to
take advantage of known homogenous groupings in a population to reduce variance.
Clustering is often enforced by natural cost efficiencies arising when real-world data
collection is required. Thus area-probability samples are almost always required to make
data collection feasible in face-to-face surveys, allowing interviewers to make trips to an
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order-of-magnitude fewer neighborhoods than the total number of interviews obtained.
Clustering may also be necessary when local exposure data is required that is not available
from administrative sources such as the Census, for example neighborhood disorder
measures or environmental samples. An additional feature of strata and cluster formation in
many epidemiologic survey settings is the need to construct geographically compact strata
or clusters.

Although methods have long been available for analyzing data obtained from stratified and/
or clustered sample designs (Cochran 1977), these strata or clusters are usually taken from
existing physical or governmental entities, such as schools or Census tracts. When the
clusters themselves can be constructed as part of the sample design, we have the opportunity
to build desired features into the sample design, akin to traditional methods of stratification,
where we can use our knowledge of the structure of the variability in the population to
reduce variability in our sample. There are many techniques available to discover
parsimonious structures in complex datasets. These include nonparametric algorithmic
approaches such as dendrograms or classification and regression trees (LaVarnway 1988) or
aggregation procedures such as k-means algorithms (MacQueen 1967), and parametric
statistical procedures such as Gaussian mixture models (McLachen and Peel 2000).
However, there appears to be little formal survey sampling literature in this area. One
exception is Cantwell (1990), who describes the US Census Bureau method of constructing
equal characteristic clusters (ECCs) in which the between-cluster variance is reduced by
ordering observed covariates X that are proxies for the outcome of interest Y. Units with the
largest and smallest values are paired together, then units with the second-largest and
second-smallest values, and so forth; this process is then repeated (M−1) times to form
clusters of size 2M. This decreases the between-cluster variance  and yields small values

of , the intra-cluster correlation that determines the statistical efficiency of the
design. Since larger values of ρ are associated with reduced efficiency (e.g., if samples of
equal size n are drawn from clusters of equal size N, the efficiency of the mean estimator is
given by [1 + ρ(n −1)]−1), the ECC method should improve efficiency, although in practice
gains appears to be very limited (Cantwell 1991). In neither the Cantwell papers nor the
much broader class of cluster analysis literature are there methods that enforce equal size
constraints or geographic continuity.

The methodology proposed here is motivated by the sample design for the National
Children’s Survey (NCS). The NCS is a prospective cohort study of the antecedents of
pediatric health and disease in a probability sample of 100,000 US births, to be followed
prenatally through age 21 (Landrigan et al. 2006). The NCS is currently designed as a multi-
stage area probability sample of births, with the first stage consisting of a probability-
proportional-to-size (PPS) sample of 105 primary sampling units or PSUs (mainly US
counties, but sometimes groups of very small counties or parts of very large counties).
Within each of these 105 PSUs 10–15 approximately equal-size strata are to be constructed,
using a size measure based on the predicted number of births over a four-year recruitment
period. Within each stratum approximately equal-size sample segments are constructed
sufficient to yield a total of 250 births per year within the PSU. One segment within each of
the strata will then be sampled, with recruitment attempted for all births in the sample
segment. In urban PSUs, an intermediate stage of sampling will occur within each stratum,
with equal-sized “geographic unit” (GU) clusters constructed and a single GU sampled
within which the sample segments will be constructed and sampled. This reduces the need to
create a very large number of sample segments when only 10–15 will actually be used. The
goal of the stratification is, as usual, to reduce within-stratum variance to improve statistical
efficiency. In contrast to most survey sample settings, however, GU and segment formation
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also attempts to minimize within-cluster variance. This is done for two primary reasons: to
maximize community outreach efforts within reasonably homogeneous communities, and to
allow for accurate estimation of local environmental exposures.

A key distinguishing feature in the NCS sample design is the need to maintain equality of
size while forming strata and clusters that are geographically compact and homogeneous
with respect to measures that are predictive of pediatric health outcomes of interest.
Geographic compactness greatly decreases the cost of recruitment and household data
collection, while maintaining approximate equality in size at the stratum level maintains an
approximately equal probability of selection sample design, reducing design effects due to
selection weights. A second-stage PPS design could be implemented at the GU or segment
level with unequal cluster sizes, but for quality control reasons an (approximately) equal-
size requirement was maintained here as well. Traditional nearest-neighbor clustering
algorithms such as k-means do not provide ways to generate clusters of equal size. Standard
methods for forming equal-size strata typically do not incorporate geographic or other forms
of distance constraints. Hence we developed a simple clustering algorithm for constructing
reasonably compact candidate clusters that maximize the between-to-within cluster variance
for proxy measures of pediatric health. We describe the algorithm and apply it to create
equal-size clusters within Kent County, Michigan. (Kent County is not one of the PSUs
sampled for the NCS; for confidentiality reasons we do not show results for the NCS
counties for which this method was developed). We also consider a simulation study to
illustrate the effectiveness of the algorithm.

Methods
The proposed algorithm generates clusters of approximately equal size by trying all possible
areas as initial “seeds” around which local areas are attached until the proper size is
obtained. The areas used to start the seeds are varied from being near to distant from each
other. The goal is not to explore the entire space of possible clusters, but to search through
an approximation of that space using a reasonable set of seed values to grow the clusters.

Let K be the number of clusters desired from a set of n geographic units with a total
population of N:

1. Order geographic units from 1 to n (any method for ordering is acceptable).

2. Compute an n × n distance matrix between units i and j using centroid longitude
and latitude points.

3. Use the first unit as a “seed” to construct the first candidate cluster. Add tracts to
this cluster in the order of their distance from the seed tract, until the population of
the cluster is greater than ⌊N/K − N/2n⌋, where ⌊x⌋ is the integer part of a real-
valued number x.

4. Choose the seed tract for the second candidate cluster as the next closest tract to the
first seed cluster that was not previously included in the first cluster. Add tracts not
already assigned to the first cluster to this second cluster in the order of their
distance from the second seed tract, until the population of this second cluster is
greater than ⌊N/K − N/2n⌋.

5. Repeat 4), this time choosing as the second seed tract the second-closest tract,
third-closest tract, and so forth, through all tracts not included in the first candidate
cluster. For all pairs of candidate clusters, conduct a one-way analyses of variance
using the two candidate clusters and the outcome proxy, treating the remaining
clusters as a residual third cluster. A multivariate analysis of variance can be
conducted if the outcome proxy is multivariate. Choose the second seed tract that
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produces the maximum R2 value (if between-to-within cluster variance is to be
maximized) or the minimum R2 value (if between-to-within cluster variance is to
be minimized) to construct the second cluster.

6. Repeat 4) and 5) for the third through K−1 clusters, each time choosing the seed
tract that maximized(minimized) the between-to-within cluster variance. The
unassigned tracts become the Kth cluster.

7. Repeat 3)–6), starting with the second unit in the ordering defined in 1) as seed for
the construction of the first cluster, then the third ordered unit as a seed for the
construction of the first cluster, and so forth through all n units.

8. Conduct n one-way analyses of variance using the n sets of candidate clusters
defined in 7) and the outcome proxy. Compute n compactness measures as the
mean of the squared distances between all of the areas in each of the candidate

clusters defined in 7): , where k indexes cluster assignment for the
ith and jth areas and mk is the number of area pairs within the kth cluster.

9. From 8), choose the cluster set that provides the largest R2 value (if between-to-
within cluster variance is to be maximized) or the smallest R2 value (if between-to-
within cluster variance is to be minimized), or, if compactness is of interest, a plot
of the residual variance against the distance measure can be examined and the
cluster set that is at the upper- or lower-left of the plot chosen.

A sketch of R code for this algorithm is provided at the author’s home page at
http://www.sph.umich.edu/~mrelliot/.

Results
Application to Kent County, Michigan

We consider constructing 10 approximately equal size strata out of the 126 Census Tracts in
Kent County, Michigan. Kent County is a large county in western Michigan (2000
population 574,335; area 872 square miles). The county seat is Grand Rapids, and while it
dominates the county’s population, over half of the county’s area is exurban or rural. Our
measure of size is the number of children under the age of 5 in each tract as measured in the
2000 Census.

We begin by conducting a factor analysis as a preliminary data reduction step. The factors
on which we wish to cluster include the following racial, socio-economic status (SES), and
dwelling unit factors from the 2000 Census

• Percent African-American

• Percent Hispanic

• Percent with less than a high school education

• Percent with 4 years of college or more

• Percent employed

• Per capita income

• Percent below the poverty level

• Median year structure built (before 1940 coded as 1940)
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• Median owned housing unit value

• Percent of housing units vacant

as well as summary measures of neurological and respiratory air pollution from the 2002
National-Scale Air Toxics Assessment (http://www.epa.gov/ttn/atw/nata2002/tables.html).
These factors were chosen to mimic the NCS as being predictive of pediatric health
outcomes, although any relevant factors to a study of interest could be used. The value .001
was added to all proportions, and all variables except for median year of construction were
then log-transformed. These transformed variables were standardized to have mean 0 and
variance 1. A factor analysis was then performed to summarize the factors as
parsimoniously as possible. Three factors were determined to be sufficient on the basis of a
screen plot; they are defined in Table 1. These three factors explained 81% of the variance in
the Kent County 2000 Census and 2002 National-Scale Air Toxics Assessment variables.
The first factor is an “education” factor that loads heavily positively on college education
and per capita income, and negatively on a less than high school education; the second
factor is a “pollution” factor that loads heavily on the air pollution measures; the third factor
is a “disadvantage” measure that loads heavily on poverty, vacancy rates, and percent
African American.

To assist is choosing the best set of the proposed clusters, Figure 1 plots the total residual
variance from the ANOVA of the three factors on the 126 proposed clusters against mean
squared distance between census tracts within proposed clusters. The circled cluster has the
best combination of small residual variance and small within-cluster distances among the
census tracts within each cluster.

Figure 2 shows a selection of the geographic distribution of some of the variables that where
used to create the factor scores: the proportion of the Kent County population that is
African-American; the proportion 25 and older that has less than a high-school education;
the proportion living below the poverty line; and the distribution of respiratory pollutants.
(All levels are log-transformed to reduce skewness.) Figure 3 shows the proposed 10
clusters based on the “education,” “pollution,” and “disadvantage” factors, compared against
a street map of Kent County.

The residual variance from the 10 cluster mapping in Figure 3 is 1.11. The total variance
across the three factor scores is 2.57, indicating that the clusters absorb about 57% of the
variance in the factors across the Census tracts. The clusters are nearly equal in size as well,
with the smallest (4,279) being 94% the size of the largest (4,554), and a coefficient of
variation of 2%. The algorithm appears to have clearly delineated Grand Rapids from the
remainder of the county, and has separated out the inner-city core from the suburban
neighborhoods. Further divisions appear between the suburban areas and the rural/forested
regions of the county. The proposed clusters are reasonably compact.

Simulation Study
To explore the characteristics of the proposed algorithm in a controlled setting, we simulated
a scalar outcome variable in a 9 × 9 map of equally spaced “tracts.” These tracts were
structured as a 3 × 3 set of cells, each consisting of a 3 × 3 set of tracts of equal means, with
the means in each set of cell increasing by three units from the upper left to the lower right
of map (see Table 2). We then considered three sets of simulations by generating the
outcome variable for clustering by adding normally-distributed error terms with means of 0
and variances of 1, 10, and 100. For each simulation, we used the proposed algorithm to
create 9 clusters. Each tract was assumed to have a population of 1,000. A total of 50
simulations were generated for each set.
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Figure 4 reports the results of this simulation by plotting an intensity map of the outcome
data and the associated clusters derived using the proposed algorithm for the simulation
associated with the 10th percentile of residual variance and for the simulation associated
with the 90th percentile of residual variance. When the signal-to-noise ratio is low (residual
variance equal to 1) and thus clusters are clearly defined visually, the algorithm always finds
the correct cluster formation. As the residual variance increases and the clusters become
visually muddled (residual variance equal to 10), the algorithm continues to approximate the
underlying correct cluster formation. Even when the signal-to-noise ratio is extremely high
(residual variance equal to 100) and the visual image of the clusters is completely lost, the
algorithm continues to pick up some semblance of the true underlying clusters.

Conclusions
This manuscript proposes an algorithm that generates either homogenous strata and clusters
or heterogeneous strata and homogeneous clusters of geographic units of approximately
equal population size, for use in complex sample designs. By using a “seeding” mechanism
to generate clusters of a minimum size and using a search algorithm that maximizes or
minimized variance reduction for each generated cluster, approximately equal-size clusters
strata are generated. For strata, we will generally want to maximize variance reduction to
produce homogenous strata: in the Kent County application, this algorithm produced strata
that absorbed more than one-half of the variability of a set of SES and pollution variables.
For clusters, we might want to also maximize variance reduction to produce homogenous
clusters, as for the NCS, or to minimize variance reduction to produce heterogeneous
clusters, to minimize design effects from clustering.

Other homogeneity features can be incorporated in the design by “fixing” geographic units
as seed. In the Kent County application, Census tracts containing point sources of pollution
such as toxic waste dumps or incinerators could be fixed as seeds, forcing the point source
into the approximate center of the cluster. The remainder of the county would then be
assigned to clusters using the standard algorithm. Such restrictions in the cluster
construction would typically reduce the amount of variance absorbed into the clusters.

The proposed method is not without limitations. Large variations in size of the underlying
clusters can limit the flexibility in cluster construction; similarly, if the number of clusters is
large relative to the number of available units used to construct the cluster (so that the
average number of units per cluster is less than five), there may be more variability in the
size of clusters. If the true clustering in the data is relatively weak, or conversely if the
number of underlying clusters in the data are large relative to the number of clusters required
by the sample design, the convexity criterion enforced by the distance measure may not be
sufficient to generate completely contiguous clusters. An example of this can be seen in the
simulation study with high variance: see the maps of clusters in Figure 4(c). If contiguous
clusters are required, a final stage of cleaning “by hand” will be required to switch cluster
membership among the geographic units.

While equal-size cluster sample designs are commonly discussed in the survey statistics
literature because of they simplify computation of variance estimates, their use in general is
limited, although examples outside of the NCS do exist (Thapa et al. 1987; Garrouste 2010).
Part of the reason for this limited use may be due to the fact that, despite a large data mining
literature on cluster construction, methods that constrain clusters to be contiguous and to be
of equal size are lacking. Although this method was inspired by work on the National
Children’s Study, the methods proposed here could be used in any area probability sample
or other multi-stage sample where equal-size strata or clusters are desired.
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Figure 1.
Plot of total residual variance from ANOVA of three factors on proposed clusters against
mean squared distance in miles between census tracts within proposed clusters.
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Figure 2.
Log-percent of Kent County, MI population (a) African-American, (b) less than high school
education (25 and older), (c) in poverty; (d) log-level of respiratory pollutants: by Census
tract. Low levels are blue; high levels are pink.
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Figure 3.
Proposed 10 clusters for Kent County based on 3-level factor score, together with street map
(from http://michigan.hometownlocator.com/mi/kent/).
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Figure 4.
Simulation study using means given in Table 3 with normally distributed errors with mean 0
and variance (a) 1, (b), 10, and (c) 100. First row gives density map of observed data and
associated cluster results for 10th percentile of residual variance; second row gives
equivalent results for the 90th percentile of residual variance. Results from 50 simulations.
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Table 1

Factor Loadings for Racial, SES, Dwelling Unit, and Air Pollution Measures in the 126 Kent County Census
Tracts.

Factor 1 (“Education”) Factor 2 (“Pollution”) Factor 3 (“Disadvantage”)

% African-American −.214 .476 .628

% Hispanic −.642 .412 .349

% LT High School Education −.810 .226 .339

% College Education .994 −.060 −.191

% Employed −.482 .187 .487

Per Capital Income .784 −.256 −.453

% Below Poverty −.498 .377 .652

Median Year Structure Built .315 −.586 −.340

Median Housing Unit Value .752 −.244 −.312

% Vacant −.293 .037 .530

Neurological Toxins −.227 .840 .171

Respiratory Toxins −.071 .932 .086
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