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In a recent issue of Experimental Neurology, Hodgson et al. (2010) reported positive results
of late preclinical (non-human primate, NHP) studies of an adenosine A2A receptor
antagonist developed as a neurotherapeutic by Schering-Plough and now Merck. Preladenant
(a.k.a. SCH 420814) recently advanced to phase III clinical trials for antiparkinsonian
activity in early- as well as later-stage Parkinson disease (PD). Reflecting the therapeutic
promise of A2A antagonists for CNS disorders, preladenant is one of at least six independent
drug development programs targeting this G-protein-coupled receptor in clinical trials in
pursuit of an indication for PD and possibly other neuropsychiatric conditions. Preladenant
at the moment appears to have taken the lead in this pack of A2A therapeutic programs,
galloping ahead of others that also reached the phase III stage of clinical development on
what may be the home stretch of this exciting but tricky translational track.

Potential to reduce parkinsonism without bringing out dyskinesia?
Building on their similarly supportive preladenant data in rodent models of PD (Hodgson et
al., 2009), the authors now describe the effects of preladenant on parkinsonism as well as on
L-Dopa-induced dyskinesia (LID), in a model of relatively advanced PD using MPTP-
lesioned, L-Dopa-primed NHPs. In addition, preladenant was studied in a model of
neuroleptic-induced extrapyramidal symptoms (EPS). Six MPTP-treated monkeys with
stable parkinsonian syndromes were treated with either 1 or 3 mg/kg preladenant; 3, 6 or 12
mg/kg L-Dopa subcutaneously; or combination therapy (3 mg/kg L-Dopa plus 1 or 3 mg/kg
preladenant). Compared to vehicle, significant improvements in minimum and mean
parkinsonian scores were seen in animals treated with preladenant at a dose of 3 mg/kg, L-
Dopa at all doses and the combination of preladenant plus 3 mg/kg L-Dopa therapy. (The one
exception was that with 3mg/kg L-Dopa, improvements were in minimum parkinsonian
scores only, not mean scores.)

More to the point, combining this marginally threshold dose of L-Dopa with preladenant
resulted in significant improvement in minimum and mean parkinsonian scores compared to
low-dose L-Dopa alone. In a subgroup analysis, the three animals with the lowest baseline
parkinsonian score were found to have a greater reduction in parkinsonian score with
preladenant compared to the three animals with the highest baseline parkinsonian score.
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Given these findings, the authors suggest that preladenant may have more efficacy as
monotherapy in subjects with milder disease rather than those in later stages.

Locomotor activity was also significantly improved in animals treated with the combination
compared to vehicle, but this only appeared after post-hoc analysis. Locomotor activity
quantified by mobility counts on an automated electronic monitoring system represents a
less specific index of antiparkinsonian activity as it also picks up hyperkinetic behaviors.

The study also addresses the anti-dyskinesogenic potential of preladenant. Effective
antiparkinsonian doses of the A2A antagonist on its own produced not even a hint of
dyskinesias despite the fact that these MPTP-lesioned animals had been primed for them by
prior repeated L-Dopa treatment. In addition, it was suggested that preladenant showed no
synergistic or potentiating effects on dyskinesia when co-administered with a low dose of L-
Dopa. However, the combination produced a trend toward greater dyskinesia than with L-
Dopa alone, though no statistically significant increase was shown with the six animals
studied. It would be informative to also examine adjunctive preladenant with more effective
antiparkinsonian L-Dopa doses, as might be more relevant to adjunctive A2A antagonist use
in the relatively advanced PD patients being modeled under this paradigm.

The authors’ suggestion that adjunctive antiparkinsonian effects of preladenant might be
achieved in advanced PD without exacerbation of pre-existing LID is also tempered by prior
translational experience with istradefylline (a.k.a. KW-6002). Like preladenant, it had
shown no significant dyskinesogenic or LID-potentiating properties in NHP models of PD
(Kanda et al., 1998; Kanda et al., 2000; Grondin et al., 1999). However, when studied in
human subjects, istradefylline increased “on” time with dyskinesia compared to placebo
(Hauser et al., 2003) even though severity of dyskinesia was not significantly increased.
There was also an accompanying decrease in “off” time in patients on the study drug,
leading the authors to suggest that the increase in “on” time with dyskinesia may have been
preferable to patients than increased “off” time. Subsequent studies differentiated between
“troubling” and “nontroubling” dyskinesias. One showed that “on” time with troubling
dyskinesias were slightly but significantly increased compared to placebo, whereas there
were no significant differences in “on” time with any dyskinesia (troubling and nontroubling
combined) between istradefylline and placebo (Mizuno et al., 2010). A study by Stacy et al.
(2008) suggested a clinically meaningful reduction in “off” time without increased
troublesome dyskinesia, whereas LeWitt et al. (2008) showed an increase in “on” state
without troublesome dyskinesia. A study by Hauser et al. (2008) showed no significant
increase in “on” time with or without dyskinesia: troublesome, nontroublesome or both. It
remains to be established whether antiparkinsonian preladenant doses have an effect on
established LID in PD patients.

Potential to reduce extrapyramidal side effects of antipsychotics?
The authors also reported preladenant’s effect on development of extrapyramidal symptoms
(EPS) in animals treated with haloperidol. Preladenant at doses of 1 mg/kg and 3 mg/kg was
effective in significantly delaying the time to onset as well as decreasing the extent of EPS
in response to haloperidol. The findings lend support to the prospects of broadening the
application to other parkinsonian syndromes and related disorders of the basal ganglia
beyond those of PD. The authors thoughtfully point out the logical concern that any benefits
of A2A receptor antagonists in treating neuroleptic-induced EPS might be offset by possible
pro-psychotic effects, given the long-standing contention that A2A receptor agonists might
prove effective antipsychotic agents (Ferré, 1997). However, in animal models of the
disordered sensorimotor gating of psychosis, A2A antagonists have been found to have little
psychosis-inducing capacity (Weiss, et al., 2003). Moreover, in the clinical trials of these
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drugs reported to date, no significant increase in psychotomimetic events has been noted
even in relatively advanced PD subjects who have a reduced threshold for hallucinations and
other psychotic complications of therapy. In any event, the EPS findings support the
prospects of broadening the CNS applications of A2A antagonism from antiparkinsonian
actions to beneficial effects in other parkinsonian syndromes and related basal ganglia
disorders beyond PD.

Potential advantages over other A2A antagonists?
The current paper fills in the gap between published preclinical rodent data and preliminary
human trial results with preladenant (Hauser et al., 2009). It showcases its systematic
preclinical evaluation in a non-human primate model, which has demonstrated
neurochemical, anatomical and behavioral validity for PD. Thus it helps place preladenant in
good position for further clinical development in PD and related disorders.

But preladenant is not alone in targeting adenosine receptors to gain an indication as a
nondopaminergic antiparkinsonian agent. In addition to preladenant, istradefylline (as
above; originally developed by Kyowa), vipadenant (a.k.a. BIIB014; developed by Biogen-
Idec after licensing from Vernalis) and SYN115 (developed by Synosia and now UCB after
licensing from Roche) are also adenosine receptor antagonists with relative specificity for
the A2A subtype that have now advanced to phase II or III clinical trials for PD.
Istradefylline was at one point leading the pack but fell back in its prospects when a “not
approvable letter” was received from the US FDA (Kyowa Kirin Press Release, 2008).
Despite the setback, Kyowa Kirin pressed ahead with further phase III human trials for PD
in Japan, and has recently reported continued progress (Mizuno, et al., 2010). It also has out-
licensed a different A2A antagonist (KW-6356) for clinical development to Lundbeck,
another pharmaceutical company (Lundbeck Press Release, 2010), which had earlier
pursued its own A2A antagonist into the clinic (Lu AA47070) (Lundbeck Press Release,
2007). Vipadenant showed promise with positive results in phase II clinical trials based on
early reports (Papapetropoulos et al., 2010), but was recently shelved over preclinical
toxicology concerns. Biogen-Idec indicated its intent to return to the clinical starting gate
with a back-up candidate from Vernalis (Vernalis Press Release, 2010), reflecting the
promise of the target as well as their commitment to it. According to preliminary reports,
SYN115 was found in phase II trials to improve motor function without significant adverse
effects; functional imaging data corroborated its putative mechanism of action (Black et al.,
2010a, b). Another A2A antagonist, ST-1535 (developed by Sigma-Tau), has cleared phase I
human studies on a clinical development course toward an antiparkinsonian indication
(Pinna, 2009).

Moreover, non-selective adenosine antagonists like the long-approved antiasthmatic drug
theophylline and the ubiquitous dietary psychostimulant caffeine also have been or are being
pursued as antiparkinsonian therapy. The failure of early clinical trials of these adenosine
receptor blockers as symptomatic therapy may have reflected substantial limitations of trial
design or the pharmacological non-selectivity for the A2A receptor (Morelli et al., 2010). In
any event, the established long-term safety of these adenosine antagonists and their ready
availability and low cost have supported renewed consideration, with caffeine currently
undergoing re-examination in more careful PD trials (McGill University Health Center,
2009; 2010).

So how does preladenant compare to other candidates in this class? The authors suggest that
greater adenosine receptor subtype selectivity confers an advantage upon preladenant. They
emphasize the potential benefits of preladenant’s high selectivity for A2A over A1 receptors
with a greater than 1000-fold affinity ratio (Neustadt et al., 2007), compared to ~60-fold for
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istradefylline and only ~4-fold for caffeine (Fredholm et al., 1999). However, it remains
uncertain whether highly selective A2A receptor antagonists necessarily have greater anti-
parkinsonian efficacy or even an improved side effect profile with respect to dyskinesias and
otherwise. The authors point to a relatively low 3:1 dosage ratio for preladenant’s
antiparkinsonian effects in monkeys compared to rodents, and contrast this to a 30:1 ratio
that they cite for istradefylline, suggesting a greater specificity of action for preladenant.
However, this monkey: rodent ratio for istradefylline depends on the species; the authors
referenced a study with macaques in noting the 30:1 ratio, whereas one obtains a ratio of just
2:1 if relying on the published marmoset data (Kanda et al., 1998; Kanda et al., 2000).

More importantly, it remains to be established whether avoiding any A1 antagonism would
indeed be advantageous for an antiparkinsonian A2A antagonist. On the one hand, it has
been postulated that inhibition of A1 receptors on striatonigral neurons of the direct pathway
may promote motor activity by disinhibiting the stimulant effects of dopamine D1 receptors,
whereas blocking A2A receptors on striatopallidal neurons of the indirect pathway may
activate the motor stimulant actions of D2 receptors, similarly resulting in motor activation
(Ferré et al., 1997). On the other hand, presynaptic A1 and A2A receptors on corticostriatal
neurons acting on these striatal output neurons have opposing actions: A1 receptors inhibit,
and A2A receptors stimulate, glutamate release (Ciruela et al., 2006). Preclinical behavioral
pharmacology studies have shown that adenosine A1 antagonism, like A2A antagonism, can
in fact stimulate motor activity under some circumstances (Karcz-Kubicha et al., 2003;
Bata-García et al., 2010). However, in most toxicological and pharmacological models of
parkinsonian motor dysfunction, A2A antagonists are consistently effective in reversing it,
whereas A1 antagonists are either less effective or ineffective (Kelsey et al., 2009). It stands
to reason that if activity at the A1 receptor in fact were unnecessary for the desired effect of
an adenosine antagonist, then greater A2A selectivity over A1 would be an asset.

The authors also postulate that the high A2A over A1 selectivity of preladenant favors the
anti-dyskinesogenic potential of adenosine antagonists. Consideration of the role of
adenosine in dyskinesia is often muddied by a failure to clearly distinguish between the
phases of dyskinesia. Adenosine receptors have distinct effects on the induction versus the
maintenance and/or the expression of this maladaptive plasticity, which characteristically
occurs after repeated treatment with exogenous dopaminergic drugs in the setting of
endogenous dopamine depletion. Although it was first hoped that A2A receptor blockade
might directly suppress the manifestation of established levodopa-induced dyskinesia, it
quickly became clear from the first clinical trials of istradefylline that the only real prospects
for reducing established dyskinesia with an A2A antagonist might be through an indirect
strategy of achieving adjunctive antiparkinsonian benefits that allow for a reduction in the
dosing of levodopa (Bara-Jiminez et al., 2003; Hauser et al., 2003).

More promising is the concept of using A2A antagonism to disrupt the neuroplasticity that
leads to the sensitized involuntary choreic responses to levodopa. Both genetic and
pharmacological approaches to A2A receptor inactivation, when implemented prior to or
with (but not after) the dopaminergic drug treatment have attenuated the development of
dyskinesia (Fredduzzi et al., 2002; Bibbiani et al., 2003; Xiao et al., 2006). Interestingly, a
recent study found that genetic depletion of the A1 receptor may be just as effective as A2A
receptor depletion in reducing the development of levodopa-induced dyskinesia (Xiao et al.,
2010). Given these findings, as well as the above mechanistic uncertainty as to whether A1
and A2A receptors would have opposing effects (e.g., post-synaptically) in the striatum, or
offsetting effects (pre-synaptically), a prediction of anti-dyskinetic advantage from greater
A2A to A1 selectivity is tenuous at best.
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Perhaps the strongest case for the theoretical advantage of greater A2A specificity can be
made based on evidence for a lower risk of developing tolerance to motor stimulant actions
of a purer A2A antagonist compared to a non-specific adenosine antagonist. Such tolerance
appears attributable to the A1 receptor-blocking component of mixed adenosine antagonists
(Karcz-Kubicha et al., 2003). By contrast, relatively specific A2A antagonism has not shown
tolerance to antiparkinsonian actions (Pinna et al., 2001), further enhancing the potential for
benefits of long-term treatment with the more selective of the candidate A2A antagonists in
development. Interestingly, preliminary clinical data have suggested that an antiparkinsonian
effect of mixed A1/A2A antagonism with caffeine in advanced PD may be achievable, but
only transiently due to such tolerance (Kitagawa et al., 2007).

Nevertheless, it is remarkable that initial clinical trials of specific A2A antagonist therapy did
not monitor or report concomitant use of caffeine in PD subjects, whose average intake of
~200 mg per day (Simon et al., 2008) of this adenosine antagonist may substantially disrupt
striatal A2A receptor ligand binding and signaling, possibly obscuring actions of the test
drug (El Yacoubi et al., 2001; Moresco et al., 2005; Brooks et al., 2010). Controlling or
stratifying for baseline caffeine consumption levels thus could be informative or even
essential to understanding the potential of A2A antagonist therapy for PD. Ultimately, head-
to-head comparisons may be required in PD patients to discern the importance of adenosine
receptor subtype selectivity.

Beyond symptomatic benefit for movement: Prospects for non-motor and
disease-modifying benefits

The primate data presented by Hodgson et al. nicely bridge the gap between rodent and
human studies in support of preladenant’s potential to treat both parkinsonian and
neuroleptic-induced extrapyramidal motor symptoms. The work highlights the realistic
expectation of gaining an initial indication for an adenosine A2A antagonist as a novel
nondopaminergic treatment for the motor deficits of PD. In preliminary reports of a recent
phase II trial of preladenant, it appeared to significantly decrease “off” time and increase
“on” time compared to placebo in patients with moderate-severe PD, without increased
overall dyskinesias (Hauser et al., 2009). In post-hoc analysis, preladenant was apparently
not associated with increased overall dyskinesia severity or increased proportion of time
spent in “on” state with troubling dyskinesias in patients with moderate-severe PD (Huyck et
al., 2009). Results were generally consistent with those published for multiple phase II and
III trials of istradefylline in relatively advanced PD (Bara-Jimenez et al., 2003; Hauser et al.,
2003; LeWitt et al., 2008; Stacy et al., 2008; Hauser et al., 2008; Factor et al., 2010; Mizuno
et al., 2010).

But beyond the welcome utility of additional improvement for movement disorders,
adenosine A2A antagonism is being considered for complementary symptomatic indications.
These are based on evidence that A2A receptor activation may contribute to the
pathophysiology of a range of neuropsychiatric disorders and dysfunctions such as
depression, excessive daytime sleepiness, restless legs syndrome, attention deficit
hyperactivity disorder, and cognitive fatigue (El Yacoubi et al., 2003; Müller et al., 2007;
Ferré et al., 2007; Pires et al., 2009). Conversely, the potential for non-motor adverse CNS
effects of antagonizing the A2A receptor should be appreciated based on its direct actions or
its modulation of dopaminergic neurotransmission (Morelli et al., 2010), warranting
monitoring for insomnia, impulse control disorder, dopamine dysregulation syndrome, etc,
in addition to psychosis.

Perhaps most exciting amongst the potential actions of A2A antagonists are their prospects
for disease-modifying benefits in PD and possibly other neurodegenerative conditions like
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Alzheimer’s disease (Morelli et al., 2010; Canas et al., 2009; Takahashi et al., 2008;
Arendash et al., 2010). A remarkable convergence of epidemiological and laboratory data
has advanced the proposal that A2A receptor blockers may help prevent PD or slow its
progression (Morelli et al., 2010). The consumption of coffee and other caffeinated
beverages (but not decaffeinated coffee) has been consistently linked to reduced risk of
developing PD. The biological plausibility of protection by caffeine or more specific
antagonists of the adenosine A2A receptor has been demonstrated repeatedly in multiple
models of the disease. In addition to the neuroprotective potential of A2A antagonism in PD,
a possible prophylactic effect on dyskinesia development has been proposed for early
adjunctive therapy (with an A2A antagonist paired to the administration of L-Dopa) based on
preclinical studies in rodent and NHP models of PD, as above (Bibbiani et al., 2003; Xiao et
al., 2006). Consistent with these aspirations, a recently posted major phase III clinical trial
of preladenant by Schering-Plough has adopted a “delayed-start” design (D’Agostino, 2009)
and a proposed size (1000 subjects) and duration (one year) that may offer the first real
insights into the disease-modifying effects of A2A antagonism in PD.

Thus on the proverbial racetrack of neurotherapeutic development, a pack of adenosine A2A
antagonists appear to be jockeying for position as they enter the home stretch toward clinical
indications, likely initially for the symptoms of PD. Which, if any, of the current ‘A2A
thoroughbreds’ will cross that finish line first is uncertain as any one might pull up lame or
sprint ahead. More important may be the next races for additional indications; these may be
tougher, but the purses bigger. Certainly, with the high stakes of neuropsychiatric illness it's
not just the owners who’d love a big win with adenosine A2A antagonists; it would be great
if people with Parkinson’s and other CNS diseases could catch a big break.
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